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1 Introduction

This paper aims to modify an erroneous construction of [3].

2 The problem and its correction

A key technical lemma for proving completeness in [3] (Theorem 5.9, on page 842) relies on
a tableau-style definition of consistency (definition 5.5) of a Hintikka set of signed forcing
statements in type theory.

For the proof of the lemma to work, one must strengthen this definition, and use, in place
of Fp(H), the set of negative forcing statements at world p, its closure

∨
Fp(H) under finite

disjunctions. The correct definition should read as follows, with the key changes in boldface:

Definition 2.1 (Def. 5.5, of [3] corrected) A K-Hintikka set (resp. Hintikka path)
is ICTT-consistent if for any p, and any finite disjunction B of formulas in Fp(H),

Tp(H) 6` B,

where provability means in the ICTT sequent calculus.

The change is required to ensure the correctness of one of the disjunction cases of the induction
proof of Theorem 5.9, on page 842, which states that if a theory Γ fails to prove some formula
A there is a consistent K-Hintikka path π for (Γ, A). The proof proceeds by showing that any
finite consistent path in a partially developed tableau must have a consistent extension, using the
tableau construction of Lemma 5.8, p. 839. One must examine every case (Tp  C or Fp  C for
all possible formulas C) for the least unused node ν on π, and show that if all path extensions
π′ corresponding to that case are inconsistent, then so is π.

In the Tp  ∨BC case the tableau rules generate an extension of π into two paths, one
labeled by Tp  B, the other by Tp  C. If both paths so generated are now inconsistent, then
for some formulas D,D′ in Fp(π) we have Tp(π), B ` D and Tp(π), C ` D′, from which, by
∨-left and ∨-right, Tp(π), B ∨ C ` D ∨ D′. Since B ∨ C ∈ Tp(π) this yields Tp(π) ` D ∨ D′.
This does not contradict the consistency of π unless we use the second definition of consistency
above, in which we take the disjunctive closure of Fp(π). With the new definition we have an
immediate contradiction, but now the other cases must be shown to work as well. This calls for
the application of certain technical lemmas about the associativity, and commutativity of of ∨
and the legitimacy of derived rules in the presence of disjunction (and the absence of the cut
rule), many of which were established (in roughly equivalent form) in [1], and in [2]. Since the
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formal system used here is not exactly the same as those used in the references cited, we will
sketch several of the proofs below.

Lemma 2.2 (Associativity) Let Γ be a set of formulae and A,B,C be fomulae, let P ≡λ

A ∨ (B ∨C) or P ≡λ (B ∨C). From a cut-free proof of Γ ` P we can construct a cut-free proof
of Γ ` (A ∨B) ∨ C.

Proof. We appeal to the fact that in a cut-free proof, the formula P must have been the result
of prior application(s) of the right ∨ rule.

More formally, we show by induction on the depth of the given proof tree, that from a cut-free
proof ϑ of Γ ` A ∨ (B ∨ C) or a proof ϑ′ of Γ ` B ∨ C we can yield the desired cut-free proof.
We consider some of the cases involved.

We will assume that the axiom rule allowing free inference of Γ, A ` A is only allowed for
atomic formulas A. This variant of ICTT is trivially equivalent to the formulation in the paper,
and it makes the base case of the proof of this and subsequent lemmas vacuously true.

First, consider the proof ϑ and suppose the last rule used is a left rule. This can take one of
three forms, shown below. We consider the first two, the first corresponding to the ∧,∃,∀ cases,
the second corresponding to the ∨ case.

...ϑ1

Γ′ ` A ∨ (B ∨ C)
`1

Γ ` A ∨ (B ∨ C)

...ϑ1

Γ′ ` A ∨ (B ∨ C)

...ϑ2

Γ′′ ` A ∨ (B ∨ C)
∨`

Γ ` A ∨ (B ∨ C)

...ϑ1

Γ′, K1 ` A ∨ (B ∨ C)

...ϑ2

Γ′′ ` K2 ⊃`
Γ ` A ∨ (B ∨ C)

In the first case, apply the induction hypothesis to the shorter proof ϑ1 to yield a proof of
Γ′ ` (A ∨B) ∨ C, and then use the corresponding `1 rule to obtain Γ ` (A ∨B) ∨ C. In the
second case apply the induction hypothesis to both proofs ϑ1 and ϑ2, and then use the ∨` rule
to obtain the desired conclusion. The third form a left rule can take is ⊃`. This case is treated
similarly, applying the induction hypothesis to ϑ1, and then the ⊃` rule.

