
UNIFY EVENT-BASED AND RULE-BASED STYLES FOR
DEVELOPING CONCURRENT AND

CONTEXT-AWARE REACTIVE APPLICATIONS
Toward a convenient support for concurrent and reactive programming

Truong-Giang Le1, Olivier Hermant1, Matthieu Manceny1, Renaud Pawlak2, and Renaud Rioboo3

1LISITE - ISEP, 28 rue Notre-Dame des Champs, 75006 Paris, France
2IDCapture, 2 rue Duphot, 75001 Paris, France

3ENSIIE, 1 square de la Résistance, F-91025 Évry CEDEX, France
{le-truong.giang, olivier.hermant, matthieu.manceny}@isep.fr, renaud.pawlak@gmail.com, renaud.rioboo@ensiie.fr

Keywords: Event-based Programming, Rule-based Programming, Concurrent Applications, Context-awareness, Reactive
Applications.

Abstract: We propose a new programming language called INI, which combines both event-based and rule-based styles
and is suitable for building concurrent and context-aware reactive applications. In our language, both events
and rules can be defined intuitively and explicitly, in a stand-alone way or in combination. Events in INI can
run in parallel in order to handle multiple tasks concurrently and may trigger actions defined in related rules.
Besides, events can interact with the execution environment to adjust their behaviors if necessary and response
to unpredicted changes. This makes INI a convenient language to write many kinds of programs which need to
take advantages of concurrency and context-awareness, such as embedded software, interactive applications,
sensors applications, robotic systems, etc.

1 INTRODUCTION

Context-aware reactive applications are intelligent ap-
plications that can monitor the running context by reg-
istering event handlers. In case of changes in this
context, they may adapt their behavior if needed and
react accordingly in order to satisfy the user’s cur-
rent needs or anticipate the user’s intentions (Daniele
et al., 2009). Such aware systems have become one of
the most exciting concepts in ubiquitous computing,
with a wide range of application areas, e.g. moni-
toring and controlling systems. Ideally, since multi-
processors are now very widespread, a context-aware
reactive system should use multithreading so that it
may handle multiple tasks in parallel (Sandén, 2011).

Context-aware computing was first discussed by
Schilit et al. (Schilit and Theimer, 1994). Since
then, there have been numerous attempts to support
context-aware computing. However, writing context-
aware reactive applications is still challenging. The
main reason is that we need a well-defined mecha-
nism to handle with widely varied sources of con-
text information. In order to support programmers to
write these kinds of applications more intuitively and

straightforwardly, we develop a new language called
INI. INI compounds both rule-based and event-based
paradigms, which are appropriate styles to monitor
and react to changes in the environment. Although
several event-based and rule-based programming lan-
guage have been proposed so far (Cohen and Kalle-
berg, 2008; Baillie et al., 2010; Mircea Marin, 2006;
Giurca et al., 2009), they still do not provide a flexi-
ble and intuitive way to define events and rules as in
INI. Another advantage of INI is that it supports mul-
tithreading to speed up the execution.

The rest of this paper is organized as follows. In
Section 2, we introduce INI, including its syntax, in-
formal semantics and type system. We discuss a case
study of using INI to write concurrent context-aware
reactive applications in Section 3. Section 4 con-
cludes the paper.

2 PROGRAMMING WITH INI

INI combines both event-based and rule-based pro-
gramming styles. With event-based programming,
changes in the operational environment can be eas-

ily captured and handled during execution. With rule-
based programming, a program may react straightfor-
wardly to changes.

2.1 Functions and Rules in INI

Each INI program contains functions, which combine
event expressions, logical expressions (used to spec-
ify the conditions to trigger) and the actions (lists of
statements) bound to them. The scope of all variables
is the whole function. A function in INI has the fol-
lowing syntax:

function <name>(<parameters>) {
<logical_expression> { <statements> }
| <event_expression> { <statements> }
| <event_expression> <logical_expression>
{ <statements> }

}

A rule in INI consists of a logical expression and a
corresponding action. When the logical expression
part of a rule is evaluated to true, the action is in-
voked. INI also allows the use of logical expressions
along with events, and in this case they play the same
prerequisite role as in rules.

2.2 Events in INI

(Mühl et al., 2006) defines events as any happening
of interest that can be observed by a system. An event
instance in INI starts with @ and takes input and out-
put parameters, both are optional. The scope of output
parameters is the whole function, like other variables.
Moreover, an event can also be bound to an id and
synchronized on other events through $(id1,...,idN)
construct (will be explained later). The syntax of
event instances is shown below.

$(id1 ,id2 ,..., idN) id0:@eventKind
[inputParam1=value1 , inputParam2=value2 , ...]
(outputParam1 , outputParam2 , ...)
{ <statements > }

Programmer may use built-in events (listed in Ta-
ble 1), or write user-defined events (in Java or in
C/C++), and then integrate them to their INI programs
(Le, 2012).

