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Emilio Jesús Gallego Ariasa,1,2 Julio Mariño Carballoa,1,3
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Abstract

We describe the introduction of disequality constraints over algebraic data terms in the functional logic
language Curry, and their implementation in Sloth, our Curry compiler. This addition extends the standard
definition of Curry in several ways. On one hand, we provide a disequality counterpart to the constraint
equality operator (=:=). Secondly, boolean equality operators are also redefined to cope with constructive
disequality information, which leads to a more symmetric design w.r.t. the existing one. Semantically
speaking, our implementation is very similar to previous proposals, although there are some novel aspects.
One of them is that the implementation is partly based on an existing finite domain (FD) constraint
solver, which provides a more efficient execution in some examples and, more important, the first complete
implementation of disequality constraints over finite types. A detailed description of the finite type case is
provided, including: i) the use of the FD solver; ii) an algorithm for analysing cardinality of types, and iii)
how to deal with cardinality information at run time. Some benchmarks, an operational semantics minimally
extending the one in the Curry draft, and a moderately detailed description of the implementation complete
the paper.
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1 Introduction

This paper describes an extension that allows programming with disequality con-

straints over data terms in Sloth. Proposals of this kind [5,1] can be dated back to

the pre-Curry ages (one of them is for the Babel language) and are already included

in other FLP languages (T OY [7]). However, although the possibility of extending

Curry with disequality constraints is explicitly mentioned in the Curry draft, they

have not been included so far, perhaps because equality is too close to the core
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of the language (unification). Also, equality operators are closely related to some

aspects of Curry that are likely to suffer changes in the near future — type classes,

standard classes analogous to Eq, etc.

For these reasons, having experimental versions of this kind of features is a good

starting point, possibly at the cost of inconsistencies with other features already

present in the draft. Although not completely polished, the proposal described in

this paper is already available in our Sloth system (https://babel.ls.fi.upm.

es/research/Sloth) 5 including the examples presented below.

Sloth [9,2] is a compiler that translates Curry [3] programs into Prolog, con-

tinuing our group’s previous experience that started with the translation of Babel

programs into Prolog. Currently, Sloth generates Ciao Prolog [4] code and the

system implements most of the 0.8 version of the Curry draft.

The main motivation for developing and maintaining a not-so-efficient implemen-

tation of Curry is the need of keeping up to date with a rapidly evolving language,

easily introducing changes that would take longer in an abstract machine based

implementation. Nevertheless, while slower than Prolog, Sloth is perfectly usable

as a first contact with Curry.

These changes can be additions to the Curry standard or, perhaps, experimental

features that need some testing preceding the mandatory discussion needed in order

to include them in later versions of the standard.

Integration with the Ciao platform has a number of advantages considering

its advanced features like: the realistic set of libraries – including, among other,

constraint programming, concurrency, foreign language interface; the static analysis

framework; meta-programming constructs, etc.

Improving the support of constraint programming in Curry is one of the main

goals of Sloth, as many of the outstanding features of Ciao are constraint libraries

themselves or libraries which provide support for programming new constraint ex-

tensions — although often in a nondeclarative manner. In fact, experimental sup-

port for constraint programming over rationals and finite domains is already avail-

able in the latest stable version of Sloth.

An example

The following example, taken from [5] – although adapted to our language – should

serve to motivate the behavior expected from our extension:

Example 1.1 The size of a list is defined as the number of distinct elements it

contains. 6

module Size where

member x [] = False
member x (h:ts) = x == h || member x ts

data Nat = Zero | Succ Nat

size :: [a] → Int
size [] = 0
size (h:ts) = if member h ts

then size ts

5 Use the “Development versions” link when in there.
6 The == operator used here is a flexible one with disequality support.
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else 1+( size ts)

Consider a goal

let x, y, z free in size [(x, Zero), (y, z)]

The size of that list can be 1 or 2, depending on the actual values for x, y and z.

The answers returned by our system are: 7

1 :: Int
{z =:= Zero , x =:= y}
Try more (y/n)? y
2 :: Int
{x =/= y}
Try more (y/n)? y
2 :: Int
{z =:= Succ _}
Try more (y/n)? y
no solutions

Overview of the paper

Next section presents the current state of (equality) constraints in Curry and in-

troduces our proposal for a new set of operators, allowing disequality constraints.

