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Introduction

This document discusses the implementation choices of the high-level description
of data structures used in PIPS as internal representations (RI) of C programs.

These data structures are declared using the Newgen Data Definition Lan-
guage in the Abstract Syntax Tree ri.tex companion document and shared
with the Fortran77 parser..

Here are the goals of our work:

• Enough information must be preserved to prettyprint source code from
the internal representation: this is the ultimate goal we must meet.

• Whole program must be stored in the internal representation. Modules
written in different languages such as Fortran and C must be stored in
memory as part of one application, using the very same data structures.

• Make the internal representation compatible with the SPEC2000 CFP,
SPEC1995 INT and SPEC2002 HPC as a first step, and extend it later if
necessary to cover all of C ISO 99.

The reader is assumed knowledgeable in Newgen [?] and the internal representa-
tion used for Fortran [?]. Another important reference is CIL, a C Intermediate
Language developed at University of California [?], which is used for comparison
purposes.

The standard initially used was ISO C89, but C99 extensions must be sup-
ported too.

In Section 1, we deal with naming issues. Then in Section ??, the memory
storage of different classes of variables is presented. Types in C are much more
diverse than in Fortran 77 and numerous extensions are presented in Section3.
C expressions are also extended beyond Fortran 77 with features such as casts,
sizeof and address-of. These issues are handled in Section 4. Finally control
flow extensions with respect to Fortran 77 are covered in Section 5.

Beware that details about such or such value given in this report may be
outdated. Please check ri.newgen and ri-util-local.h files for programming
purposes.
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Chapter 1

Naming

In C, the scope of a local variable is the block where it is declared, the scope of
an external static variable is the source file where it is declared, not the module
as in Fortran. So when it is necessary, we have to add all information such as
the current source file, module and block to the entity name in order to locate
an entity in the symbol table. Here are several objectives for naming different
kinds of entities:

• As short as possible;

• As significant as possible;

• As uniform as possible;

• As efficient as possible;

• To be able to recompile after modifying a file (???);

• Faithful with respect to the original declarations ;

• Compatible with the existing internal representation (Fortran).

Before entering the details related to this naming issue, here are some recalls of
the C standard [?].

1.1 ISO C concepts

An identifier can denote

• an object (i.e. a variable)

• a function

• a tag of a structure, union or enumeration

• a member of a structure, union or enumeration

• a typedef name

• a label name
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1.1.1 Scopes of identifiers (6.2.1)

There are four kinds of scopes: function definition, file, block and function
prototype, also known as function declaration.

• A label name has function definition scope.

• If the declarator or type specifier that declares the identifier appears out-
side of any block or list of parameters, the identifier has file scope.

• If the declarator or type specifier that declares the identifier appears inside
a block, the identifier has block scope.

• If the declarator or type specifier that declares the identifier appears inside
the list of formal parameters of a function definition, the identifier has
function definition scope.

• If the declarator or type specifier that declares the identifier appears within
the list of parameter declarations in a function prototype, the identifier
has function prototype scope.

1.1.2 Linkages of identifiers (6.2.2)

An identifier declared in different scopes or in the same scope more than once
can be made to refer to the same object or function by the linkage (external,
internal and none).

So the concept of global entity (TOP_LEVEL) does not exist for C, but we can
use it to refer to external linkage entities, which include functions and objects
but not tags for structures, unions, enumerations and typedef names.

1.1.3 Name spaces of identifiers (6.2.3)

There are separate name spaces :

• label names

• tags of structures, unions and enumerations

• members of structures or unions

• ordinary identifiers

Members of enumerations are handled as identifiers.

1.2 File name scope

There may be functions or variables that have the same name but in physically
different files, such as :

• in Directory1/foo.c:

stat ic bar ( )

• in Directory2/foo.c:

5



stat ic bar ( )

In order to distinguish these two static functions, the two different absolute
file names must be taken into account1. The same situation can arise with
typedef, struct, union and enum types, i.e two structures with the same
name in different files are different. There are several possibilities to uniquely
name a source file

1. Use the absolute paths (problem with name lengths and file moves)

2. Use the relative paths (problem when copying/moving the database sys-
tem)

3. Use specific naming in PIPS DBM, with a database that stores the corre-
spondences between the actual file name (absolute or relative, FC ?) and
the specific name. This is the current solution for Fortran.

4. By default: relative and an option for absolute

There may be problems related to special characters used in a C file name which
can be in conflict with characters used as separators in the entity name, but
only the MODULE_SEPARATOR is critical.

Another possible whole program compilation problem: different compilation
units use different names for structurally equivalent types. CIL [?] resolves this
problem by some merging phases : merge types and tags and rewrite variable
declarations and function bodies.

1.3 Block scope

There are different solutions to handle the blocks:

1. Flattening like CIL [?] and then ignoring completely these block scopes,
except for memory allocation and for prettyprinting.

2. Flattening the blocks and conserving the scope information somewhere
to regenerate code. There must have special separators and tables to
interchange between the internal names and external names. Problem for
debugging? Problem for controlizer?

3. Dewey indexing for blocks (like trees). It can be associated to the above
solution ?

4. Multiple symbol tables. Note: the actual solution, a unique symbol table
for general ”entity” may create problem when dealing with large-scale
programs and prevents PIPS distribution.

We do not use flattening as in CIL because the source programs are transformed
too much, which is not appropriated for a source-to-source compiler, although
the separation of declaration and code makes it more easier to analyze the
program. For example, in CIL, local variables in inner scopes are pulled to
function scope with variable renaming like this:

1This may not be implemented in August 2008
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int main ( ) {
int x = 6 ;
{

int x = 7 ;
}
return x ;

}

int main ( ) {
int x 0 ;
int x 1 ;
{

x 0 = 6 ;
x 1 = 7

}
return x 0 ;

}

Impact of block scope on analyses of PIPS ? When propagating transformers
or preconditions, we must take into account the block scope of variables, and
pay attention to the different variables that have the same user name when
prettyprinting results of analyses.

1.4 Current naming mechanism

An entity name contains the name of the object, concatenated to a prefix string
and a special separator MODULE_SEP_STRING (”:”). The prefix string is the
name of the package defining the scope of the object which can be "TOP-LEVEL"
(TOP_LEVEL_MODULE_NAME) or a module name.

In Fortran 77, the intrinsic ABS has internal name "TOP-LEVEL:ABS" while
variable INIT of module FOO has "FOO:INIT" as internal name.

There are also special prefixes to distinguish between a main program, a
common, a block data, an identifier or a label. For instance, MAIN_PREFIX

(”%”), LABEL_PREFIX (”@”). result in

TOP-LEVEL:%MAIN

TOP-LEVEL:@LAB

Here are the characters corresponding to special separators (attention, $ can
be used in the identifier name):

MODULE_SEP_STRING ":"

FILE_SEP_STRING "%" (compilation unit names are suffixed by "!")

