FoCalLiZe

Programming and Proving
A Bit Under the Hood

Francois Pessaux - ENSTA ParisTech (U2IS)

francois.pessaux@ensta-paristech.fr

DEDUCTEAM Seminar
11 April 2014



Topics and Short Outline

 FoCalL1Ze: alanguage to express code, properties and formal proofs.

« Qutline:
« Short presentation of FoCalL1Ze,
 How design & features choices drive the semantics and the compilation
model,
« Sketch of compilation scheme focusing on dependencies.

* ... Dependency analysis rules in spare just in case ... ©

Started more than 10 years ago (T. Hardin and R. Rioboo) ...



FoCalLiZe Credo

« Why ?
« Standards require usage of formal methods to ensure high level assurance of critical
systems.

« Formal methods ? Runtime verification, UML ... For us: mechanically checked proofs.
 |deally should be within any computer science engineer skills: our long term goal.

« How ?
« Basis: wedding 0Cam1 and Coq avoiding too complex features.

« Features mixing logical and programming aspects: inheritance, late-binding,
abstraction, parametrisation, properties and proofs.

« Mixing computational/logical features: risk of inconsistencies (S. Boulmé PhD) .
« Our claim: Accepted by FoCaL1Ze compiler = No 0Caml or Coq error!

FoCal: first compiler by V. Prevosto ... FoCaL12Ze: Darwinian evolution
3



Semantical Framework

Requirements / implementation: a single language and a single semantics
for logical / programming features.

Pure functional declarations and definitions, first-order (like) formulae,
proofs written in FPL.

Properties can use function names only, proofs can unfold function definitions
not the inverse.

Thus a kind of dependent type theory, however some dependencies are
forbidden: don't want/need the whole Coq's power

FoCaL1Ze source: compiled to OCam| and Coq source files.
Proofs sent to Zenon returning a Coq term to embed in final Coq source.
Curry-Howard isomorphism. Logical aspects discarded in OCam .



Species

« Structure grouping signatures, properties, functions and proofs related
to an underlying data-type: the representation.

species OrdData =

inherit Data ;

signature 1t: Self -> Self -> bool ;

signature eq: Self -> Self -»> bool ;

let gt (x, y) = ~~ (1t (X, y)) && ~~ (eq (X, y)) ;
property 1tNotGt: all x y: Self, 1t (x, y) -> ~gt (x, y) ;

end ;;

* Inheritance: to enhance reusability.
« Late-binding: introduces a name and a type, deferring definition (representation also).

« Allows to incrementally introduce new items.
* Progression from a specification to implementation.

« At each step: use new items to prove conformance with previously stated
requirements.



Parameterization

« Parameterized module ? We need parameterized species.
* Two kinds of parameters:

« Use methods & properties of other species:

« Use values of other species: entity parameter.

species IsIn ( , minv in V, maxv in V) =
representation = (V * statut t) ;
let filter (x) : Self =
if VI1t (x, minv) then (minv, Too_ low)
else if V!gt (x, maxv) then (maxv, Too high) ... ;
theorem lowMin: all x: V,
getStatus (filter (x)) = Too low -> ~ Vlgt(x, minv)

proof = ... ;



Abstracted or not (to be) Abstracted

« Definition of representation exposed or encapsulated ?

* Inheritance & late-binding require exposure.
« Parameterization requires abstraction.

= V/isibility driven by 2 structures:
« Species: total transparency of definitions.

« Collection: representation abstracted, only types (hence also
properties) visible.



Collection

To provide effective arguments to collection parameters.

No link-time errors = all exported functions must be defined.
No inconsistencies = all properties must be proved.
Abstracted « instance » of a complete species.

The only form of proved run-able code.

species Thelnt =
inherit OrdData ;
... (* Complete species. *)
end ;;
collection IntC = implement TheInt ; end ;;
collection In 5 10 =

implement IsIn (IntC, IntC!fromInt (5), IntC!fromInt (10)) ;
end ;;



Properties and Proofs

 Be independent from any particular proof checker.
 Own proof language, natural deduction style.

* Proof = hierarchical decomposition into intermediate steps introducing
subgoals and assumptions.