An operational semantics dealing with the new operators is described in Sec. 3. It

is intended to be as similar as possible to the one present in the Curry Report.

Implementation details are not trivial, mainly due to interactions between the con-

straint operators and the type system and the choice to offload part of the constraint

solving to a finite domains constraint solver. All of them are described in depth in

section 4. Some benchmarks are shown in Sec. 5 and Sec. 6 discusses the results,

shortcomings and point directions for future progress.

2 A proposal for equality and disequality operators

The core of the constraint system present in Curry is the =:= operator, which stands

for constrained equality. This operator is overloaded so it can deal with Integer

data types and the likes. Resolving such overloading problems is a different topic

itself, so from now onwards we will restrict ourselves to allow only algebraic data

types in Curry expressions.

Would not be natural to provide a counterpart constraint operator =/= so we

can express disequality constraints? We think so, but it is not a trivial task. In our

opinion, the main motivation for the absence of the counterpart disequality operator

=/= from the Curry standard is due to two main factors:

• Semantics of the constrained equality are much simpler that the ones arising

from disequality. For instance – in the equality case – the substitution happens

to be unique, while when dealing with disequalities, most of the cases will not be

representable by means of a single substitution, needing an associated constraint

store.

• Correctly implementing such and operator will for sure augment the complexity

of the Curry implementations to a great extent, which may not be appropriate

7 the output has been slightly beautified to ease the reading.
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for an experimental language.

Although not present in Curry, there have been two different proposals for the

implementation of disequality constraints in functional logic programming, over-

coming the previous difficulties. The first one we are aware of is a proposal for the

Babel [10] programming language [5] and the second one adds disequality constraints

to T OY [1]. Both proposals are – very roughly speaking – based on constraint ac-

cumulation using a global store and checking its satisfiability at variable binding.

The Münster Curry Compiler (MCC) [8] implements partial disequality support

inspired by the latter proposal, and uses the =/= operator.

The absence of disequality constraints in standard Curry has influenced the

current choice of equality operators. As the report itself says in page 11:

“However, the evaluation of [x]=:=[0] does not deliver a Boolean value True or

False, since the latter value would require a binding of x to all values different

from 0 (which could be expressed if a richer constraint system than substitutions,

e.g., disequality constraints, is used)...”

So far, the solution adopted has been to limit the LP features of equality oper-

ators, i.e. we have to chose between losing the disequality information or having it

only for ground instances of queries — which may lead to incompleteness.

The current set of equality operators is shown in table 1. Roughly speaking, they

can be classified in two groups: operators returning Bool and operators returning

Success. The operators returning Bool use residuation as their operational model

while operators returning Success use narrowing.

Flexible operators (i.e. those using narrowing) are very interesting when a search

is needed and to construct non-deterministic functions. On the other hand, residua-

tion-based operators (the ones returning Bool) are the right choice when a deter-

ministic function or predicate is required.

Further, operators returning Bool can be used to find positive as well as negative

answers (i.e. answers making the goal True and False respectively) while operators

returning Success find positive answers only, pruning the others (this is because

Success is a one-point domain). The operator to choose depends on what the

programmer wants to obtain from the program.

However, when dealing when disequalities, negative answers are often required

as a result out from searches. In this case, one would like to have flexible operators

returning Bool. There are none of these in current versions of Curry. The following

example illustrates the problem:

Example 2.1 We want to search for the elements of a list:

elem :: a → [a] → Bool
elem _ [] = False
elem x (y:ys) = x == y || elem x ys

> let x free in elem x [1,2,3] =:= True
> Suspended

If == had a flexible implementation we would get only one result, because of the

absence of negative answers:

> let x free in elem x [1,2,3] =:= True
> success {x 7→ 1}

4
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op. name type flexible?

== a → a → Bool no

/= a → a → Bool no

=:= a → a → Success yes

Table 1
Existing equality operators in Curry.

op. name type flexible? notes

== a → a → Bool yes

/= a → a → Bool yes defined as not.(==)

=:= a → a → Success yes no changes

=/= a → a → Success yes the new operator

=== a → a → Bool no old rigid equality

/== a → a → Bool no the negation of previous one

Table 2
Our proposal for equality operators in Curry.

