Meta-programming for Cross-Domain Tensor Optimizations

Adilla Susungi1, Norman A. Rink2, Albert Cohen3, Jerónimo Castrillón2, Claude Tadonki1

1MINES ParisTech, PSL Research University
2Chair for Compiler Construction, Technische Universität Dresden
3Inria, Ecole normale supérieure

17th International Conference on Generative Programming: Concepts & Experiences (GPCE’18)
Boston, USA
November 5, 2018
Tensor optimizations and frameworks

Tensors
- Fundamental algebraic structure with applications to many domains
- Operations on multi-dimensional and computationally intense loop nests
- Involves multiple optimization strategies: loop, data layout, algebraic transformations, mapping decisions, etc.

Existing optimizing frameworks
- Built-in strategies do not always generalize well
- Lack of flexibility in composing finely tuned, target-specific optimizations
Transformation meta-languages

Meta-languages offering transformation heuristics as first-class citizens

URUK (Cohen et al., ICS’05)

CHiLL (Chen et al., 2008)

Halide (Ragan-Kelley et al., PLDI’14)

Clay (Bagnères et al., CGO’16)

Lift (Steuwer et al., CGO’17)

TVM (Chen et al., 2018)
Transformation meta-languages

We are interested in meta-languages for program transformation, because

- They help increasing expert productivity when hand-writing optimizations
- They ease the composition and cancellation of transformations
- They make the optimization paths explicit and future-proof

Strong allies for building adaptive, portable and efficient compiler infrastructures to face the complexity of parallel architectures
Contributions outline

Keys to

- Widen optimization search space
- Enhance the ability to flexibly compose optimization paths
- Formally characterize their semantics

Design and semantics of a tensor optimizations meta-language (TeML)
TeML overview

Every function returns either
- Tensors
- Loops

Operations on tensors
- Computation specification
- Layout transformations
- Data initialization, mapping

Operations on loops
- Expansion from tensor computation
- Transformation

\[
\begin{align*}
\langle \text{program} \rangle & \quad ::= \quad \langle \text{stmt} \rangle \langle \text{program} \rangle \\
& \quad \quad | \quad \varepsilon \\
\langle \text{stmt} \rangle & \quad ::= \quad \langle \text{id} \rangle = \langle \text{expression} \rangle \\
& \quad \quad | \quad \langle \text{id} \rangle = @\langle \text{id} \rangle : \langle \text{expression} \rangle \\
& \quad \quad | \quad \text{codegen} (\langle \text{ids} \rangle) \\
& \quad \quad | \quad \text{init} (...) \\
\langle \text{expression} \rangle & \quad ::= \quad \langle \text{Texpression} \rangle \\
& \quad \quad | \quad \langle \text{Lexpression} \rangle \\
\langle \text{Texpression} \rangle & \quad ::= \quad \text{scalar} () \\
& \quad \quad | \quad \text{tensor} (\langle \text{ints} \rangle) \\
& \quad \quad | \quad \text{eq} (\langle \text{id} \rangle, \langle \text{iters} \rangle? \rightarrow \langle \text{iters} \rangle) \\
& \quad \quad | \quad \text{vop} (\langle \text{id} \rangle, \langle \text{id} \rangle, [\langle \text{iters} \rangle?, \langle \text{iters} \rangle?]) \\
& \quad \quad | \quad \text{op} (\langle \text{id} \rangle, \langle \text{id} \rangle, [\langle \text{iters} \rangle?, \langle \text{iters} \rangle?] \rightarrow \langle \text{iters} \rangle) \\
\langle \text{Lexpression} \rangle & \quad ::= \quad \text{build} (\langle \text{id} \rangle) \\
& \quad \quad | \quad \text{stripmine} (\langle \text{id} \rangle, \langle \text{int} \rangle, \langle \text{int} \rangle) \\
& \quad \quad | \quad \text{interchange} (\langle \text{id} \rangle, \langle \text{int} \rangle, \langle \text{int} \rangle) \\
& \quad \quad | \quad \text{fuse} (\langle \text{id} \rangle, \langle \text{id} \rangle, \langle \text{int} \rangle) \\
& \quad \quad | \quad \text{unroll} (\langle \text{id} \rangle, \langle \text{int} \rangle) \\
\langle \text{iters} \rangle & \quad ::= \quad [\langle \text{ids} \rangle] \\
\langle \text{ids} \rangle & \quad ::= \quad \langle \text{id} \rangle (, \langle \text{id} \rangle)^* \\
\langle \text{ints} \rangle & \quad ::= \quad \langle \text{int} \rangle (, \langle \text{int} \rangle)^*
\end{align*}
\]
TeML overview
Raising the level of abstraction