By default, except for the @init and @end events
(see Table 1), all INI events are executed asyn-
chronously. However, in some scenarios, a given
event id0 may want to synchronize on other events
id1,..., idN. It means that the synchronizing event id0
must wait for all running threads corresponding to the
target events to be terminated before running. For
instance, when id0 affects the actions defined inside
other events, we need to apply the synchronization
mechanism.

Table 1: Some built-in events in INI.

Built-in event Meaning
@init() Used for initialization,

when a function starts.
@end() Invoked when no more rule

or event in the function
can run or when the

function is about to return.
@every Triggers an action, period
[time:Integer]() is indicated by its input

parameter (in milliseconds).
@update[variable:T] Invoked when the value
(oldValue:T, of an observed variable
newValue:T) changes during execution.

Events in INI may also be reconfigured at run-
time to adapt their behaviors to changes happening in
the environment. Programmers can call the built-in
function reconfigure event(eventId, [inputParam1 =
value1, inputParam2 = value2,...]) in order to modify
the the values of event’s input parameters (see Section
3 for example). To understand more about the algo-
rithm we use to implement events synchronization in
INI, and also the event reconfiguration mechanism,
please refer to our previous paper (Le et al., 2011).

2.3 Example

To illustrate rules and events in INI, let us consider
an automatic lighting control system in the corridor
(Figure 1). In our program, there is one user-defined
event called @motionDetection, that is applied to de-
tect movement. This event has one input parameter
named mode, which is set to point out whether we
apply a simple algorithm or an advanced one for de-
tecting motion. Whenever a motion is detected, our
program will turn on the lights if they were turned off
before (lines 9-12). The event @every at lines 15-17
is applied to set how long does it pass without any mo-
tion. If there is no movement within fifteen minutes
and the current lights state is on, a rule at lines 18-21
will be invoked to turn off the lights to save energy.

2.4 Type System in INI

2.4.1 Built-in Types

INI comes with 5 built-in types for numbers (Double,
Float, Long, Int, and Byte), a Char type, and a
Boolean type. Besides, INI provides built-in map
types: Map(K,V). Map types are polymorphic types
with a key type K and a value type V . Lists are in-
stances of maps whene K = Int (in reality, it is more

1 function main () {
2 @init () {
3 lightOn = false
4 timeWithNoMotion = 0
5 }
6 @motionDetection[mode = "simple "]() {
7 timeWithNoMotion = 0
8 case {
9 !lightOn {

10 // Turn on the lights
11 lightOn = true
12 }
13 }
14 }
15 @every[time = 60000]() {
16 timeWithNoMotion ++
17 }
18 timeWithNoMotion > 15 && lightOn {
19 // Turn off the lights
20 lightOn = false
21 }
22 }

Figure 1: An automatic lighting control system.

of an indexed set). A String type is a list of Char.
Syntactically, lists can be noted with the * notation:

T ∗ =̂Map(Int,T)

INI types are ordered with a subtyping relation ≻.
By default, numerics are ordered so that it is not pos-
sible to assign more generic numbers to less generic
numbers.

Double ≻ Float ≻ Long ≻ Int ≻ Byte

Other conversions must be done by using built-in
functions (Le, 2012).

2.4.2 User-defined Types

To define a new type, the programmer uses the type
keyword followed by a name starting by an upper-
cased letter. For example, we can use a Person type
as:

type Person = [name:String , age:Int]
p = Person[name =" Giang", age =28]
println (" Info: " + p.name + " is " + p.age)

Field initialization is not mandatory and field ac-
cess is done with a usual “dot”. For instance, one can
construct a person with undefined age or name. More-
over, types can be recursive. For example, one can
use the Person type within the Person type definition
itself. We can refine the above Person type as:

type Person = [name:String , age:Int , father:
Person , mother:Person , children:Person *]

Note that INI also performs type-checking on ob-
ject fields. In order to understand more about types
in INI, please refer to INI Language Reference Docu-
mentation (Le, 2012).

2.4.3 Type Inference

INI provides type inference, so that the programmers
may leave types implicit. For instance, the i=0 state-
ment will assign to i the Int type. If the program-
mer tries to set the type of i to any other type within
the definition scope of i, (for instance with the i=0.1
statement that assigns i with a Float type) the INI type
checker will raise a type mismatch error.

Most types in INI are calculated with the type in-
ference engine. The core of this type inference is
based on a Herbrand unification algorithm, as de-
picted by Robinson in (Robinson, 1965). The typ-
ing algorithm is enhanced with polymorphic function
support, abstract data types (or algebraic types) sup-
port, and with internal sub-typing for number types.

3 CASE STUDY

Figure 2 shows an intelligent virtual personal assistant
written in INI, which can recognize voice commands
from users and then do appropriate actions. One of
the most interesting features of our program is that it
can detect who is using it (based on face detection),
in order to adjust the voice recognition process with
regard to his or her maternal language, tones and ac-
cents. This data is previously collected and stored in
a database during a speech training procedure. As a
result, the accuracy of voice recognition will be im-
proved.