If the last rule used in ϑ was a right rule it must be the ∨ rule, since the proof is cut-free. If
the rule used was

Γ ` A
Γ ` A ∨ (B ∨ C)

then from Γ ` A we infer Γ ` A ∨B and then Γ ` (A ∨B) ∨ C. If the last rule used was a right
∨ applied to B∨C we use the induction hypothesis on proofs of B∨C to obtain the result. Now
suppose P ≡λ (B ∨C) is derived by the cut-free proof ϑ′. We proceed as above, considering the
cases for the last rule used in the proof. The left-rule cases use the induction hypothesis in the
same way. If the last rule was a right rule, it was ∨-right applied to B or C and the result is
immediate. 2

Using similar arguments we obtain also the derivability of contraction, and commutativity
of disjuncts, as well as the following lemma, similar in spirit to the formal system G introduced
in section 4.2 of [1], and subsequently shown equivalent to Church’s (classical) theory of types.
Proofs can also be found, for a related formal system in [2].

Lemma 2.3 Let A,B,C, P,Q,R be formulae and Γ1,Γ2 be sets of formulae.

1. If P is A ∨ C or A, then from cut-free proofs of Γ1 ` P and Γ2 ` B ∨ C we can construct
a cut-free proof of Γ1,Γ2 ` (A ∧B) ∨ C.
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2. from a cut-free proof of Γ ` Bt ∨ C we can construct a cut-free proof of Γ ` (ΣB) ∨ C.

3. from cut-free proofs of Γ1 ` A ∨ C and Γ2, B ` C we can construct a cut-free proof of
Γ1,Γ2, A ⊃ B ` C

Lem. 2.3 above has indeed strong links with the syntactical soundness of multi-succedent intu-
itionistic sequent calculus w.r.t. the usual intuitionistic sequent calculus, as shown in [2]. The
point is that multiple conclusions are not harmful as long as we do not have to apply ⊃R or ∀R

rules. See e.g. [4].
Now we are in a position to establish the cited consistency theorem.

Theorem 2.4 (Th. 5.9 [3], corrected) Suppose Γ 6` A. Then there is a consistent K-Hintikka
path π for (Γ, A).

Proof. We show that if π is a consistent finite path in some partially developed tableau τn for
(Γ, A) then at least one of the ways it is extended at some stage preserves consistency.

Suppose π is a path through ν, the least unused node on π with entry Bp  B. We consider
only the cases undergoing a significant change with respect to [3]:

Tp  ∧BC : almost the same. Replace D in Fp(π) by D in
∨

Fp(π).

Fp  ∧BC : π is extended to two new paths π0, π1. Observe that Tp(π) = Tp(π0) = Tp(π1), and
that Fp(π0) = Fp(π)∪ {B} and Fp(π1) = Fp(π)∪ {C}. If both extensions are inconsistent,
the only possible violations of consistency are:

Tp(π) ` D and Tp(π) ` D′

for D in
∨

Fp(π0) and D′ in
∨

Fp(π1). Using associativity and contraction for disjunctive
formulas (see remarks after Lemma 2.2) we can replace D by B ∨E and D′ by C ∨E′ for
E,E′ ∈

∨
Fp(π). Letting E′′ = E ∨ E′ and using ∨-right, we have,

Tp(π) ` B ∨ E′′ and Tp(π) ` C ∨ E′′

We use Lem. 2.3 to get a proof of Tp(π) ` (B ∧ C) ∨ E′′. Since B ∧ C ∈ Fp(π), we have
(B ∧ C) ∨ E′′ ∈

∨
Fp(π) for a contradiction.

Tp  ∨BC is the same as the previous case, but we do not have to use Lem. 2.3 since Fp(π)
does not change.

Fp  ∨BC : π extends into one new path, adding the statements Fp  B,Fp  C. If the new
path is inconsistent, it could only be because there is a proof of:

Tp(π) ` (B ∨ C) ∨ E

for some E in
∨

Fp(π), making use of contraction, associativity and commutativity of ∨
and ∨-right as needed. But B ∨C ∈ Fp(π) and hence (B ∨C)∨E is in

∨
Fp(π), so π itself

must be inconsistent.

Tp  B ⊃ C : Let q ≥ p the world introduced in the path extension. If both new paths π0 and
π1 are inconsistent, then it can only be because we have the following proofs:

Tq(π) ` B ∨ E and Tq(π), C ` E′

where E and E′, and hence their disjunction E′′ = E ∨ E′ is in
∨

Fq(π).