A contraction chain

\[v_{ijk} = \sum_{l,m,n} A_{kn} \cdot A_{jm} \cdot A_{il} \cdot u_{lmn} \]

Control the evaluation order

\[v_{ijk} = \sum_{l,m,n} (A_{kn} \cdot (A_{jm} \cdot (A_{il} \cdot u_{lmn}))) \]

\[v_{ijk} = \sum_{l,m,n} (A_{kn} \cdot A_{jm}) \cdot (A_{il} \cdot u_{lmn}) \]

\[v_{ijk} = \sum_{l,m,n} (A_{kn} \cdot ((A_{jm} \cdot A_{il}) \cdot u_{lmn})) \]

- The evaluation order may dramatically impact execution time
- May be combined with other transformation heuristics
Tensor-algebraic transformations are essential for some applications:

- Out of the scope of polyhedral-based meta-languages.
- Or requires additional analyses to (re)discover algebraic tensor properties.

```
# -- Begin program specification
w = tensor(double, [13])
u = tensor(double, [13, 13, 13])
L = tensor(double, [13, 13])
M_ = outerproduct([w, w, w])
Lh = div(L, w, [[i1, i2], [i2]]) ->
    [i1, i2])
M = entrywise_mul(M_, u)
r1 = contract(Lh, M, [[2, 1]])
r2 = contract(Lh, M, [[2, 2]])
r3 = contract(Lh, M, [[2, 3]])
# -- End program specification
```

- We want such characterizations to be native to the language.
- Provides room for encoding algebraic properties.
TeML overview
By example: facilitating transformation composition

- Existing meta-languages are either fully imperative or mix a functional specification of the computation with an imperative transformation sequence
- We use a functional style for both program stages

```plaintext
# -- Begin program specification
w = tensor(double, [13])
u = tensor(double, [13, 13, 13])
L = tensor(double, [13, 13])
M_ = outerproduct([w, w, w])
Lh = div(L, w, [[i1, i2], [i2]] ->
    [i1, i2])
M = entrywise_mul(M_, u)
r1 = contract(Lh, M, [[2, 1]])
r2 = contract(Lh, M, [[2, 2]])
r3 = contract(Lh, M, [[2, 3]])
# -- End program specification

# Code generation without transformations
codegen([l1, l2, l3, l4, l5, l6])
17 = fuse(14, 15, 3)
18 = fuse(17, 16, 3)
# Code generation with loop fusions only
codegen([l1, l2, l3, l7])
19 = parallelize(11, 1, None)
l10 = parallelize(12, 1, None)
l11 = parallelize(13, 1, None)
l12 = parallelize(18, 1, None)
l13 = vectorize(l9, 3)
l14 = vectorize(l10, 2)
l15 = vectorize(l11, 3)
# Code generation with fusion, parallelism and vectorization
codegen([l13, l14, l15, l12])
```
Denotational semantics

Domains of trees for tensors (T) and loops (L)

State

- A state in a TeML meta-program maps identifiers to trees representing either tensors or loops

$$S = \text{identifier} \rightarrow (T + L)$$

$$\sigma : \text{identifier} \rightarrow (T + L)$$

Valuation functions

- Different manipulations of a state σ for each syntactic entity

$$P_{\text{prog}} : \text{program} \rightarrow (S \rightarrow S)$$

$$P_{\text{stmt}} : \text{stmt} \rightarrow (S \rightarrow S)$$

$$E_t : \text{Texpression} \rightarrow (S \rightarrow T)$$

$$E_l : \text{Lexpression} \rightarrow (S \rightarrow L)$$
for (int i1 = 0; i1 < (N-1); i1++)
 for (int i2 = 0; i2 < (N-1); i2++)
 E[i1][i2] = C[i1][i2] * (A[i1][i2] + B[i1][i2]);

A = tensor([N, N])
B = tensor([N, N])
C = tensor([N, N])
D = vadd(A, B, [[i1, i2], [i1, i2]])
E = mul(C, D, [[i1, i2],] -> [i1, i2])

