
High Performance Computing
Synopsis of Technical and Programming Concepts

Claude TADONKI
MINES ParisTech – PSL Research University
Paris - France

Universidade Federal de Rio de Janeiro(RJ - Brasil) – April 28, 2016

INTEL BROADWELL
�  22x2 = 44 cores
�  2.2 Ghz/core
�  3.6 GHz Boost
�  Hyperthreading
�  256-bit vectors
�  256 Gb RAM
�  76.8 Gb/s
�  500 Gb disk
�  1.54 Tflops SP
�  0.78 Tflops DP
�  Tflops is 1000 000 000 000 (1 billion) floating point operations per seconds

Intel® Xeon® Processor E5-2699 v4
Released in April 2016

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

NVIDIA DGX-1

�  NVDIA supercomputing solution

�  8 Tesla P100 GPUs (Pascal GPU based)

�  Dual Intel Xheon processors (host)

�  170 Tflops FP16 peak perf

�  7 Tb of SSD Storage

�  Aggregate bandwidth 768 Gb/s

�  Perf throughput 250 x86 servers

�  Pascal GPU: 3584 CUDA Cores; 1480 MHz; 16 GB RAM at 720 Gb/s 5thGen

�  We should understand that GPU is specialized for specific tasks where
it is likely to show up noticeable performances

$129,000 US
Released in April 2016

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

N°1 SUPERCOMPUTER

�  In China
�  Intel Xheon E5
�  260, 000 nodes
�  3 million cores
�  54 PFlops peak
�  33 PFlops (61%)

TIANHE-2 (MILKYWAY-2)

Top500 - Nov 2015

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Performances Evolution

�  Ss
� We are moving toward ExaFlops (E = Exa = 1018)

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

TOP500 Top 5 sites - Top500 - Nov 2015

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Peak Performance Evaluation

Getting Tianhe-2 RPEAK:
�  CPU-core frequency: 2.2 Ghz = 2.2 GFlops
�  Considering the vector capability (256-bit wide - 4 DP): 4 x 2.2 = 8.8 GFlops
�  Given the CPU can do ADD and MUL in one cycle (FMA): 2 x 8.8 = 17.6 GFlops
�  Finally the total number of cpu-cores: 3,120,000 x 17.6 Ghz = 54.912 PFlops

Clearly, we should exploit all levels of parallelism, if we need
to harvest an acceptable fraction of the peak performance.

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Peak vs Sustained
Not counted in peak performance:
�  Memory accesses
�  Interprocessor communications

G.Grosdidier, « Scaling stories », PetaQCD Final Review Meeting, Orsay, Sept. 27th – 28th 2012 500 Mflops/core

We got here a sustained
performance per core of
500 Mflops over 9 GFlops

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

How to Program a Supercomputer
�  Message passing between nodes (MPI, …)
�  Shared memory between cores (Pthreads, OpenMP, …)

�  Vector computing inside a core (SSE, AVX, …)

Main (shared) Memory

core core core

scalar & vector
units

scalar & vector
units

scalar & vector
units

Main (shared) Memory

core core core

scalar & vector
units

scalar & vector
units

scalar & vector
units

Main (shared) Memory

core core core

scalar & vector
units

scalar & vector
units

scalar & vector
units

[1]

[1] [1]

[1]

[2]
[3]

[2]

[2] [2]

[3]

[3] [3]

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Message Passing Programming
�  This is the typical way to execute across several independent compute nodes
�  The whole program is decomposed at runtime into several processes
�  Processes exchange data among themselves using message passing routines
�  The standard programming model is SPMD (Single Program Multiple Data)

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Message Passing Programming
�  MPI code is compiled with mpicc -o myprogram myprogram.c
�  Our MPI program is launched with the command mpirun myprogram –np 8
�  The value passed through “-np” is the number of processes
�  The number of processes can be higher or lower than the number of processors.
�  The scalability of your MPI code will mainly depends on data exchanges overhead

�  Every MPI command starts with the prefix “MPI_”
�  There several implementations and versions of MPI, but portability is preserved

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Message Passing Programming
�  MPI commands can be roughly grouped into three categories
◦  Environment Management Routines
◦  Communication Routines (point-to-point – collective - synchronization)
◦  Group Communicator Management Routines

�  From here you just need to delve into MPI documentation for details & specific needs
�  The global performance of your program will depend on both the parallel algorithm

behind and the quality of the corresponding parallel program 2 skills involved!!!

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Multithreaded Programming

Although we can still use the message passing approach for multicore machines,
it is important to know that there is a specific paradigm for this context.

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Multithreaded Programming
HISTORICAL CONTEXT AND TREND

We observe a stagnation of the processor frequency (tends to decreases)

We need to keep following the trend of Moore’s Law (transistors count)

In order to scale up with processor speed, we need more cores per chip

The number of cores per chip is increasing, but with complex memory system

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Multithreaded Programming
PACKAGING & HIERARCHICAL MEMORY

The cores always share the main memory and there are different cache levels

Cache memories are distributed among the cores depending on the packaging

A given core might be able to get data from non-local unshared caches

Cache coherency is guarantee by the hardware and associated protocols

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Multithreaded Programming
PACKAGING AND NUMA CONSIDERATION

UMA

Yinan Li et al.
Serious source of scalability issues

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Multithreaded Programming

In a program, an independent section or
a routine can be executed as a thread.

A multi-threaded program is a program
that contains several concurrent threads.