This follows from the fact Fq(π0) = {B} ∪ Fq(π), Fq(π1) = Fq(π) and Tq(π0) = Tq(π),
Tq(π1) = {C} ∪ Tq(π). Now (by ∨-right) we may replace E and E′ above by E′′, then
apply Lem. 2.3 and get a proof of: Tq(π) ` E′′, showing there is a contradiction already
present on the original path.
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Fp  B ⊃ C : if the new path is inconsistent, this only can occur at the new world p′ introduced.
Since it is new, we have Fp′(π′) = {C} and Tp′(π′) = {B}∪Tp(π). Hence, we have a proof
of:

Tp(π), B ` C

and we can apply the ⊃ right rule to obtain the inconsistency of π.

Tp  Σo(oα)B is identical to the corresponding case of [3], replacing D ∈ Fp(π) by D ∈
∨

Fp(π).

Fp  Σo(oα)B : the path π is extended with the two nodes {Fp  Σo(oα)B,Fp  BC} for the
appropriate witness C. If the new path is inconsistent, we have, by use of contraction,
commutativity and associativity of disjunction, a proof of:

Tp(π) ` (BC) ∨ E

for some E in
∨

Fp(π). Applying Lem. 2.3, we can find a proof of Tp(π) ` Σo(oα)B ∨ E.
But Σo(oα)B ∨ E is in

∨
Fp(π), contradicting the consistency of π.

Tp  Πo(oα)B : the path π is extended with the two nodes {Tq  Πo(oα)B,Tq  BC} for the
appropriate q ≥ p and C. If the new path is inconsistent, it must be because we have a
proof of:

Tq(π), (BC) ` E

with E ∈
∨

Fq(π), since Tq(π′) = Tq(π) ∪ {Πo(oα)B,BC} = Tq(π) ∪ {BC} and Fq(π′) =
Fq(π). We apply ∀L rule to obtain the inconsistency of π, yielding a contradiction.

Fp  Πo(oα)B : The path π is extended to a new path π′ with the single entry Fp′  Bcα for the
appropriate new p′ ≥ p and fresh constant cα. If π is consistent and π′ fails to be, since
Tp′(π′) = Tp(π) and Fp′ = {Bcα} (p′ is new) we must have:

Tp(π) ` Bcα

Generalizing on the fresh constant, we obtain, by ∀R,

Tp(π) ` Πo(oα)B

yielding the inconsistency of π for a contradiction, which completes the proof.
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APPENDIX

Proof. [of Lemma 2.3] We recall that, as mentioned in [3], (page 825) weakening on the left is a derived
rule in ICTT, and that in our sequents, antecedents are sets (hence contraction and exchange on the
left is taken for granted).

Now, for all three conclusions, we induct on the depth of the cut-free proof ϑ1 of the first sequent,
Γ1 ` P in 2.3.1, Γ ` Bt ∨ C in 2.3.2 and Γ1 ` A ∨ C in 2.3.3.

If the last rule used in ϑ1 is a left rule, the proof proceeds as in Lemma 2.2. We consider the
three types of left rules, applying the induction hypothesis to the antecedent(s) and then the left rule in
question.

If the last rule used is a right rule, we consider the three claims of the lemma, separately:
2.3.1:
If P is A ∨ C then the rule must have been ∨r. If it was applied to introduce the left disjunct:

Γ1 ` C

Γ1 ` A ∨ C

then we can obtain the desired proof from Γ1 ` C just by one use of ∨r and weakening on the left. If
applied to introduce the right disjunct

...ϑ′
1

Γ1 ` A

Γ1 ` A ∨ C

then apply the induction hypothesis (for the case P = A) to the shorter proof ϑ′
1.

If P is A, we must induct on the depth of the other given proof (of Γ2 ` B ∨ C). The arguments
are similar to the ones just used. We permute the left rules with the inductive hypothesis, and if the
last rule used was a right rule, we have either a proof of Γ2 ` B, and using ∧r and then ∨r we have the
desired conclusion, or a proof of Γ2 ` C and one use of ∨r and weakening on the left will suffice.

2.3.2:

If the last rule used was a right rule, necessarily ∨r, applied to Γ ` Bt, then use ∃r to get Γ ` ΣB,
and then ∨r to get Γ ` ΣB ∨ C. If the premise was Γ ` C, we obtain the desired conclusion with a
simple ∨r.

2.3.3:

If the last rule used in the proof ϑ1 of Γ ` A ∨ C was a right rule, then it was either ∨r applied to
Γ1 ` C, and, just by weakening on the left, we obtain Γ1, Γ2, A ⊃ B ` C, or it was ∨r applied to Γ1 ` A.
Then we can apply ⊃` directly to Γ1 ` A and Γ2, B ` C to obtain the desired conclusion.

The base case of our induction, namely that the main premise involved was an instance of the axiom
rule Γ, A ` A is immediate, since, in this note, we only allow this rule to be applied to atomic formulas
A (see the note at the beginning of the proof of associativity, above).
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