« Leaf: subgoal which can be automatically handled by Zenon automated
prover using facts given by the user.

theorem t : all a b c : bool, a -> (a ->b) -> (b -> c) -> c
proof =
<1>1 assume a b c : bool,
hypothesis hl: a, hypothesis h2: a -> b, hypothesis h3: b -> c,
prove c
<2>1 prove b by hypothesis hl, h2
<2>2 qed by step <2>1 hypothesis h3
<1>2 ged by step <1>1

« Zenon returns a Coq term plugged by the compiler in the context.

« Only acceptable Zenon errors: « out of memory », « time out », « no proof found ».

9



Outline of Coming Technical Points

Reminders about FoCalLiZe ended!

Coming next...

Dependencies on own species methods

Dependencies on collection parameters methods

Code generation: method generators

Code generation: collection generators

Initial work: V. Prevosto dependency analysis, rules modified and extended.

10



Notion of Dependencies (1/3)

A method depending on the definition of m has a def-dependency on m.
* Only two possible def-dependencies:
 Proof with a by definition of m (unfolds the definition of m)]

= |f m redefined, proof must be invalidated.
« Functions and proofs can def-depend on the representation.

« By syntax, functions cannot def-depend on proofs.
« By encapsulation, no possible def-dependencies on parameters methods.

« Analysis required to prevent def-dependencies on the representation in
properties and theorems statements.

species Sample =

representation = bool ;

signature : Self -> int;

property things hold: all x : int, bla (i) ;
defdep on_me |x : self) = .. if (x) (x) else .. ;
theorem prove me: all x : Self, all i : int, bla (i) \/ defdep on me (x) = i

proof =‘by definition of defdep on me|property things hold ;

end ;;

let

11



Notion of Dependencies (2/3)

« A method depending on the definition of m has a def-dependency on m.

* Only two possible def-dependencies:
* Proof with a by definition of m (unfolds the definition of m)

= |f m redefined, proof must be invalidated.

- Functions and proofs can def-depend on the representation]

« By syntax, functions cannot def-depend on proofs.
« By encapsulation, no possible def-dependencies on parameters methods.

« Analysis required to prevent def-depend on the representation in properties and
theorems statements.

species Sample =

|representation = bool ;]

signature : Self -> int;
property things hold: all x : int, bla (i) ;
let defdep on mef(X =« SE].'F) - . 1f (X)l (x) else .. ;
theorem prove me: all x : Self, all i : int, bla (i) \/ defdep on me (x) = i
proof = by definition of property things hold ;
end ;;

12



Notion of Dependencies (3/3)

| Method depending on the declaration of m has a decl- '
dependency on m.

* Decl-dependencies: a matter of typechecking.

species Sample =

representation = bool ;

-—

. . I Self -> int;

propertylthings_hOld:lall X : int, bla (i) ;

letjdefdep _on_me fix : seif) = .. if (x) [AECIAEP_ON_Jne (x) else .. ;

signaturel

theorem prove me: all x : Self, all i : int, bla (i) \/Wdep_on_me|(x) =1

proof = by definition of property |things_hold|;

end ;;

 Dependencies: the key to ensure no 0OCaml/Coq errors!

13



Finding Dependencies on Methods of Self

« Cyclic dependencies only allowed between (mutually) recursive
functions.

* Through proofs, def-dependencies force keeping definitions in the
context to be typecheck-able (fact by definition of).

= These definitions themselves have to be typecheck-able.
* Through proofs, decl-dependencies on logical methods (expressions).
= Methods in such « types » also have to typecheck-able.

property 1ltNotGt: all x y: Self, 1t (x, y) -> ~gt (X, y) ;

Coqg =

Theorem 1tNotGt (abst T : Set) (abst 1t := 1t) (abst gt := OrdData.gt abst T abst eq abst 1t) :
forall x y : abst T, Is true ((abst 1t x y)) -> ~Is true ((abst gt x y)).
apply "Large Coq term generated by Zenon".

« Keep methods € transitive closure of the def-dependency relation +
methods on which these latter decl-depend: the visible universe.