> Try more (y/n)? y
> no solutions

The intended behavior would be more on the line of:

> let x free in elem x [1,2,3] =:= True
> success {x 7→ 1}
> Try more (y/n)? y
> success {x 7→ 2}
> Try more (y/n)? y
> success {x 7→ 3}
> no solutions

In order to overcome this and trying to reach a more orthogonal operator set we

are proposing a new set that can be seen in table 2. With our proposal we have:

• Two rigid operators on Bool. These operators already exist in Curry although

we have renamed them.

• The flexible version of the two previous operators. Those operators are new.

• Finally, the operators returning Success. The disequality operator is new in

Curry and is the key element in this work.

Last, but not least, is the fact that Curry semantics relates Success with total

satisfiability. As can be seen in section 4.2, this requirement and the existence of

finite data types makes the implementation overly complex, as terms belonging to

finite types have to be handled separately from terms whose type has an infinite

number of instances. To the extent of our knowledge, this is the first paper with an

in-depth description of such a problem.
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Computation step for a single expression:

Eval[[ei]]⇒ D

Eval[[e1&e2]]⇒ replace(e1&e2, i,D)
i ∈ {1, 2}

Eval[[ei]]⇒ D

Eval[[c(e1, . . . , en)]]⇒ replace(c(e1, . . . , en), i,D)
i ∈ {1, . . . , n}

Eval[[f(e1, . . . , en)]]T ⇒ D

Eval[[f(e1, . . . , en)]]⇒ D
if T is a definitional tree for f with fresh variables

Computation step for an operation-rooted expression e:

Eval[[e]]rule(l=r)⇒ {ε; id []σ(r)}
if σ is a substitution with σ(l) = e

Eval[[e]]T1 ⇒ D1 Eval[[e]]T2 ⇒ D2

Eval[[e]]or(T1, T2)⇒ D1 ∪D2

Eval[[e]]branch(π, p, r, T1, . . . , Tk)⇒
D if e|p = c(e1, . . . , en), pat(Ti)|p = c(x1, . . . , xn) and Eval[[e]]Ti ⇒ D
∅ if e|p = c(. . . ) and pat(Ti) 6= c(. . . ), i = 1, . . . , k⋃k

i=1{ε;σi[]σi(e)} if e|p = x, r = flex , and σi = {x 7→ pat(Ti)|p}
replace(e, p,D) if e|p = f(e1, . . . , en) and Eval[[e|p]]⇒ D

Derivation step for a disjunctive expression:

Eval[[e]]⇒ {γ1;σ1[]e1, . . . , γn;σn[]en}
{γ;σ[]e} ∪D ⇒ clean({γ1 ∧ σ1(γ);σ1 ◦ σ[]e1, . . . , γn ∧ σn(γ);σn ◦ σ[] en}) ∪D

Fig. 1: Operational semantics of Curry

3 Operational semantics

In this section we present an operational semantics that allows computing with

disequality constraints. The presentation tries to be a minimal extension to that

present in the Curry draft. This way, changes can be easily located. Essentially,

there are two changes. First, the mechanism for accumulating answers is enhanced

to include constraints in solved form in addition to answer substitutions. This ex-

tension is generic, i.e. largely independent of the constraint system in use. Secondly,

specific rules for simplifying disequality constraints are included.

The main execution cycle is described by the rules in Fig. 1, that introduces the

derivability relation D1 ⇒ D2 on pairs of disjunctive expressions.

Disjunctive expressions represent (fragments of) the fringe of a search tree. For-

mally, they are multisets of answer expressions of the form γ;σ[]e, where γ is a

constraint, 8 σ a substitution and e a Curry expression. An answer expression

γ;σ[]e is solved when e is a data term and γ is solved and consistent. We will use ε

to denote a trivial constraint.