There are two user-defined events in our program.
The event @faceRecognition (identified by f) is ap-
plied to detect a human face. This event has one out-
put parameter called recognizedId, which is used to
indicate the corresponding id (if existing) of the user.
If a new face is detected, we stop the event @voiceRe-
cognition (identified by v), reconfigure it depending
on whether the user has been recognized or not, and
restart the event v in order to improve the performance
of voice recognition. The event @voiceRecognition is
used to recognize user’s voice. It has one input param-
eter specifying the id of the user, which is applied in
order to tune the recognition pattern. Moreover, there
is one output parameter called voiceCommandString,
which is the returned recognized spoken sentence. At
line 28, we match the user’s command against a reg-
ular expression to guess its meaning (by using the
match operator ∼), and then do a suitable action. The

1 function main () {
2 @init () {
3 defaultId = 1
4 currentId = 1
5 }
6 $(v) f:@faceRecognition(isKnown ,
7 recognizedId) {
8 case {
9 //A familiar person is detected ,

10 // then change current settings
11 //to new settings
12 isKnown && recognizedId != currentId {
13 currentId = recognizedId
14 stop_event(v)
15 reconfigure_event(v,[userId=currentId])
16 restart_event(v)
17 }
18 //A stranger is detected ,
19 // then use default settings
20 !isKnown {
21 ...
22 }
23 }
24 }
25 v:@voiceRecognition[userId = defaultId]
26 (voiceCommandString) {
27 case {
28 voiceCommandString ˜ regexp (...) {
29 //Do action 1
30 }
31 ...
32 default {
33 //Do a default action
34 }
35 }
36 }
37 }

Figure 2: An intelligent virtual personal assistant.

event f should be synchronized on the event v, which
means that if there is a current running thread for v,
f has to wait before it can be executed. The synchro-
nization is necessary since we want to avoid unfin-
ished voice recognition jobs to be stopped.

4 FUTURE WORK

For future work, we will develop a context recovery
mechanism in INI so that when the reaction fails, our
program can recover to the previous stable state. Ad-
ditionally, we will define formal semantics for INI
with thoughtful consideration of parallel and concur-
rent aspect. Operational semantics, denotational se-
mantics or axiomatic semantics with some exeten-
sions can be taken into account. Furthermore, we also
have a plan to apply INI in more real applications in

order to better evaluate its capabilities.

ACKNOWLEDGEMENTS

The work presented in this article is supported by
the European Union. Europe is committed in Ile-
de-France with the European Regional Development
Fund.

REFERENCES

Baillie, J.-C., Demaille, A., Hocquet, Q., and Nottale, M.
(2010). Events! (reactivity in Urbiscript). CoRR,
abs/1010.5694.

Cohen, N. H. and Kalleberg, K. T. (2008). EventScript:
an event-processing language based on regular expres-
sions with actions. In Proceedings of the 2008 ACM
SIGPLAN-SIGBED conference on Languages, com-
pilers, and tools for embedded systems, LCTES ’08,
pages 111–120, New York, NY, USA. ACM.

Daniele, L. M., Silva, E., Ferreira, L., and van, M. S.
(2009). A SOA-based platform-specific framework
for context-aware mobile applications. In Enterprise
Interoperability, volume 38 of Lecture Notes in Busi-
ness Information Processing, pages 25–37, Berlin
Heidelberg. Springer Verlag.

Giurca, A., Gasevic, D., and Taveter, K. (2009). Handbook
of Research on Emerging Rule-based Languages and
Technologies: Open Solutions and Approaches. IGI
Publishing, Hershey, PA, USA.

Le, T.-G. (2012). Ini Online. https://sites.google.
com/site/inilanguage .

Le, T.-G., Hermant, O., Manceny, M., and Pawlak, R.
(2011). Dynamic adaptation through event reconfigu-
ration. In Meersaman, R., Dillon, T., and Herrero, P.,
editors, On the Move to meaningful Internet Systems:
OTM 2011 Workshops, volume 7046 of Lecture Notes
in Computer Science. Springer.

Mircea Marin, T. K. (2006). Foundations of the rule-based
system pLog. Journal of Applied Non-Classical Log-
ics, 16:151–168.

Mühl, G., Fiege, L., and Pietzuch, P. (2006). Distributed
Event-Based Systems. Springer-Verlag New York,
Inc., Secaucus, NJ, USA.

Robinson, J. A. (1965). A machine-oriented logic based on
the resolution principle. J. ACM, 12(1):23–41.

Sandén, B. (2011). Design of Multithreaded Software: The
Entity-Life Modeling Approach. John Wiley & Sons.

Schilit, B. and Theimer, M. (1994). Disseminating ac-
tive map information to mobile hosts. IEEE Network,
8:22–32.