14



Visible Universe

de
yezazjs y<Sf:13
y €| x| y €| x|
z<ffffa: yElZSS z €|l x| yelTs(z)Ss
Y €| x | y €| T |

¢« I <g€f Y : «y def-depends on x by transitivity »

%(QE) . « the type of x in the species S ».

15



Minimal Typing Environment

yé¢ | x| lyi i =etMae =%

Nt =
< N eEu ly:7T=e; yi:Ti=¢€; Mz =%
y €|z | y<f5l*€fx it =eifMa =X
W:T=e; y:mi=¢fMez=y:7=e; X
yelz|  y4§7 ez {yiim=elMz=3

{y17=6; yi37'i:€i}@x:{y:7_§ E}

Methods ¢ visible universe: not required.

Methods < visible universe on which x doesn't def-depend: only their type
required.

Methods € visible universe on which x def-depends: their type and body
required.

16



Dependencies Summary

e by type definition of ..
e type t (‘a) = ..

* On the representation:
e .. (S * int) ..

<2>1 assume x :, Self, prove x = 0
e all x : t (int), y : S, f (x, S) ..

Peut dépendxe Type Preuve Definitjon

de
Type
Preuve
Définitio

* On the representation:
e by type u let h (x : Self) = if x ..
e all x : t (int), £ (x) ..
e by property .. e let ¥ (x : S) = ..
e let g (x : Self) = ..

17



Dependencies on Methods of Collection Parameters

« Similar problem than methods of Self: track dependencies on collection
parameters methods.

theorem too low not gt min:
all x : V, get status (filter (x)) = Too low -> ~ Vigt (x, minv)
proof = <..> .. bla .. prove ~ Vlgt (x, minv) .. property V!1t not gt .. ;
Coqg =

Theorem too low not gt min ( p V.T : Set) (p V.1t : pVT-> pVT->basics.bool t)
(pVvegt: pVT-=-> pVT->basics.bool t)
(_p V.1t not gt : forall x y : p V. T, Is true ((_p V. 1t xvy)) -> ~Is true ((_p V gt xvy)))
(_p_minv_minv : p V.T) (_p maxv_maxv : p V. T) (abst T := ((_p V.T * statut_t_ t)%type))
(abst_filter := filter p V.T p V 1t p V. gt p minv_minv _p _maxv_maxv) .. :=

_____ eee 5}

« Again, AST traversal is not sufficient.

« Consider there are dependencies on all the methods of all the collection parameters?
= Cumbersome, unreadable, inefficient!
« Challenge: find the minimal set of required methods.

18



Computing Deps on Methods of Collection
Parameters

« Four kinds of rules, collecting dependencies a method as on a parameter
method...

« (2) explicitly stated in the body (resp. type) of a definition,

* (2) induced by the dependencies the method has inside its hosting
species (for decl and def),

* (1) because this parameter is used as effective argument to build the
current parameter,

* (1) due to decl-dependencies that methods of parameters have inside
their own species and that are visible through types.

* Entity parameters: no extra dependencies since no methods. Are
« themselves the dependency ».

19



Rules for Deps. on Parameters Methods (1/4)

DOP[-

Bobpy] (S, C)|x]| = DOP[

EXPR] (Sv C) [BS (x)]

DOP[TYPE] (S, O)|x] = DOP[EXPR] (S, )| Ts(x)]

« [Body]: harvest dependencies on a method explicitly stated in the body

of a definition.

« [Type]: harvest dependencies on a method explicitly stated in the type

of a definition.

20



Rules for Deps. on Parameters Methods (2/4)

DOP[DEF] (S, CO)|x] = DOP[ S,C)|Bs(z)]  for all z such as z <‘é€f T

EXPR] (

DOP[UNIV] (S,CO)|x] = DOP[EXPR] (S,C)|Ts(z)]  for all z such as z €| x |

[Def] and [Univ]: collect dependencies of a method on a parameter
iInduced by the dependencies this method has in its hosting species.

Note: methods z introduced by [Def ] included in those introduced by
[Univ] (vis. univ. wider than only transitive def-deps and their related
decl-deps).