The computation of an expression e suspends if there is no D such that Eval[[e]]⇒
D. A constraint expression is solvable if it can be reduced to success. As can be

seen in Fig. 1, reduction of terms rooted by user-defined function symbols is guided

by an overloaded version of Eval[[]] that takes a Curry expression and a definitional

tree as arguments. For details on these, and other aspects of the semantics which are

largely orthogonal to the questions discussed here – conditional rules, higher-order

8 Here, the word constraint refers to formal constraints i.e. internal representations of constraint formulae,
opposed to Curry constraint expressions.
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Eval[[ei]]⇒ D

Eval[[e1=:=e2]]⇒ replace(e1=:=e2, i,D)
if ei = f(t1, . . . , tn), i ∈ {1, 2}

Eval[[c(e1, . . . , en)=:=c(e′1, . . . , e
′
n)]]⇒ {ε; id []e1=:=e′1& . . . &en=:=e

′
n}

Eval[[c(e1, . . . , en)=:=d(e′1, . . . , e
′
m)]]⇒ ∅

if c 6= d or n 6= m

Eval[[x=:=e]]⇒ D

Eval[[e=:=x]]⇒ D
if e is not a variable

Eval[[x=:=y]]⇒ {ε; {x 7→ y}[]success}

Eval[[x=:=c(e1, . . . , en)]]⇒ {ε;σ[]y1=:=σ(e1)& . . . &yn=:=σ(en)}

if x /∈ cv(e1, . . . , en),

σ = {x 7→ c(y1, . . . , yn)},
y1, . . . , yn fresh variables

Eval[[x=:=c(e1, . . . , en)]]⇒ ∅
if x ∈ cv(c(e1, . . . , en))

Fig. 2: Solving equational constraints

features, freezing, etc – the reader is referred to [3].

The disjunctive behavior of disjunctive expressions is partly captured by the

last rule in Fig. 1, which expresses how answers are accumulated. Observe that

the combination of answers – both substitutions and new constraints – with the

accumulated constraint might introduce inconsistency or perhaps constraints not

in solved form. This is why a call to the auxiliary function clean is needed. Its

definition depends on the actual constraint system and will be presented later for

the disequality case.

The other half of this disjunctive behavior is captured by the auxiliary function

replace, that inserts a disjunctive expression into a position in a term, giving another

disjunctive expression as result:

replace(e, p, {γ1;σ1[]e1, . . . , γn;σn[]en}) = {γ1;σ1[]σ1(e)[e1]p, . . . , γn;σn[]σn(e)[en]p}

Figure 2 shows the rules for solving equational constraints. These are practically

identical to those in the Curry draft and are included here mainly to reveal the

symmetries and dualities w.r.t. the rules for solving disequality constraints, shown

in Fig. 3. Observe that the auxiliary function cv , such that cv(e) collects the

variables in e not inside a function call is used to implement an occurs check.

Although the theory of disequality constraints is well established, the actual

choice of solved forms may vary with regard to implementation considerations. Fol-

lowing [5], we have chosen to avoid explicit disjunctive constraints and instead we

carry those alternatives over the search tree of the Curry semantics, i.e. disjunctive

constraints are distributed over disjunctive expressions.

This way, solved disequality constraints – those appearing in the left hand of

answer expressions – amount to conjunctions of disequations between distinct vari-

ables, in the case where those variables range over infinite sets of values. When the

variables can only take a finite set of values, solved forms are extended with the

7
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Eval[[ei]]⇒ D

Eval[[e1=/=e2]]⇒ replace(e1=/=e2, i,D)
if ei = f(t1, . . . , tn), i ∈ {1, 2}

Eval[[c(e1, . . . , en)=/=c(e′1, . . . , e
′
n)]]⇒ {ε; id []e1=/=e′1, . . . , ε; id []en=/=e′n}

Eval[[c(e1, . . . , en)=/=d(e′1, . . . , e
′
m)]]⇒ success

if c 6= d or n 6= m

Eval[[x=/=e]]⇒ D

Eval[[e=/=x]]⇒ D
if e is not a variable

Eval[[x=/=y]]⇒ {x 6= y; id []success}
if range(x) is infinite

Eval[[x=/=y]]⇒ {x 6= y ∧ x ∈ range(x) ∧ y ∈ range(y); id []success}
if range(x) is finite

Eval[[x=/=cj(e1, . . . , en)]]⇒ {ε;σ1[]success, . . . , ε;σj []σj(x)=/=cj(e1, . . . , en), . . . , ε;σk[]success}

if x /∈ cv(e1, . . . , en), σi = {x 7→ ci(yi1, . . . , yi ar(ci)
)}, yuv fresh variables

Eval[[x=/=c(e1, . . . , en)]]⇒ success
if x ∈ cv(c(e1, . . . , en))

Fig. 3: Solving disequality constraints

corresponding constraints for domain consistency.