BLOCK_SEP_STRING "~" (redefined as "‘")

So the entity name can be

• TOP-LEVEL:name

• or [file%][module:][block~]name which can be one of the following:

7



FILE%name

MODULE:name

FILE%MODULE:name

MODULE:BLOCK~name

FILE%MODULE:BLOCK~name

In the current implementation, FILE% is (incorrectly) replaced by the compila-
tion unit name, which is not sufficient to eliminate all anme conflicts.

The name of a label is MODULE:@label because it has function scope.
In addition, to distinguish a structure, an union or an enumerator that

has the same name as other program variables, we have to add special constant
characters such as STRUCT_PREFIX, UNION_PREFIX, ENUM_PREFIX to the name
prefix. We also have to keep the name of the structure and the union in the
global name of its members in order to distinguish these members with other
program variables, and so a MEMBER_SEP_STRING is needed. It is not necessary
for the enum member, because the name of a variable must be different from
the name of an enumerator member2. A prefix for typedef TYPEDEF_PREFIX is
necessary to distinguish a defined name and to regenerate code.

STRUCT_PREFIX #

UNION_PREFIX *

ENUM_PREFIX ?

TYPEDEF_PREFIX $

MEMBER_SEP_STRING ^

All prefixes and separators are defined in ri-util-local.h. They are de-
fined twice as string and as characters. Hence they are often assumed to be of
length one by PIPS programmers.

Examples:

struct node {}; [file%][module:][block~]#node

struct key {int node}; [file%][module:][block~]key^node

typedef int node; [file%][module:][block~]$node

int key; [file%][module:][block~]key

union key2 {int node}; [file%][module:][block~]*key2

[file%][module:][block~]key2^node

enum hue {toto,tata}; [file%][module:][block~]?hue

[file%][module:][block~]toto

int hue; [file%][module:][block~]hue

A function formal parameter in a function definition does not contain any
block information. A function formal parameter in a function declaration is
named with a special dummy module name.

Note: C distinguishes between uppercases and lowercases while Fortran 77
considers all characters to be upper case, except in string constants.

The scope of struct, union, enum and typedef is the current compilation
unit (current source file), whose name contains a special character, defined as
FILE_SEP_STRING. Struct and union share the same space. A struct and a

2Enumerator members are represented as nullary functions with symbolic values, like For-
tran parameters.
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union cannot have the same name within one scope, which may make the above
distinction between unions and structures redundant.
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Chapter 2

Storage

The storage class determines the location and lifetime of the storage associated
with a variable.

2.1 External variables

External variables are defined outside any function, and are thus potentially
available to any function that declares it extern. Any function may access
an external variable by referring to it by name, if the name has been declared
somehow. If an external variable is to be referred to before it is defined, or if it
is defined in a different source file, then an extern declaration is mandatory.

Name prefix = TOP-LEVEL:

Storage = ram

Ram_function = TOP-LEVEL-ENTITY

Ram_section = TOP-LEVEL area

In Fortran, the scope of a variable is the module, or in other words, a global
variable is always associated to the list of entities of a module, which facilitates
code regeneration.

In order not to allocate external variables several times and to prettyprint
their declarations properly, they are kept in the externs field of the code data
structure.

In the old versions of C, we can declare (extern is not a real declaration,
since it doesn’t allocate memory per se) the same variable in multiple places
(files) with no problem at link time. This is probably what we had in mind
when we designed this part of the RI. This is not working anymore with more
recent versions of C. As it produces linking error, multiple declarations although
allowed by some explicit arguments to the compilers (like -z muldefs in gcc)
are not clean programmin practice. Hence there must be some way to know the
difference between the declarations of external variable and global variables and
how to regenerate the declaration related to external variables, such as:

• in file1.c:

int m;
void func1 { }
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• in file2.c:

int i ;
extern int m;
void func2 { }

in file3.c:

void func3 ( ) {
extern int m;

}

Multiple declarations are allowed in a compilation unit only, but multiple
initializations are forbidden even when they are compatible.

A source file can be considered as a module, and in the first case, the entity
m can be added to the list of entities associated to this source file. They are
named "TOP-LEVEL:m". In the second and third cases there should not be any
memory allocation for entity m. The real problem lies to differentiate between
entity i and entity m for second case and hence allocate memory for i but not
for m. We need to have some information in the internal representation: it is
carried by the externs field of code.

2.2 Static variables

2.2.1 Internal static variables

int f oo ( ) {
. . .
{

stat ic int i ;
. . .

}
}

Name = foo!:0‘11‘i, where 0‘11‘ is just an example of block numbering

Storage = ram

Ram_function = current module or compilation unit, "foo!"

Ram_section = *STATIC* area of current module, "foo:*STATIC*"

The outermost block can be omitted, since in fact it is considered as the current
module. It is not necessary to generate an entity for each block, we only need to
number the blocks. The offset of a variable is computed from the declarations
of variables in the same block. So variables with the same offset but in different
blocks are different.

2.2.2 External static variables

An external static variable is defined outside of any function, and is known
within the remainder of the source file in which it is declared, but not in any
other file. The source file is called a compilation unit and a pseudo-function is
associated to it.

In file foo.c
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stat ic int i = 0 ;
int f ( ) {
}

we have a corresponding entity to this external static variable:

Name = foo!:i

Storage = ram

Ram_function = source file, "TOP-LEVEL:foo!"

Ram_section = *STATIC* area of source file , "foo!:*SSTATIC*"

In addition, other entities are generated for the source file and the *STATIC*

area of this source file.

Source file (or compilation unit)

name = TOP-LEVEL:source_file_name, "TOP-LEVEL:foo!"

type = functional (parameters = NIL, result = void)

storage = rom

Area

name = source_file_name:*STATIC*, "foo!:*SSTATIC*"

type = area

storage = rom (as for all area entities)

The prettyprint of the external static variable is based on the list of entities
associated to the source file entity. The position of the variable declaration in
the source file is the position in the declaration field of the code data structure.

2.3 Automatic variables

They are handled like dynamic local variables in Fortran [?]. The outermost
block cannot be omitted to handle conflicts with formal parameter names.

Name prefix = [file%]module:[block~]

Storage = ram

Ram_function = current module

If the size in bytes of the object is known at compile time, we use:

Ram_section = *DYNAMIC* area of current module

Else we use

Ram_section = *STACK* area of current module

as in Fortran for varying size arrays that are not formal parameters.. The
keyword auto is kept in variable qualifiers, presented in 3.7.

2.4 Formal variables

If they appera in a function definition, they are represented as formal variables
in Fortran [?].
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Name prefix = [file%]module:

Storage = formal

Note that no block information appears.
If they appear in function declaration, aka function signatures, aka function

types, their name prefix is synthesized to avoid any conflict (see DUMMY_PARAMETER_PREFIX).