21



Rules for Deps. on Parameters Methods (3/4)

EWS)=(...,Cpis ,...,Cp is S'(...,Cp,...))
ESY=(...,C, is I,...)
Z € DOP[TYPE] (S,Cy)|x] v ze€ DOP[BODY] (S, Cp)|x]
(y : Ty) € DOP[TYPE] (Slv Cllc)[z]

(y = 7y [C), Cpl) € DOP[PRM] (5, Cp)|x]

« Harvest dependencies of a method on a previous parameter C, used as
argument to build the current parameter C,-.

« Difference with previous rules: result is not only a set of names: types are
explicit.

Because type of the methods of this set differs from the one computed during
typechecking of the species used as parameter.

22



Rules for Deps. on Parameters Methods (4/4)

ES)=(...,C,is I,...)
e DEONE] Win) el @,
(y : 7,[Self < C,]) e DT (D, S, C,)[x]

« Take into account decl-dependencies that methods of parameters have
iInside their own species and that are visible through types.

species A =
signature f : Self -> int ;
signature g : Self -> int ;
property tho: all x : Self, f (x) =0 /\ g (x) =1 ;

end ;;

species B (P is A) =
theorem thl : all x : P, P!f (x) = @ proof = by property P!tho ;
end ;;

23



Code Generation: Method Generators

« Starts after resolution of inheritance and late-binding, typing and dependency
analysis.

« For traceability and assessment. common code generation model 0OCaml / Coqg.

* Generate code for only collection”? = no code sharing.

 \Want to share methods bodies: reduces code size and assessment duration.
» Method m: when defined = emit its method generator:

« compiled version of m's body,

« methods m decl-depends on are A-lifted (get rid of only declared symbols),

 calls are replaced by these A-lifted variables,
 methods (n) m def-depends on are not A-lifted: use of n's method generator

« ... applied to methods n itself has A-lifted.

= Method generator shared along inheritance and between collections of a same
species.

24



Code Generation: Method Generators (ended)

« EXxplicit polymorphism = extra A-lifts to introduce representations of Self
and of parameters.

« Methods and representation can depend on representations and
methods of collection parameters.

= A-lifts of dependencies upon parameters : outermost abstractions to fit
Cog’'s dependencies.

* Generated code grouped in a module.
= Enforce modularity.
= Benefit from a convenient namespace mechanism.

25



Code Generation: Collection Generators

« Code generation for collections: create computational runnable code
and checkable logical term.

* Right version of the method generator: last definition in the inheritance
tree.

« Effective arguments for method generator: retrieved from the species
hosting it and instantiations of formal parameters done during
inheritance.

* Apply separately each method generator to its effective arguments?

= No code sharing between collections issued from the same
parameterized species.

« Share the applications of method generators to their arguments between
collections: ./ sharing.

26



Code Generation: Collection Generators (ended)

* Applications grouped into a record ... move A-lifts of all parameters
dependencies outside the record.

* The obtained function is a collection generator.

* Go further and replace A-lifts by one unique abstracting the whole
collection parameter?

= No: would require first-class modules and subtyping in target languages!
Would reduce target languages candidates.

« Collection: obtained by application of its generator to get a record value.

* Methods of the collection: picked inside the record and surrounded by a
modaule.

27



Conclusion

* Design and feature choices leading to an original compilation problem.

Computational and logical aspects handled together, flexible development
constructs, readable proofs, traceable code, efc.

 Difficu
 Difficu
 Difficu
 Difficu

ty 1. dependency calculus for consistency and code generation.
ty 2: common code generation model for all target languages.
ty 3: create the context where to insert Zenon proof.

ty 4: ensure no errors are raised by target languages.

* And number of other ones not presented here!

Normal form, parameters instanciation, recursion & termination proofs, eftc.

28



Thank you for your Attention

Some questions ?

| would like to thank:
 Thérese Hardin, Renaud Rioboo (FoC's parents),

« Damien Doligez from INRIA / Microsoft Research (Zenon's dad),

« and other folks who gave advice and contribute to FoCalL.iZe.

http://focalize.inria.fr

29


http://focalize.inria.fr