As we have said before, accumulating answers may corrupt the constraint store

either by making it inconsistent or not solved. The task of tidying everything up –

perhaps moving part of the constraint information back to the expression store – is

the responsibility of function clean:

clean(∅) = ∅

clean({γ;σ[]e} ∪D) = clean(D) if γ inconsistent

clean({e1 6= e2 ∧ γ;σ[]e} ∪D) = clean({γ;σ[]e1=/=e2&>e} ∪D) if e1 or e2 nonvars

clean({γ;σ[]e} ∪D) = {γ;σ[]e} ∪ clean(D) otherwise

4 Implementation details

We will consider two cases:

Implementation for infinite types.

In types with an infinite number of instances handling disequality is easier as we

can guarantee that a disequality between an instance – likely partial – of such a

type and a new free variable is always satisfiable. Support for constraints among

variables of infinite types is already present in T OY and in the Münster Curry

Compiler.

Extending our implementation to correctly handle finite types.

In finite types, testing consistency of constraints is harder, as there are disequality

chains where one runs out of possible instances for variables.

8
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The implementation has been done using Ciao Prolog and its attributed variables

library. Regarding Sloth, it is a new library which plugs into the current module

system supplying the =/= operator.

4.1 Implementation for infinite types

The basic technique used is to attach to each disequality constrained variable an

attribute, which contains the set of disallowed instantiations for that variable:

DiseqAttribute = ’$de_store ’(Var , List))

where List containts all the terms that Var should be different from.

The system can just assume that each constrained variable must have its cor-

respoding attribute, so the implementation should hook into the compiler in two

ways:

• The disequality operator itself.

• Unification of constrained variables, both with terms or with other constrained

variables.

which nicely maps to the semantics of attributed variables.

Attaching attributes

Disequality constraints are added when the execution path tries to reduce an expres-

sion whose head is the =/= operator to HNF. The implementation of this operator

is fully native – we mean fully written in Prolog – using the standard hooks present

in Sloth for external libraries.

The first action to be performed by the operator is to evaluate its arguments to

HNF, then select the applicable case: both arguments are variables, only one is a

variable or neither are.

In addition, we will use a predicate for adding constraints to the variables’ store:

add_to_store(Var , L) :-
( get_attribute(Var , ’$de_store ’(Var , List)) →

union_ro(L, List , LNew),
update_attribute(Var , ’$de_store ’(Var , LNew))

;
attach_attribute(Var , ’$de_store ’(Var , L))

).

Then, given the structure of our store, the case when both arguments are variables

becomes trivial:

diseq_vars(A, B) :-
add_to_store(A, [B]),
add_to_store(B, [A]).

as is the one for a variable and an instantiated term:

%% Term is in HNF.
diseq_one_var(Var , Term) :-

add_to_store(Var , [Term]).

The final case is when both arguments are not variables, so we need to check their

parameters, if they have any:

diseq_spine(Term1 , Term2) :-
Term1 =.. [C1|L1],

9
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Term2 =.. [C2|L2],
( \+ C1 = C2 →

true
;

C1 = C2,
diseq_or(L1, L2)

).
diseq_or ([A|AL],[B|BL]) :-

( diseq(A, B)
;

diseq_or(AL, BL)
).

In the code above we profit from our representation of Curry data constructors as

Prolog terms.

Unification hooks

Unification of constrained variables has two different cases:

• The variable is being unified with a term instantiated to at least HNF form.

• The variable is being unified with another constrained variable.

Ciao Prolog provides the multifile predicates verify_attribute/2 for the first

item and combine_attributes/2 for the second.

Unification with a term Unification with a term just checks that the set of accu-

mulated disequality constraints in our constraint store holds, and then proceeds

to unify the var with the term:

verify_attribute(’$de_store ’(Var , List), Term) :-
detach_attribute(Var),
Var = Term ,
diseq_and(Term , List).