A thread can be seen as a lightweight
process (memory is shared among threads).

A thread is a child of a (OS) process. Thus it
uses the main resources of the process
(shared between all running threads),
while keeping its own

ü  Stack pointer
ü  Registers
ü  Scheduling properties (policy ,priority)
ü  Set of pending and blocked signals
ü  Thread specific data.

THREAD

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Multithreaded Programming
A threaded program is built from a classical program by
embedding the execution of some of its subroutines
within the framework of associated threads.

Typical scenario to design a threaded program implies
 calls to a specialized library (thread implementation)
 programming directives for threads creation
 appropriate compiler directives

There are several (incompatible) implementations of threads depending on
the target architecture (vendors) or the operating system.
This impacts on programs portability.

Two standard implementations of threads are: POSIX Threads and OpenMP.

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Multithreaded Programming
OpenMP

Directives oriented compiler for multithreaded programming

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Multithreaded Programming
Pthread

Thread management: Routines to create, terminate, and manage the threads.
Mutexes: Routines for synchronization (through a “mutex” ≈ mutual exclusion).

Condition variables: Routines for communications between threads that share a mutex.

Synchronization: Routines for the management of read/write locks and barriers.

All identifiers of the Pthreads routines and data types are prefixed with « pthread_ »
Example: pthread_create, thread_join, pthread_t, …

For portability, the pthread.h header file should be included in each source file

The generic compile command is
« cc	–lpthread » or « cc	–pthread »,
cc = compiler

Pthread library contains hundred of routines that can be grouped into 4 categories:

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Multithreaded Programming

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Vector Programming

A SIMD machine simultaneously operates on tuples of atomic data (one instruction).

SIMD is opposed to SCALAR (the traditional mechanism).

SIMD is about exploiting parallelism in the data stream (DLP) , while superscalar SISD is
about exploiting parallelism in the instruction stream (ILP).
SIMD is usually referred as VECTOR COMPUTING, since its basic unit is the vector.

Vectors are represented in what is called packed data format stored into vector registers.

On a given machine, the length/number of the vector registers are fixed

SIMD can be implemented on using specific extensions MMX, SSE, AVX, …

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Vector Programming
SIMD Implementation

Then AVX2, MIC, …

Vector instructions can be used from their native form or through intrinsics

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Vector Programming
MMX = MultiMedia eXtension
SSE = Streaming SIMD Extension
AVX = Advanced Vector Extensions
MIC = Many Integrated Core

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Vector Programming
SSE = Streaming SIMD Extensions

SEE programming can be done either through (inline) assembly or
from a high-level language (C and C++) using intrinsics.

The {x,e,p}mmintrin.h header file contains the declarations for the SSEx instructions intrinsics.
 xmmintrin.h -> SSE
 emmintrin.h -> SSE2
 pmmintrin.h -> SSE3

SSE instruction sets can be enabled or disabled. If disabled, SSE instructions will not be possible.
It is ecommended to leave this BIOS feature enabled by default.
In any case MMX (MultiMedia eXtensions) will still available.

Compile your SSE code with "gcc -o vector vector.c -msse -msse2 -msse3“

SSE intrinsics use types __m128 (float) , __m128i (int, short, char), and __m128d (double)

Variable of type __m128, __m128i, and __m128d (exclusive use)
maps to the XMM[0-7] registers (128 bits), and automatically aligned on 16-byte boundaries.

Vector registers are xmm0, xmm1, …, xmm7. Initially, they could only be used for single
precision computation. Since SSE2, they can be used for any primitive data type.

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Vector Programming
SSE (Connecting vectors to scalar data)

float a[N] __attribute__((aligned(16)));
__m128 *ptr = (__m128*)a;

prt[i] or *(ptr+i) represents the vector
 {a[4i], a[4i+1], a[4i+2], a[4i+3]}

float a[N] __attribute__((aligned(16)));
__m128 mm_a;
mm_a = _mm_load_pd(&a[4i]); // here we explicitly load data into the vector

mm_a represents the vector
 {a[4i], a[4i+1], a[4i+2], a[4i+3]}

Vector variables can be connected to scalar variables (arrays) using one of the following ways

Using the above connections, we can now use SSE instruction to process our data.
This can be done through

(inline) assembly

intrinsics (interface to keep using high-level instructions to perform vector operations)

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Vector Programming
SSE (illustrations)
void	scalar_sqrt(float	*a){	
		int	i;	
		for(i	=	0;	i	<	N;	i++)	
				a[i]	=	sqrt(a[i]);																																																																																																																																																																																												
}		

void	sse_sqrt(float	*a){	
		//	We	assume	N	%	4	==	0.	
		int	nb_iters	=	N	/	4;																																																																																																																																																																																										
		__m128	*ptr	=	(__m128*)a;																																																																																																																																																																																							
		int	i;	
		for(i	=	0;	i	<	nb_iters;	i++,	ptr++,	a	+=	4)																																																																																																																																																															
				_mm_store_ps(a,	_mm_sqrt_ps(*ptr));																																																																																																																																																																											
}	

10 times faster !!!!!!!

Scalar version

Vector version (SSE)

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

Conclusion

HPC is making noticeable progresses, but we still need to skillfully use
its elements and concepts in order to reach our performance expectations.

There is no free launch

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

End

Thanks for your attention

High Performance Computing
Claude TADONKI – UFRJ – RJ – April 27, 2016