- We use virtual operators (vops) to compose beyond 3-address expressions
- Tensors returned by vops only hold subexpressions eventually expanded recursively at instances of ops
- Tensors returned by vops do not have shapes of their own
- Others have their shape inferred, as well as their loop domains
Semantics of tensor expressions

Low-level operations

Essential informations to capture

- Shape
- Expression tree
- Associated list of iterators

\[A = \text{tensor}([N, N]) \]
\[B = \text{tensor}([N, N]) \]
\[C = \text{tensor}([N, N]) \]
\[D = \text{vadd}(A, B, [[i1, i2], [i1, i2]]) \]
\[E = \text{mul}(C, D, [[i1, i2],] \rightarrow [i1, i2]) \]

\[\sigma_1 = \mathcal{P}_{stmt}[A = \text{tensor}([N, N])] \emptyset \]
\[= \{ A \mapsto \langle (A, [N, N], \epsilon), [] \rangle \} \]

\[\sigma_2 = \mathcal{P}_{stmt}[B = \text{tensor}([N, N])] \sigma_1 \]
\[= \{ A \mapsto \langle (A, [N, N], \epsilon), [] \rangle, \ B \mapsto \langle (B, [N, N], \epsilon), [] \rangle \} \}

\[\sigma_3 = \cdots \]
Semantics of tensor expressions
High-level operations

The example of tensor contraction

$$P_{stmt}[t' = \text{contract}(t_0, t_1, [r_0, r_1])] =$$

$$P_{prog} \begin{bmatrix}
 t_2 = \text{vmul}(t_0, t_1, [I, J]) \\
 t' = \text{add}(t', t_2, [I', \epsilon] \rightarrow I')
\end{bmatrix}$$

where

$$I = [i_0, \ldots, i(r_0 - 1), k, i(r_0 + 1), \ldots, i s_0],$$

$$J = [j_0, \ldots, j(r_1 - 1), k, j(r_1 + 1), \ldots, j s_1],$$

$$I' = (I \setminus \{k\}) \parallel (J \setminus \{k\}).$$
Semantics of loop transformations

- Principles of loop transformations are quite well understood.
- The polyhedral model is a rich formalism to abstracts the effects of loop transformations
- The idea here is to formalize such principles in a meta-language context

Example

```c
for (int i1 = 0; i1 <= (N-1); i1++) {
    C[i1] = A[i1] - B[i1]; // tC
    for (int i2 = 0; i2 <= (N-1); i2++) {
        E[i1][i2] = D[i2] * C[i1]; // tE
        F[i1][i2] = E[i1][i2]; // tF
    }
    for (int i3 = 0; i3 <= (N-1); i3++) {
        G[i1] = G[i1] + F[i1][i3] // tG
    }
}
```
Loop creation from tensor expressions

- The semantics of build

\[A = \text{tensor}([N, N]) \]
\[B = \text{tensor}([N, N]) \]
\[C = \text{tensor}([N, N]) \]
\[D = \text{vadd}(A, B, [[i1, i2], [i1, i2]]) \]
\[E = \text{mul}(C, D, [[i1, i2],] \rightarrow [i1, i2]) \]

\[\mathcal{E}_l[^{\text{build}}(E)]^5 \sigma_5 = \langle i1, [\langle i2, [\sigma_5(E)]\rangle]\rangle : \]
\[\text{for } (i1 = 0; i1 <= (N-1); i1++) \]
\[\text{for } (i2 = 0; i2 <= (N-1); i2++) \]
\[E[i1][i2] = C[i1][i2] \times (A[i1][i2] + B[i1][i2]); \]
Semantics of loop expressions

Stripmining

- Divides an iteration space into smaller blocks

A = tensor([N, N])
B = tensor([N, N])
C = tensor([N, N])
D = vadd(A, B, [[[i1, i2], [i1, i2]]])
E = mul(C, D, [[[i1, i2],] -> [i1, i2]])
L = build(E)
S = stripmine(L, 1, 32)

\[\sigma_n = P_{stmt}[L = \text{build}(E)] \sigma_{n-1} \]
\[= \{ L \mapsto \langle i1, [\langle i2, [\sigma_{n-1}(E)]]) \rangle \} \]

\[\sigma_{n+1} = P_{stmt}[S = \text{stripmine}(L, 1, 32)] \sigma_n \]
\[= \{ L \mapsto \langle i1, [\langle i2, [\sigma_n(E)]]) \rangle, S \mapsto \langle t1, [\langle i1, [\langle i2, [\sigma_n(E)]])]) \rangle \} \]

\[E \llbracket \text{stripmine}(L, 1, 32) \rrbracket \sigma_n = \langle t1, [\langle i1, [\langle i2, [\sigma_n(E)]])]) \rangle : \]

for (int t1 = 0; t1 <= (N-1)/32; t1++)
for (int i1 = 32 * t1; i1 <= min((N-1), 32 * t1 + 31); i1++)
for (int i2 = 0; i2 <= (N-1); i2++)
 E[i1][i2] = C[i1][i2] * (A[i1][i2] + B[i1][i2]);
Semantics of loop expressions