The instantiation of Var will also instantiate all copies of the variable present in

other constraint stores. This non-trivial detail is possible thanks to Ciao Prolog

implementation of attributed variables, which allows us to store the real variables

in the attributes.

diseq_and will just verify – by calling the main diseq predicate – that all the

elements in the list are different from the term to unify with.

This has a very important effect, as it will create the new needed disequality

constraints in the case Term would be partially instantiated, or the constraint

store contained partially instantiated constraints.

Unification between variables When dealing with disequality between two al-

ready constrained variables, our new constraint store will be the union of their

respective constraint stores, if there doesn’t exist a previous disequality between

the unifying variables:

combine_attributes(’$de_store ’(V1 , L1), ’$de_store ’(V2 , L2)) :-
\+ member_ro(V1 , L2), % doesn ’t instantiate vars
union_ro(L1, L2, NewL),
detach_attribute(V1), detach_attribute(V2),
V1 = V2,
attach_attribute(V1, ’$de_store ’(V1, NewL).

It should be noted that like in the previous case, the union/3 predicate will unify

the non-instantiated terms present in the constraint stores. This is precisely what

we are looking for, as any constraint attached to such terms will be combined.

10
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The behavior of backtracking is solved as Ciao Prolog fully supports backtracking

attributed variables, so it is not an issue, indeed it greatly helps our implementation,

as when unification of a constrained variable needs to be undone, all the operations

will be rolled back, including reattaching the previous attributes.

4.2 Implementation for finite types

As mentioned in the operational semantics, when the terms to be constrained do

belong to a finite data type, the number of available instantiations for a variable

is bound. This way, when dealing with the disequality case we must be proactive

checking the constraint store consistency.

The following example

> let a,b,c free in a=/=b & b=/=c & c=/=a & a=:= True

would give a wrong answer under the previous implementation, given that it is

assumed we have an infinite number of instantiations for variables, but in this case

is not true, as the variables a, b, c can be only be instantiated to two different

values, thus making the above constraint unsatisfiable.

At the implementation level, our view is to handle this situation as a FD prob-

lem, getting an important leverage from mature FD solvers. So our constraint store

is extended with a FD variable:

DiseqAttribute = ’$de_store ’(Var , Fd , List))

being Fd the FD variable associated to Var.

For this scheme to work, we assume the existence of the following two predicates

for obtaining type meta-information:

type(Term , Type , Range)

which returns the type and the range of any arbitrary translated Curry term, in-

cluding variables.

index(Term , IndexList)

which returns the index i of Term, i ⊆ range(type(Term)) as a list. How this

metainformation is obtained will be discussed in section 4.5.

The modified constraint solver

We will detail here only the parts of the solver affected by this extension, starting

with the store handling operation:

add_to_store(Var , Fd , L) :-
( get_attribute(Var , ’$de_store ’(Var , FdOld , List)) →

union_ro(List , L, LNew),
Fd = FdOld ,
consistent(Fd), % Needed only in some FD solvers
update_attribute(Var , ’$de_store ’(Var , Fd , LNew))

;
attach_attribute(Var , ’$de_store ’(Var , Fd , L))

).

For the two variables case, we have to correctly constrain their associated FD
variables:

diseq_vars(A, B) :-
( type(A, flat , Range) →

11
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get_fd_var(A, FdA), % Will return a fresh var if A has no FD var
get_fd_var(B, FdB),
FdA in 1..Range ,
FdB in 1..Range ,
FdA .<>. FdB

;
true % A is non -flat

),
add_to_store(A, FdA , [B]),
add_to_store(B, FdB , [A]).

Constraining a variable to be different from a term is achieved in this case by

constraining its associated FD var:

%% Term is in HNF.
diseq_one_var(Var , Term) :-

( type(Term , flat , _) →
get_fd_var(A, FdA),
index(Term , TIndex),
constraint_fd_list(FdA , TIndex)

;
true

),
add_to_store(Var , FdA , Term).

where constraint_fd_list(Fd, List) forces Fd to be different from all the ele-

ments in List.

When both arguments are instantiated, we don’t need to change the behavior

of the solver.The unification is sightly modified to care about the new FD variables

in the store:

Unification with a term The new case introduced by the flat terms is taken care

of by the remap_term/2 predicate, which checks that the term is in the variable

domain and maps any residual constraint into the possible subterms.

verify_attribute(’$de_store ’(Var , Fd, List), Term) :-
( type(Term , flat , Range) →

remap_term(Term , Fd)
;

diseq_and(Term , List),
),
detach_attribute(Var),
Var = Term.