2.5 Register variables

A declaration of an identifier for an object with storage-class specifier register
suggests that access to the object be as fast as possible and the address of any
part of an object declared with register cannot be computed. A register decla-
ration can only be applied to automatic variables and to the formal parameters
of a function.

f ( c , n )
register int c , n ;
{

register int i ;
}

storage = return:entity + ram + formal + rom:unit

Since a formal variable can be declared with register, creating another type
of storage such as register to store this information does not work and is not
compatible with the pre-existing data structuress. Furthermore, for a source-to-
source compiler, this information is not important, it is only used to regenerate
the source code. So we only need to add this information some where in the type
structure. A solution is presented in 3.7, which also deals with const, volatile

and restrict.
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Chapter 3

Type

The type system of C is much more extended than Fortran 77’s which makes
the backward compatibility difficult to ensure. Beside some usual data types
such as int, float and char, C also has enumerated type and derived types such
as array, structure, union, function and pointer. Usually, these kinds of type
are added to type:

type += basic + array + pointer + struct + union + enum

array = type x dimensions

basic = int + float + ...

However, since PIPS Newgen internal representation has been designed for
Fortran where the main data structure is array, the Newgen structure variable
(variable = basic x dimensions), used to represent Fortran scalar and array
variables, must be handled compatibly. Here are different possible solutions to
deal with this:

1. Try to replace all the functions related to variable by macros, then
variable is no more used in the new version.

type += basic + array + pointer + struct + union + enum

array = type x dimensions

basic = int + float + ...

2. Keep variable and array in parallel

type += basic + array + variable + pointer + struct + union + enum

array = type x dimensions

variable = basic x dimensions

basic = int + float + ...

3. To avoid the modifications related to variable, which is expensive, the
new types can be added to basic. This method is called array-oriented.
The Newgen data structure basic is modified to enable the recursion
among array, pointer, structure, ....

type = statement + area + variable + functional + void + ...

variable = basic x dimensions

basic = int + float + logical + string + pointer + ...
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However, in this method, the traversal is not always direct, i.e to access a
pointer, we have to go through variable, ... which may create bugs with
malloc, free and it is not easy for debugging.

The third solution is chosen because it requires less modifications in the
actual internal representation. However its main impediment is that functional
typedef appears as variable at firat, although the placement of typedef in the
basic or type data structures does not appear clearly in the above dicussion.
In particular, unlike pointer, typedef does not require the dimension field
provided by variable.

3.1 Basic types

3.1.1 Integer type

C has different kinds of predefined integer type : int, signed int, unsigned int,
short, long, long long, ... and char, signed char, unsigned char. Since int x

and signed int x declarations are implementation-defined (which is found in
the file stdio.h but not in SPEC 2000), they should be distinguished.

Furthermore, new types are added such as intptr_t, int32_t,...
Currently, PIPS does not have a proper mechanism to adapt to a particular

architecture. At best, #define are used. They define a 32 bit architecture:
pointers are assumed stored in 32 bits like long int.

There are different solutions to represent all this information:

1. A compact representation that only uses the basic int and gives different
values to each kind of type:

char = 1

short_int = 2

int = 4

long_int = 6

long_long_int = 8

unsigned_char = 11

unsigned_short_int = 12

unsigned_int = 14

unsigned_long_int = 16

unsigned_long_long_int = 18

signed_char = 21

signed_short_int = 22

signed_int = 24

signed_long_int = 26

signed_long_long_int = 28

We could use mod(int,10) to know the basic size and div(int,10) to
know if the variable is unsigned, signed or not. However, this not fully
compatible with the Fortran version [?] where the value of int is the num-
ber of bytes required to store one scalar object of this type. And this does
not hold for long_int.
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2. A less compact but simpler solution is to represent three different cases:
unsigned, signed or not.

basic += int:int + signed:int + unsigned:int

In each case, different values are associated to short int, int, long int or
long long int.

short_int = 1

int = 2

long_int = 4

long_long_int = 8

The first solution is currently implemented. The numbering scheme can be
checked in ri-utilprettyprint.c/ and in cyacc.y. See also function SizeOfarray().

It is not clear that merging signed and unsigned types is a good idea, espe-
cially in another data structure, constant.

3.1.2 Character type

1. A character variable is in fact an integer variable, so it can be associated
to the basic int, as in the first solution of 3.1.1.

unsigned_char = 11

char = 21

signed_char = 1

2. It may also be better to treat character independently.

basic += char:int

where the value of int is

unsigned_char = 11

char = 21

signed_char = 31

3. Ambiguity between string and array of characters ? string is not used
for C? Impact on semantic analysis, which does not handle arrays but
handles strings optionnally?

The first solution is chosen and the basic type string is not used for C
internal representation.

3.1.3 Bit type

We have to add a basic type bit to represent the integral bit fields occurred in
a structure declaration.

basic += bit:int

int a:1

unsigned b:2

signed c:3
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3.1.4 Boolean

A special type, _Bool is used by gcc, according to ISO standard. This type is
mapped on the logical basic.

3.1.5 Varying argument lists

The gcc compiler uses a special builtin type, va_list. It is defined like a typedef,
with not much information beyond what is needed for the prettyprinter.

3.2 Arrays

As in Fortran, we have to represent fixed size array and varying size arrays,
arrays (and typedef) which are sized by expressions evaluated dynamically.

We also have to represent implictly sized arrays, whose sizes are implied by
their initial values but should not be given in the declaration itself.

3.3 Pointers

Pointer can point to any variable: to a scalar variable, to an array variable, to
a function, ... To represent an array of pointers and to keep the initial internal
representation, a new type pointer is added to basic.

basic += pointer:type

3.3.1 Pointer to integers

int *p1

name = p1

type = variable

dimension = NIL

basic = pointer

pointer of type variable

basic = int

dimension = NIL.

with this dynamic allocation:

p = mal loc (5∗ s izeof ( int ) ) ;

to store the size of the corresponding memory zone, the dimension of the pointer
can be changed to :

int *p1

name = p1

type = variable

dimension = NIL

basic = pointer

pointer of type variable

basic = int

dimension =5.
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But how about most cases, as in Section 3.3.2?
Anyway, the dynamic analysis of pointers is not part of the parser. Calls

to malloc() are not taken into account in the parser to do any memory sizing.
The size of a pointer is either 32 or 64 bits, but only the 32 bit architecture is
implemented (see DEFAULT_POINTER_TYPE_SIZE in ri-util-local.h, but this
should be improved to chose the architecture dynamically). The first approach
is used.

3.3.2 Pointer to pointer

char ∗∗p ;
p = mal loc (n∗ s izeof (char ∗ ) ) ;
for ( i =0; i<n ; i++)

p [ i ] = mal loc ( ( i +1)∗ s izeof (char ) ) ;

Initially, with the declaration, we have :

name = p

type = variable

dimension = NIL

basic = pointer

pointer of type variable

basic = pointer of type variable (basic = int/char, dimension

= NIL)

dimension = NIL.