Interchange

- Swaps dimensions of a loop nest

\[
\begin{align*}
A &= \text{tensor}([N, N]) \\
B &= \text{tensor}([N, N]) \\
C &= \text{tensor}([N, N]) \\
D &= \text{vadd}(A, B, [[i1, i2], [i1, i2]]) \\
E &= \text{mul}(C, D, [[i1, i2],] \rightarrow [i1, i2]) \\
L &= \text{build}(E) \\
I &= \text{interchange}(L, [1, 2])
\end{align*}
\]

\[
\begin{align*}
\sigma_n &= \mathcal{P}_{stmt}[L = \text{build}(E)] \sigma_{n-1} \\
&= \{ L \mapsto (i1, [i2, [\sigma_{n-1}(E)]]) \} \\
\sigma_{n+1} &= \mathcal{P}_{stmt}[I = = \text{interchange}(L,[1, 2])] \sigma_n \\
&= \{ L \mapsto (i1, [i2, [\sigma_n(E)]]) \}, I \mapsto (i2, [i1, [\sigma_n(E)]])) \}
\end{align*}
\]

\[
\begin{align*}
\mathcal{E}_l[\text{interchange}(L,[1, 2])] \sigma_n &= (i2, [i1, [\sigma_n(E)]])):
\end{align*}
\]

for (int i2 = 0; i2 <= (N-1); i2++)
for (int i1 = 0; i1 <= (N-1); i1++)
 E[i1][i2] = C[i1][i2] * (A[i1][i2] + B[i1][i2]);
Semantics of loop expressions
Loop tiling in denotational semantics

- Loop tiling is the composition of stripmining and interchange

```c
for (int t1 = 0; t1 <= (N-1)/32; t1++)
    for (int t2 = 0; t2 <= (N-1)/32; t2++)
        for (int i1 = 32 * t1; i1 <= min((N-1), 32 * t1 + 31); i1++)
            for (int i2 = 32 * t2; i2 <= min((N-1), 32 * t2 + 31); i2++)
                E[i1][i2] = C[i1][i2] * (A[i1][i2] + B[i1][i2]);
```

\[
P_{stmt}[l' = tile(l, v)] =
\begin{cases}
 l_0 = \text{stripmine}_n(l, d, v) \\
 l_1 = \text{interchange}_n(l_0, 2, 2d - 2) \\
 l_2 = \text{interchange}_n(l_1, 3, 2d - 3) \\
 \cdots \\
 l_{d-1} = \text{interchange}_n(l_{d-2}, d, d)) \\
 l' = \text{interchange}_n(l_{d-1}, d + 1, d - 1)
\end{cases}
\]
Semantics of loop expressions
Loop tiling in denotational semantics

Initial loop nest

\[i_1 \rightarrow i_3 \rightarrow i_5 \rightarrow xs \]

\textit{stripmine}_n(_, 3, v) \textbf{has introduced} \(i'_2, i'_4, \text{and} \ i'_6 \)

\[i'_1 \rightarrow i'_2 \rightarrow i'_3 \rightarrow i'_4 \rightarrow i'_5 \rightarrow i'_6 \rightarrow xs \]

After triple application of \textit{interchange}_n

\[i'_1 \rightarrow i'_3 \rightarrow i'_5 \rightarrow i'_2 \rightarrow i'_4 \rightarrow i'_6 \rightarrow xs \]
TeML evaluation

Expressing tensor computations in comparison to TensorFlow

Application domains: Linear Algebra (LA), Deep Learning (DL), Machine Learning (ML), Data Analytics (DA), Fluid Dynamics (FD), Image Processing (IP).