Unification between variables The new added case is very simple, we only have

to constraint our FD variables to be equal.

combine_attributes(’$de_store ’(V1 , Fd1 , L1), ’$de_store ’(V2, Fd2 , L2)) :-
( type(Term , flat , Range) →

Fd1 .=. Fd2
;

\+ contains_ro(V1, L2), % doesn ’t instantiate vars
union(L1, L2, NewL)

),
update_attribute(V1, ’$de_store ’(V1, NewL).

4.3 The FD solver

As the reader can see, the use of the FD solving library is fairly limited, as we only

use the disequality (.<>.) predicate. This means that maybe using a full-featured

FD solver is overkill for this application, but our hope is to profit from advanced

arc-consistency algorithm found in this kind of constraint libraries so a considerable

speedup can happen.
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4.4 A combined approach example

To illustrate some of the gains from this mixed approach, we will showcase an

example using both strategies. Let’s use the query:

> let x free in [x] =/= [True] & [x] =/= [False]

Then our execution trace will look like:

> (x:[]) =/= (True :[]) & . . . { spine case }
> success & (x:[]) =/= (False :[]) { x =/= True }
> (x:[]) =/= (False :[]) { x =/= True ∧ x =/= False }
> fail { inconsistent FD store }

The execution first uses the normal method for non-flat types – in this case the list

type – but when it finds a flat variable can use that information to always return

correct answers.

4.5 Type meta-data handling

An obvious problem of this approach is that it needs knowledge about term and

variable types at runtime. The first step is to perform static analysis on the types

so we can determine which types are flat and what others not.

Definition 4.1 [Type Graph] A type graph G for a type T is informally defined as

the directed graph with types as nodes and edges from T1 to T2 when T1 contains

T2. Type variables have the special type Pol.

Definition 4.2 [Finite types] A type T is finite when its associated graph G has

no cycles and no leaf node is in Pol. Then we define range of T as Πt∈N |TC(t)|.

Definition 4.3 [Polymorphic types] A type T is polymorphic when its associated

graph G has a leaf with in Pol and has no cycles. We call the set of all leaves in

Pol PLevel(T ).

Definition 4.4 [Infinite types] A type T is infinite when its associated graph G

has one or more cycles.

Once this analysis is performed, we attach to each term e a finiteness annotation

which will be:

• fixed(r) if type(e) is finite, where r = range(type(v)).

• poly(P ) if type(e) is polymorphic, where P = PLevel(T ).

• infinite if type(e) is infinite.

With this information attached, we can easily determine the information needed

for the predicate type/3, which is emitted at compile time.

The last step is to obtain the information given by the index/2 predicate. The

naive approach currently used is to instantiate all possible terms and assign to each

one a numerical index. However, it should be noted that more sensible approaches

do exist. As we are talking about typical algebraic data types, when finite, don’t

have a big number of elements.

13
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Meta-data implementation in Sloth

There are different approaches to try when implementing this kind of runtime typ-

ing. In Sloth, we have opted for the simplest one, that is to convert every term in

a tuple (t, a), where t was the original term and a is its finiteness annotation.

This approach allows to propagate finiteness annotations at the same time terms

are unified, so it comes handy avoiding function specialization for flat types.

We are undertaking a complete redesign of this area, obviously to lower the

overhead caused for the double unification that we currently use. Given the fact

that terms instantiated to some degree already carry their type information 9 , the

only difficult case would be the variables’ one, and using attributed variables to

“tag” free variables with their type seems sensible, but then every function that can

restrict a parameter with a more general type. Let us illustrate this problem:

f :: Bool → Bool
f a = a

Then f has to tag its argument, as would the incoming argument come with a

polymorphic type, the operational semantics has no way to realize about that. This

is a major drawback we hope to fix researching about type inference of let x free

expressions.

4.6 Additional considerations

Fortunately, our compiler’s modularity has allowed us to use the power of the module

system so all the disequality related functionality has been encapsulated into a

module.