After the first allocation, p points to an array of n pointers (attention to the
scope of n):

basic = pointer of type variable (basic = int/char, dimension

= NIL)

dimension = n.

How to know the memory size pointed by this each pointer? And the size is
i-related ...? p[ i ] represents an entity or p only? The size of p[i] is lost There
is a particular case where ( i+1) is replaced by m (arrays of same size), we can
keep this information in dimension of the second pointer.

This is left aside for future pointer analyses.

3.3.3 Pointer to an array

Declaration int (∗p2)[13] defines p2 as a pointer to an array of 13 integers:

name = p2

type = variable

dimension = NIL

basic = pointer

pointer of type variable

basic = int

dimension = [13].
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3.3.4 Array of pointers

int ∗a[13] is an array of 13 pointers to integers

name = a

type = variable

dimension = [13]

basic = pointer

pointer of type variable

basic = int

dimension = NIL.

3.3.5 Function returning a pointer

char ∗f(n), f is a function that returns a pointer to a character string

name = f

type = functional

result = variable

dimension = NIL

basic = pointer,

pointer of type variable

basic = char

dimension = NIL.

3.3.6 Pointer to a function

int (∗p)()

name = p

type = variable

dimension = NIL

basic = pointer

pointer of type functional

parameters = undefined

result = int.

Note: undefined is supposed to be avoided in PIPS internal data structure.
The gen defined p() predicate should always return true. Unknwon or unspec-
ified would be better. Is void ending up with one parameter of type void,
different from NIL? See the prettyprinter source code?

3.4 Structure, Union and Enumerated Types

The common point between a structure, an union or an enumerated type is that
each of these types has a name and a list of members. In addition, these members
can be represented as entities, because they have name, type and eventually
initial value. There are two possibilities to represent these new derived types:

1. Each type is represented separately:

type += struct:entity* + union:entity* + enum:entity*
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2. They are grouped into a composed type

type += composed

composed = members:entity* x kind

kind = struct:unit + union:unit + enum:unit

The first solution is chosen because it is simpler and more direct when we want
to access a special type.

In addition, in order to be homogeneous with pointer, these new types can
be added to basic:

basic += struct:entity* + union:entity* + enum:entity*

but adding them to type would make the traversal much shorter. We do not
have to pass through variable each time we want to refer to an entity of
struct/union/enum type.

The storage class of the struct/union/enum entities and their members is
rom. The initial value of a member entity can be used (or is used?) to
represent the offset in bytes of the member in the struct.

All the above discussions talk about the entity related to the struct/u-
nion/enum declaration (this template about the shape of a structure create
no storage) such as

struct key {
int tab [ 3 ] ;
int keycount ;

} ;
This entity key is of type struct and is (implictly) associated to a list of

members: ”#key”, ”keyˆtab”, ”keyˆkeycount”. Note that the special character
# is not repeated in the field names.

In the declaration like struct key var = {{1,2,3}, 3}, the entity var is of
type struct key and there are two possibilities to represent its type:

1. Associate it directly to the entity key

2. Associate it to a composed type which contains the name of the structure
(key) and the list of members, etc. This solution is redundant because we
have to store the same information for each variable of type struct key.

So to represent a variable whose type is struct/union/enum, we add to basic
the derived type to point to these new types.

basic += derived:entity

The initial value of var in this case is a list of lists, which is not repre-
sentable actually in Newgen. But since we know statically the size of the array
tab in the struct key, we could represent this value as a normal list {1,2,3,3}
and the information can be extracted when needed. A new psesudo-operator,
BRACE INTRINSIC, is added to be able to represent exactly the list of lists of
expressions.

Structures, unions and enumrations that are not named receive a default
internal name (see DUMMY STRUCT PREFIX, DUMMY UNION PREFIX
and DUMMY ENUM PREFIX in ri-util-local.h).

Whithin one scope, a named structure has a unique name, even if it is defined
within another structure or union.
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3.4.1 Structure declaration

struct key {
char ∗keyword ;
int keycount ;

} ;

name = key

type = struct

name = keyword

type = variable

dimension = NIL

basic = pointer of type variable

basic = char

dimension = NIL

storage = rom

initial = 8

name = keycount

type = variable

dimension = NIL

basic = int

storage = rom

initial = 8

Nga’s comments: the traversal is much shorter if pointer, array, basic are
added to type as in the other solution (which is more logic ...but there were too
few type constructor in Fortran 77 to anticipate correctly the needs of C).

name = keyword

type = pointer of type basic = int

name = keycount

type = basic = int

3.4.2 Pointer to structures

struct key ∗p ;

name = p

type = variable

dimension = NIL

basic = pointer of type variable

basic = derived = entity key

dimension = NIL
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3.4.3 Array of structures

struct key keytab [ 1 0 ] ;

name = keytab

type = variable

dimension = [0:9]

basic = derived = entity key

3.4.4 Self-referential structure (recursive data structure)

struct node {
char word [ 1 0 ] ;
struct node ∗ next ;

} ;

name = node

type = struct

name = word

type = variable

basic = char

dimension = [0:9]

name = next

type = variable

dimension = NIL

basic = pointer of type variable

basic = derived = entity node

dimension = NIL

3.5 Typedef

typedef char ∗STRING;
typedef int A[ 2 ] [ 3 ] ;
typedef int (∗PFI ) ( ) ;
typedef struct {} TREE,∗TREEPTR;
typedef int f (char ) ;

STRING, A, PFI, TREE, TREEPTR are entities with:

• Global name = TYPEDEF_PREFIX + local name. The TYPEDEF_PREFIX is
used to regenerate code.

• Storage = rom

• Type = type which is named;

• Initial value = could be the type wich is named, but the ype field is alreay
used for this
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It is more logic if the initial value of a typedef entity is type. But in this case,
we have to modify the value Newgen structure, so it is better to put the type
directly in the type of the entity. Too bad for functional typedefs whose type
is variable at first look. The dimensions field is not useful either.

To represent variables whose type is a typedef entity, we add to basic the
typedef structure.

basic += typedef:entity

typedef struct key { . . . } key ;
key k1 ;
struct key k2 ;

name = STRUCT_PREFIXkey

type = struct

storage = rom

name = TYPEDEF_PREFIXkey

type = variable

dimension = NIL

basic = derived = entity STRUCT_PREFIX:key

storage = rom

name = k1

type = variable

dimension = NIL

basic = typedef = entity TYPEDEF_PREFIXkey

name = k2

type = variable

dimension = NIL

basic = derived = entity STRUCT_PREFIX:key

3.6 Functional Type

Functional types have already been treated for Fortran, except for some (small)
details.

type = functional + ...

functional = parameters:parameter* x result:type

parameter = type x mode

• For extern int f(void);, parameters is a list of one element of type void.
The number of parameters is mislseading in this case.

• How to represent extern int f(); (the same for Fortran with EXTERNAL F

?) parameters_undefined creates consistency/updating problems ?