<table>
<thead>
<tr>
<th>Name</th>
<th>Domain</th>
<th>LOC</th>
<th>TensorFlow Constructs used</th>
<th>LOC</th>
<th>TeML Constructs used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix Multiplication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mmm</td>
<td>LA</td>
<td>3</td>
<td>matmul</td>
<td>3</td>
<td>contract</td>
</tr>
<tr>
<td>tmm</td>
<td>DL</td>
<td>3</td>
<td>matmul:transpose=True</td>
<td>4</td>
<td>transpose, contract</td>
</tr>
<tr>
<td>bmm</td>
<td></td>
<td>3</td>
<td>einsum</td>
<td>3</td>
<td>mul, add</td>
</tr>
<tr>
<td>Grouped Convolutions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gconv</td>
<td>N/A</td>
<td>5</td>
<td>Not implemented</td>
<td>5</td>
<td>vmul, add</td>
</tr>
<tr>
<td>mttkrp</td>
<td>DA</td>
<td>4</td>
<td>einsum or tensordot, multiply</td>
<td>5</td>
<td>vcontract, contract</td>
</tr>
<tr>
<td>sddmm</td>
<td>ML</td>
<td>4</td>
<td>einsum or tensordot, multiply</td>
<td>5</td>
<td>vcontract, entrywise_mul</td>
</tr>
<tr>
<td>interp</td>
<td>FD</td>
<td>3</td>
<td>einsum or tensordot</td>
<td>5</td>
<td>contract</td>
</tr>
<tr>
<td>helm</td>
<td>N/A</td>
<td>9</td>
<td>Required division not well supported</td>
<td>9</td>
<td>contract, outerproduct, div, entrywise_mul</td>
</tr>
<tr>
<td>blur</td>
<td>IP</td>
<td>N/A</td>
<td>No stencil support.</td>
<td>9</td>
<td>op, vop</td>
</tr>
<tr>
<td>coars</td>
<td></td>
<td>6</td>
<td>einsum or multiply, subtract</td>
<td>6</td>
<td>ventrywise_mul, entrywise_sub</td>
</tr>
</tbody>
</table>
TeML evaluation
Reproducing optimization paths of Pluto

Pluto

- Polyhedral automatic parallelizer
- Some flexibility in selecting optimizations and their parameters
- But quite rigid heuristics, mostly “black-box” optimizations

<table>
<thead>
<tr>
<th>mttkrp (250250250)</th>
<th>sddmm (4096*4096)</th>
<th>bmm (81927226)</th>
<th>gconv (323232327*7)</th>
<th>interp (5000077*7)</th>
<th>helm (50001313*13)</th>
<th>coars (4096*4096)</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallelize(l, 1)</td>
<td>interchange(l, 2, 3)</td>
<td>tile(l, 32)</td>
<td>interchange(l1, 4, 5)</td>
<td>interchange(l1, 1, 5)</td>
<td>fuse_outer(l4, l5, 5)</td>
<td>tile(l, 32)</td>
</tr>
<tr>
<td>interchange(l, 1)</td>
<td>parallelize(l, 1)</td>
<td>interchange(l, 7,8)</td>
<td>vectorize(l1, 1)</td>
<td>vectorize(l2, 5)</td>
<td>parallelize(l1, 1)</td>
<td>parallelize(l, 1)</td>
</tr>
<tr>
<td>vectorize(l, 3)</td>
<td></td>
<td>parallelize(l, 1)</td>
<td>vectorize(l1, 9)</td>
<td>parallelize(l2, 1)</td>
<td>parallelize(l1, 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>vectorize(l, 8)</td>
<td>vectorize(l2, 9)</td>
<td>parallelize(l3, 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

> Can we outperform Pluto?
TeML evaluation
Expressing transformations that outperform Pluto

- On Intel(R) Core(TM) i7-4910MQ CPU (2.90GHz, 8 hyperthreads, 8192KB of shared L3 cache), Ubuntu 16.04
- Generated C programs compiled with the Intel C compiler ICC 18.02 (flags: -O3 -xHost -qopenmp)
- TensorFlow version 1.6 with support for AVX, FMA, SSE, and multi-threading

![Graphs showing performance comparison between TensorFlow, Pluto, and TeML for mttkrp, interp, and helm tasks across different core counts.](chart.png)
We are able to express more efficient transformation paths
Conclusion

TeML

- Program construction and transformation phases are both functional
- Higher-level of abstractions for tensor computations
- Formal specification of program construction and transformation

Future work

- Extensions for parallelism support
- Abstractions for memory virtualization and corresponding semantics
- Type system
- High-level abstractions for stencil patterns, general convolutions, sparse tensors