We only had to modify the compiler in two places:

• Adding the static analyzer presented in section 4.5, so the runtime has knowledge

about types.

• The shell now has special code for visualizing disequality constraints.

5 Experimental results

We present some preliminary experimental results just as a sample of what our

system can do. We also have written more tests for the disequality implementation,

which can be found in the compiler distribution.

The chosen problem is the coloring of a square map, where each cell has 4

neighbors and a cell cannot have the same color as any of them. The corresponding

Curry program can be seen in figure 4. The disequality operator to use has been

abstracted as an argument, so we can use the same code for all the tests.

The first test has been performed using the old == operator and narrowing,

which implies that we have to instantiate the map first, the second one allowing

residuation whereas the third one uses the new disequality constraint operator.

Our motivation for benchmarking is not proving big performance enhancements,

but to check that there is no major slowdown going on with the new disequality

9 This is a property of our name handling in the compiler
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data Color = Red | Green | Yellow | Blue

diff x y = (x==y) =:= False
diff_c x y = x =/= y

color Red = success
color Yellow = success
color Green = success
color Blue = success

foldr_c l = foldr (&) success l

coloring :: (Color → Color → Success) → [[Color ]] → Success
coloring _ [] = success
coloring f (l:ls) = c_lists f l ls & map_c_list f (l:ls)

c_lists :: (Color → Color → Success) → [Color] → [[Color]] → Success
c_lists _ _ [] = success
c_lists f l (x:xs) = foldr_c (map (uncurry f) (zip x l)) & c_lists f x xs

map_c_list :: (Color → Color → Success) → [[Color ]] → Success
map_c_list f l = foldr_c (map (c_list f) l)

c_list :: (Color → Color → Success) → [Color] → Success
c_list f [x] = success
c_list f (x1:x2:xxs) = f x1 x2 & c_list f (x2:xxs)

p_naive map = constraint map & coloring diff map
p_reseq map = coloring diff map & constraint map
p_diseq map = coloring diff_c map & constraint map

constraint l = foldr_c (map (\ll → foldr_c (map color ll)) l)

Fig. 4: The map coloring problem.

System Problem timenormal timeres timediseq

Sloth Coloring > 100 sec. 20 ms. 24 ms.

T OY Coloring > 100 sec. n.a. 20 ms.

Table 3
Benchmark results for the coloring problem with a 5x5 map

system. This seems to be true and indeed the disequality library used here lacks

fine tuning and we are also planning to use a much more improved FD solver.

Anyways, comparing a system with disequality to a equality-only one is not easy,

as the main advantage that disequality supports brings us is a far more expressive

language. The results for a random map which has a proportion of 90% free variables

among its elements are shown in table 3. As a matter of reference, we present the

results for the same algorithm 10 using T OY [7], although direct comparison of the

two systems is meaningless, as they use different Prolog compilers, etc.

6 Conclusions and future work

We have extended Curry’s operational semantics to allow disequality constraints in

a similar spirit to the proposal in [5]. A first implementation in the Sloth system

that treats, for the first time, the case of finite types, has been described. This

implementation is already available from our download site. So far, we believe that

implementation results are promising, and we hope that practice with our prototype

10The code used for T OY can be found in the compiler tarball.
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can help in improving the support for constraints in the Curry standard.

We should note that disequality has been studied as a narrowing helper [6]. In

this paper, while we show an operational semantics for disequality, we have not

studied its impact on the performance of narrowing, as this paper is mainly aimed

at bringing more expressiveness to the language.

Due to preliminary character of our implementation, we plan to address in the

near future some of the remaining corners, namely interaction with the FD solver,

better run-time typing for terms and variables and better implementations for some

predicates, such as index/2.

Another issue to consider in the near future, among others, is the interaction

with the type classes extension. It would be desirable to restrict the types for which

equality/disequality operators can be applied, analogously to the Eq standard type

class in Haskell. Such an extension would allow to transparently mix advanced

constraint solvers, allowing the overloading of the equality disequality operators.
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system. In Paliath Narendran and Michaël Rusinowitch, editors, RTA, volume 1631 of Lecture Notes
in Computer Science, pages 244–247. Springer, 1999.

[8] Wolfgang Lux. Münster Curry User’s Guide, 0.9.10 edition.
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