• We can add a Newgen structure for the function qualifier inline but
it was not necessary for during the first parser development because no
inlined functions appear in SPEC 2000. It is snot clear the inline should
be part of the type since two functions can have the same signature and
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hence the same type, but they do not have to be both inlined. Should it
be a type qualifier? But qualifier a are restricted to variable types...

C supports varying argument lists and a special keyword, va arg(), whose
two arguments are a variable and a type. As for sizeof which takes either a
type or a variable as argument, this is not representable with a standard call..

3.7 Type qualifiers : Const, Restrict, Volatile

const int ∗p ;
void func ( const a ) ;
void h( int ∗ const r e s t r i c t p ) ;

Although only a small percent of variables are declared with these qualifiers
and it is expensive, we choose to create a new Newgen structure for them.
Attempts to put these information in existing Newgen structures, such as a
rom storage for local variables qualified with const, shared field of ram for
restricted local variables are not successful because they do not handle all
possible cases. For example, rom cannot be used for a formal variable declared
const (which can be found in SPEC 2000 benchmarks), shared cannot be used
for a formal variable declared restrict.

We can add a new field qualifiers for type, at the variable level. This
qualifier can also contain the register and auto cases.

variable = basic x dimensions x qualifiers:qualifier*

qualifier = const:unit+restrict:unit+volatile:unit+register:unit+auto:unit

There are about 36 make variable in PIPS source code to modify.

3.8 Conclusion

Some important information is carried by the entity name and not by the type
data structure. This is the case for struct, union and enum. As a result,
numerous characters become reserved and it is not always possible to use the
external operator name as internal PIPS operator name. This old assumption
of PIPS internal representation not longer holds.
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Chapter 4

Expressions

Expressions in Fortran PIPS must be extended to handle new kinds of expres-
sions found in the C language. Here are the Fortan 77 data structures used to
represent expressions:

expression = syntax x normalized

syntax = reference + range + call

reference = variable:entity x indices:expression*

New kinds of syntax are added to handle C language. They are cast, sizeof,
subscripting array and function application expressions. The subscripting ar-
ray expression is an extension of the reference expression, which includes other
more complicated array objects such as pointer, function, structure or union
member... The same extension is made to call expression, named function ap-
plication, because the called function is not necessarily an entity but can be any
expression that denotes a function.

syntax += cast + sizeofexpression + subscript + application

4.1 Cast

cast = type x expression

Cast cannot be represented easily as intrinsics as in Fortran, because their
number is unbounded due to the typedef mechanism.

4.2 Sizeof

sizeofexpression = type + expression

4.3 Subscript

In C, pointer expressions can be subscripted, not arrays only.
subscript = array:expression x indices:expression*
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4.4 Application

C is more flexible than Fortran about functional pointers. Such pointers can be
stored in data structures instead of being restricted to function call.

application = function:expression x arguments:expression*

For example, we have such a function call in C:

(∗ ctx−>Driver . RendererStr ing ) ( )

4.5 Special calls

To represent C construct, specific calls are used

4.5.1 Member references

There are different solutions:

1. A special call expression, FIELD MEMBER CALL(exp1, exp2), to handle
for example str [1]. fld [2]

2. reference = variable:entity x indices:expression x offset:entity*

This is not sufficient because we can have in C99 foo (). x where foo is a
function returning a struct... That means that we need to extract fields
from non l-values too.

More explaination here !

Distinguish between . and -> ? The last one can be represented by the first one
and *. Disadvantages for type checking, program analyses, transformations?

See ri-util-local.h:

#define FIELD_OPERATOR_NAME "."

#define POINT_TO_OPERATOR_NAME "->"

#define DEREFERENCING_OPERATOR_NAME "*indirection"

#define ADDRESS_OF_OPERATOR_NAME "__address-of__" // &

#define COMMA_OPERATOR_NAME ","

4.5.2 Address of, value of

Special functional intrinsics are used for & and *.

4.5.3 Comma operator - list of expressions

f(a, (t=3,t+2),c)
Special call expression COMMA OPERATOR: n-ary or binary call ?
The same holds for a=b=c=d.

4.5.4 Conditional expression

e1 ? e2 : e3
Special call expression based on CONDITIONAL OPERATOR. This is the

only operastor with 3 arguments.
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Chapter 5

Control Flow

5.1 Module Code

code = declarations:entity* x decls_text:string x initializations:sequence

As discussed in section 2.1, external variables that are declared outside a
module can be pretty-printed if the source file is considered as a module, with
the declarations list and the decls text string. This is implemented in the data
structure code but the field decl_text does not seem to be initialized by the
parser and is not used by the prettyprinter.

However, this does not let us know if a global variable has been declared
extern or not. For instance, the two declarations:

extern int i;

et

int i;

outside of a function definition result both in the declaration of a global vari-
able, top−level: i, within a compilation unit. To remember in which C file the
keyword extern appears, a new field, externs is added to code. Note that
the initialization and/or the declaration without extern can appear only once
within an application. However, the sequence:

extern int i;

...

extern int i;

...

int i;

is legal, probably to simplify the design of include files.
The field code_declarations contains all variables declared within the func-

tion definition. Iternal PIPS entities such as memory areas are declared first,
followed by formal parameters. Other variables declared within statement blocks
are also listed here. So most variables appear in a statement_declarations

field and in the code_declarations field of the module.
For a compilation unit, which does not really have a body, the code_declarations

field can be used.
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The field initializations is used to represent DATA statements in For-
tran. In C, the initializer for a scalar variable is a single expression, for ob-
jects that have aggregate or union types is an initializer list, which can be not
complete and by default, the remaining elements are initialized by zero (for
arithmetic type) or null pointer (for pointer type).

There are two possibilities to represent this initialization information:

• Represent this initialization in the initial values of entities. New kinds
of value can be added to value such as expression for scalar variables,
aggregate or union types (array, structure, ...). String can be used to
regenerate code, list (list of lists is not permitted in Newgen) can be used
to have fine preconditions on array elements, structure member, ... But
the list length is the array size ?

Other problem: how to represent int i = j; ? The initial value of i is j
?

• Treat this initialization as a special kind of statements like DATA in For-
tran.

• since any statement and hence any instruction can include a declaration
and since ISO C99 allows mix of declarations and executable statements,
represent int i =j as int i ; i = j;.

The first solution is chosen and the field initial_value leads to a value contain-
ing the initialization expression thru value_expression. Sepcial expressions
are built for array and structure initializations.

5.2 Statement

The Fortran 77 structure of a statement is:
statement = label x number x ordering x comments x instruction

Since in C, a declaration can appear in any block, not only at the beginning
of a function, we have to associate variable declarations to blocks. There are two
possibilities to perform this in the current internal representation: declaration
can be associated to either a statement or a sequence (a block in fact). But
since the true and false branches of a conditional statement as well as the body
of a loop are not necessarily sequences, declarations in these statements will be
lost if they are associated to sequence. So we choose to associate them to a
statement, although it may be useless for some elementary statements such as
call, test or loop.

Another approach would have been to consider declarations as statements
(see discussion about initializations in previous section) and/or to use a NOP
instruction such as Fortran CONTINUE to carry the declarations. This let us also
preserve more comments than other approaches.

Note: we have to pay attention in coding in PIPS that we cannot refer
to declarations once we have already reach the instruction because there is no
upward pointer from instruction to statement.

So we suggests to modify statement in the following way:
statement += declarations:entity* x decls_text:string

instead of creating a new instruction, which could be called declaration.
When a new instruction is needed, PIPS designers often use a new intrinsic
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rather than a new instruction because fewer PIPS source code modifications are
necessary.

Member declarations contains a list of entities in the statement scope (all
kinds of entities such as intrinsics, ... or only those that are effectively declared).
Member decls_text could be used to regenerate source code (as for module
code) if the parser initializes it.

This does not specify which statements carry the declarations. A first im-
plementation, based on C89, used block statements only to carry declarations.
All other statements had to have an empty declaration list. This is too restric-
tive with respect to C99, which allow declarations to appear anywhere among
executable statements, and with respect to source-to-source constraints. By
putting all declarations of a block in one statement, individual comments and
line numbers are lost.

A second implementation is based on C nop, ”;”, i.e. Fortran CONTINUE.
This statement has no effect and can be ignored, but for the possible initial
values, by PIPS analyses. PIPS transformations must preserve it.

5.3 Instruction

The instruction for Fortran 77 is a union:
sequence + test + loop + whileloop + goto + call + unstructured

Other kinds of instructions in C such as switch, for, ... can be added to
instruction or represented using the existing structures declared above.

In addition, a statement in C can be any expression, not only call expres-
sion, so we have to add expression to instruction. However, to make PIPS
backward compatible, we try to create a call statement for each call expression.
Expression statement is only used for special cases, such as cast expression.

Not data structure is added for the switch construct.
A new field is added to whileloop to indicate if the condition is evaluated

before the body or after the body.
To simplify the prettyprinter, a forloop is added.
In each case, a decision must be made between the requirements of the pret-

typrinter for the source-to-source use of PIPS (the more structures the better)
and the code complexity of the analyses (the fewer the structures the better).

5.3.1 Switch

There are two solutions: we can add a new kind of instruction multitest (the
keyword switch cannot be used) or we can represent a switch through if and
goto statements.

First solution:
instruction += multitest multitest = controller:expression x body:statement

The second solution is choosen:
case and default are two kinds of labeled statements, which can be treated

as goto. Their associated labels are entities which must be unique. The ini-
tial values of these entities are constant expressions. We can add them to the
declarations list of the switch statement in order to match them to the actual
switch? The entity local name is the constant expression of case, and a special
name for default.
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The break statement can be treated as a goto.

switch ( c ) {
case 1 :

s1 ;
case 2 :

s2 ;
break ;

default :
sd ;

}

i f ( c==1) goto sw i t ch xxx ca s e 1 ;
i f ( c==2) goto sw i t ch xxx ca s e 2 ;
goto sw i t ch xxx de f au l t ;

sw i t ch xxx ca s e 1 : ;
s1 ;

sw i t ch xxx ca s e 2 : ;
s2 ;
goto sw i t ch ex i t xxx ;

sw i t ch xxx de f au l t : ;
sd ;

sw i t ch ex i t xxx :

Note that this solution assume that the default case always appears and
that it appears after all other cases. Since this is not always true, a direct
syntactic translation is not possible and some post-processing is required.

How about code regeneration? It might be easier to regenerate nice code for
structured if the internal control structure were based on:

i f ( c !=1)
s1 ;
goto cont inue1 ;

else i f ( c !=2)
cont inue 1 :

s2 ;
goto cont inue2 ;

else i f ( . . . )
cont inue 2 :
. . .
else /∗ d e f a u l t case ∗/
cont inue n :

sd ;

If s1 and s2 end with a break, the goto continuex are not reachable and
the if-else-if structure is preserved.

Some pattern-matching could be tried on the resulting untructured and/or
the unspaghettify option of the controlizer might be able to put things back
nicely when it is possible...
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5.3.2 While Loop

The “while (expression) statement” and “do statement while (expression)” in
C can be represented together by adding a new field to distinguish if the evalu-
ation of the controlling expression takes place before or after each execution of
the loop body.

whileloop = condition:expression x body:statement x label:entity x evaluation

evaluation = before:unit + after:unit

To maximise the readability, evaluation:bool is not used here, as in other
cases in the internal representation (mode, action, ...).

5.3.3 For Loop

There is always a trade-off between regrouping different loop structures and
separating them. The first case makes program analyses more compact, with
less code to write but it makes pretty-printing original code difficult. It is reverse
for the second case.

We have different possibilities to consider:

1. Represent for loop as while loop

2. Represent for loop as loop (do loop in Fortran), but it is not always possi-
ble. Loops could be pretty-printed as for loops but for loops cannot always
be represented as loops (several loop indexes).

3. In order to keep the initial program structures, we can treat the for loop
separately from the other loops.

forloop = initialization:expression x condition:expression

x incrementation:expression x body:statement

The ISO C standard [?] states that the initialization of a for loop may contain
variable declaration, which is not the case for [?]. Such declarations could be
moved in the statement containing the for, but for the time being the parser
does not accept such declarations.

Initializations could be put into the very statement containing the for in-
struction and naming the block in a way to prettyprint correctly the declaration
into the for.

5.3.4 Null statement

Null statement in C, ";", is treated as CONTINUE statement in Fortran. We
only need to make the differences at the prettyprinter level.

5.3.5 Return statement

Return statement in C (return; or return (exp);) is treated as RETURN state-
ment in Fortran, which is considered as nullary operator but can have 0 or 1
argument, such as the cases of STOP and PAUSE statements.
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5.3.6 Break, Continue, Exit, Jump, Interruption

We can add new kinds of instruction to handle break and continue:
instruction += break + continue

CIL says that leaving break and continue as they are makes transforma-
tions such as code motion easier? The semantic difference between continue in
Fortran and continue in C?

Another solution is to treat break and continue as goto, which is choosen
as solution for the moment. How about code regeneration ? Some semantics
can be added into the generated label names.

PIPS analyses are preserved, but the prettyprinter of unstructured must be
improved to pattern-match continue and break.
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Chapter 6

Memory Effects

6.1 Pointers

Pointers are a key part of C since parameters are passed by value and since
recursive data structures require pointers. In the Fotran implementation, the
memory effects are represented by the effect data structure and its fields, and
by lists of such data structures:

effects = effects:effect* ;

effects_classes = classes:effects* ;

effect = cell x action x approximation x descriptor ;

cell = reference + preference ;

action = read:unit + write:unit ;

approximation = may:unit + must:unit + exact:unit ;

descriptor = convexunion:Psysteme* + convex:Psysteme + none:unit ;

reference = variable:entity x indices:expression* ;

preference = persistant reference ;

In this framework, the effect of a statement like *p=1; can only be expressed
as a reference to a large memory entity, an area or a set of areas, as no infor-
mation is locally available about p.

Effects are abstractions of effective memory effects. For instance d[i] can be
captured as d[i] because the data structure reference let us do so, as d[*] to
obtain a constant effect independent of the current store, or as an array region,
with constant reference d[phi] and store sensitive descriptor {phi=i}.

We need a new abstraction to deal with indirect effects in such a way that
constant pointers can be detected and taken advantage of. For instance, a C
function incrementing an integer, void inc(*int p), should be analyzed in
such a way that the call site effect of inc(&i) can be derived exactly.

We need to know that inc performs an indirect write through p. This is not
a great new abstraction for pointers. It is the minimum needed in a first phase.

We need to encode p->in, which is equivalent to (*p).in. Assuming that
in is the third field of the pointed structure, this could be rewritten (*p)[3].

We also need to encode (*p)[i][j][k] which is an array access to a formal
array parameter. Pointer p may be a pointer to a dynamicically typed variable
such as double x[n][m], where n and m are formal parameters too.
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We do not know if we need to keep track of pointer arrays, as in *(p[3]): our
region framework can handle it effortlessly, but what can we do with information
about pointer arrays? If our lattice is too simple, we won’t be able to make a
difference between *(p[3]) and(*p)[3]. However, since we transform accesses
to structure fields into indexing (Section 6.2), we might be interested in the post
index form to keep or to retrieve information about data structures containing
pointers on functions.

What is the new information we want to add? How can we add this new
information in the current PIPS data structure? Many solutions are possible:

1. add nothing in the data structures and keep the information at the source
code level: have different variables for direct and indirect effects;

2. define a new level of effects, like g_effect = direct:effect + indirect:effect + ...

or, at the list level, g_effects = direct:effects + indirect:effects + ...

3. add new kinds of actions such as indirect_read or indirect_write;

4. re-use the descriptor field; this does seem to make less sense than the
previous solution;

5. define a brand new pointer effect data structure, extending solution 2;

6. add a new effect field, addressing, in effect;

7. represent pointer accesses using additional effect reference dimensions ;
for instance an effect on *p could be represented as p[0];

How do we chose given the current implementation and our goals?
Separating indirect effects and direct effects at the variable level would re-

quire a huge reworking of the current code since functions should return a struc-
ture containing several lists instead of a single list. This would prevent us from
giving a meaning to the effect order in an order list: it is useful to know that a
write occurs before a read.

This holds whether lists are separated at the variable level (solution 1) or at
the data structure level (solution 2).

Adding new actions, Solution 3, does not respect the field semantics and its
link with Bernstein’s conditions. The number of new actions can be great if we
take into account indirect pre- and post-indexation. However, we may not need
pre- and post- indexation. And it might make debugging easier with unknown
action detection. Unfortunately, with only two actions, people do not use switch
and default when there are only two actions. They assume that if it is not the
first one, it has to be the second one.

Solution 5 would require a proper survey of most published pointer analyses.
It would be nice if the old effect data structure could be mapped onto it to
minimize source code modifications via macros. This could also be done later
and independently, using simple pointer information gathered with the effect
data structure as a starting point for more advanced analyses.

Adding a new field to effect, for instance addressing or addressing_mode,
Solution 6, is nicely orthogonal, let us structure it as we want, and avoid a
combination of attribute with the read and write actions. It requires source
code modifications for make_effect. And the bugs due to a lack of access
checking will not be syntactically detectable.
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However indirect accesses would have to be reduced to standard accesses
before the dependence test can be used and after the semantics analysis has
managed to propagate pointer values and equality. The region analysis does
not expect any indirect effects. The easiest way out might be to add a new
phase using general effects and reducing them all to standard effects, exploiting
semantics information. This would require a renaming of effects at the pipsmake
and database level to avoid confusion and to force the conversion of resources.

This is the solution which was first chosen. It consisted in adding a new field
addressing_mode (or addressing to avoid underscore in field names?) with
three values for pre- and post-indexation:

effect = cell x action x approximation x descriptor x addressing;

addressing = index:unit + pre:unit + post:unit

All accesses were indexed by default in PIPS internal representation, so post
and pre were equivalent for scalar accesses.

Mode index could have been called direct_indexing to be more homoge-
neous, but indexing always occured. So index could have been called direct.

The mode preindexing did not seem to be very useful in the short term.
But it proved to lack accuracy to handle real applications which use indirect

accesses at several levels of data structures, and not only at the uppermost level.
So, lastly, solution 7 was retained. Table 6.1, which is not limitative, shows that
many cases of indirect accesses can be handled this way. Moreover, an obvious
advantage of this approach is to unify all effects into effects on arrays which can
be handled by following phases.

6.2 Data structures

PIPS was designed primarily for arrays and this shows in the reference data
structure, which only support the indexed access mode. Hence, we need to
map the offset accesses found with data structure references such as c.in onto
indexed accesses.

Several possibilities come to mind for data structures if the current effect
data structure is to be preserved:

1. to mimic the address computation at the byte level, assuming any field
access can be interpreted as an array access of some byte elements; this
does not account for bit fields, but those are not frequently used;

2. to rename fields by their ranks and to access them by indexing; this is not
correct for a compiler, but the access information is preserved, which is
enough for an analyzer; array fields are a natural dimension, inserted at
the right place among index dimensions;

3. a variant of the previous possibility is to use field entities (and not solely
their names) as effect reference indices;

4. to build new variable names located at the field address, i.e. in equivalence
with the whole data structure but not with its other fields; for instance
a.b.c would be represented by one variable of name a-b-c with no name
conflict if dash is used inside the new name; array fields are would be
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declarations reference effects

int a, *p;

a a

*p p[0]

int t[N], *p, (*q)[N], *u[N], **v;

*t t[0]

t[I] t[I]

*p p[0]

p[I] p[I]

(*q)[I] q[0][I]

*u[I] u[I][0]

*v[I] v[I][0]

typedef struct {
int num;

int tab1[N] ;

int *tab2; } mys;

mys a, b[N], *c, **d;

a.num a[num]

a.tab1[J] a[tab1][J]

a.tab2[K] a[tab2][K]

b[I].num b[I][num]

b[I].tab1[J] b[I][tab1][J]

b[I].tab2[K] b[I][tab2][K]

c->num c[0][1]

c->tab1[J] c[0][tab1][J]

c->tab2[K] c[0][tab2][K]

d[I]->num d[I][0][num]

d[I]->tab1[J] d[I][0][tab1][J]

d[I]->tab2[K] d[I][0][tab2][K]

Table 6.1: Representing effects with additional dimensions
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taken care of as with a regular array; for instance a.b[i].c would be
represented by a-b-c[i];

5. to build new variable names based on the offset values and to define some
kind array type reflecting the real increments: an element size is associated
to each dimension, so that the impact of any index is exactly reproduced;
this might be a cross of the first two solutions; the offset based name may
be equivalent to using the global offset as a unique last dimension instead
of using one dimension per field and array traversal.

We have to analyze the impact of the choice with respect to effect com-
putation, but also with region and semantics analyses, as well as dependence
testing.

Regions are similar to effects and are not impacted. The semantics analyses
is not compatible with the first option, for instance because the value of an
integer will not be analyzed since four different bytes are involved. The second
option requires the semantics analysis to be extended to deal with fixed array
elements such as x[1][2], which has been a long pending extension. The third
option requires the semantics analysis to be extended to deal with equivalenced
variables: currently, the analyses are restricted to non aliased variables.

The dependence test should be able to deal with all four options because it
deals with regions, i.e. set of array elements, and with equivalenced variables,
i.e. an aliasing test is performed before the array dependence test.

The fourth option requires improvements in memory allocation and in alias-
ing management. Data structures for aliasing exist because of Fortran, but they
are not currently used for C. The scalar analysis of semantics can be used right
away to analyze structure fields.

The effect prettyprinter is easier with option 2, unless the naming scheme is
exaclty C scheme, i.e. a.x is equivalenced with a variable of name a.x. Hope-
fully, a dot in a variable name is not going to create implementation nightmares.
But field names may conflict: they should include the structure name and a.x

would become something like a.a-x.
All four schemes are minimum. They are sufficient to represent any constant

address with indexing equivalent to a field access expression. And any field
expression is represented in only one way.

After testing the second option for a while, we finally changed for the third
one in particular because it avoids merging convex effects of different access
path types. We have chosen to keep PHI variable numbers equal to their ranks
in the effect reference indices list for practical reasons. Functions are provided
to convert effects with references containing indices refering to field entities to
their rank equivalent versions.

6.3 Unions

Union are more difficult to track. They create an equivalence between two
structures located at the same address. This reminds us of Fortran equivalences,
extended to data structures.

For instance, union {int i; double x;} u; could be interpreted as three
variables called verb/u/, /u-i/ and /u-x/ located at the very same address.
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Parallelism could be safely detected for arrays of unions and for unions of
arrays using existing PIPS technology.

It is not yet clear how this could be extended when unions are part of more
complex data structures. Can we still use a naming scheme (option 3 for data
structures) and move all index information at the end of the reference? It this
still a way to denote precisely the address accessed such that all analyses are
based on a correct representation of locations?

If we use a naming scheme (option 3 above), we should be able to compute
addresses and ranges for combination of union and struct and to build aliasing
information due to unions. To be refined.

Indexing may be more difficult to deal with as its impact on address compu-
tation must be precisely reproduced when dealing with equivalenced variables.

If we use the basic byte based representation (Solution 1), union can be
handled like structures and lead to automatic parallelization. But difference
sets of indices will lead to array linearization.

So we have to find the best trade-off between naming, indexing and lineariza-
tion for dependence testing when unions are used.

6.4 Point to Operator

The point to operator is syntactic sugar. The expression a->x can be replaced
by (*a).x.

6.5 Address Expressions

Address expressions are very general as base and offset can be provided by func-
tion calls and offset by any integer arithmetic expressions. Pointers differences
are allowed to compute offsets, making it difficult to identify a base pointer and
an offset. Consider for instance *(p+q-r): is it p or q the offset?

If we could distinguish a base pointer p and one offset, the address expression
could be rewritten *(p[offset]).

But the basis may be returned by a function, as in f()->x.
Multiple indirections, as in a->x->y, M[M[a]+x]+y make the notions of base

and offset ludicrous.
So we need a way to express fuzzy address, for instance using a special

address value anywhere equivalent to the whole memory M.

6.6 Indirect Effect Normalization

When pointers value are known, indirect accesses can be converted precisely
into direct accesses as in *(&i)=1.

Fuzzy pointer values, i.e. sets of pointer values, must be introduced to cover
other cases, using if possible PIPS support for aliasing, a.k.a. equivalence in
Fortran. The lattice for pointer values may be built with areas, finite sets of
areas or special new areas such as the area containing all areas. PIPS uses
four areas for each module: the static area for objects of constant addresses, the
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dynamic area for objects of constant sizes1, the stack area for objects of unknown
size and the heap area for dynamic memory allocation. Currently aliasing is only
statically handled in the static and dynamic areas, using constant addresses.

The potentiel levels are:

1. at least three as for any constant propagation lattice, with anywhere used
as soon as the constant value is unknown;

2. but it could be slightly increased by taking into account the scope of a
function and the scope of its compilation unit.

3. or it could include all subsets of the area set since the latest is bounded
by the number of functions and compilation units.

4. or...

Note that free does not let us infer that two pointers are different because
both of them were malloced. Hence the different heap areas2 are in fact a unique
heap.

What aliasing assumptions should we make about formal parameters and
global variables? Do we assume constant value for formal pointers and hence
no aliasing between them and between local pointers?

How do we implement the lattice? By multiplying the effects in the effect
list, with one effect per area possibly accessed? By adding new super areas
including several subareas and using equivalence information? By limiting the
number of levels in the lattice?

6.7 Putting together pointers, structures, unions
and C address computations...

The general case has not been discussed yet as we are driven by the Ter@ops
project and its requirements:

1. key information such as array dimensions and loop bounds are parts of
structures;

2. array dimensions and hence typing are dynamic; formal arrays are likely
to be accessed via pointers as in (*p)[i]j];

3. ...

This does not require mixes of structures, unions and pointers to be dealt
with...

1They are given constant addresses in this area, but they are only constant with respect
to the frame pointer.

2A separate heap area is used for each function.
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Conclusion

There is no perfect solution, especially before full implementations tell us how
much each solution does really cost.

We need to keep a proper balance between information needed to prettyprint
source code and unifications which streamlines the code for analyses and trans-
formations.

This document is an evolving document. Information is not always up to
date.with respect to PIPS source code, especially the ri-util, c_syntax and, to
a lesser esxtent, preprocessor libraries. In ri-util, the files ri-util-local.h,
prettyprint.c and cyacc.y are especially relevant.

The choices that have been done are in the companion file ri.tex
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Appendix A

Inital Fortran-oriented
internal representation

action = read:unit + write:unit ;

approximation = may:unit + must:unit + exact:unit ;

area = size:int x layout:entity* ;

basic = int:int + float:int + logical:int + overloaded:unit + complex:int + string:value ;

call = function:entity x arguments:expression* ;

callees = callees:string* ;

cell = reference + preference ;

code = declarations:entity* x decls_text:string x initializations:sequence ;

constant = int + litteral:unit + call:entity ;

control = statement x predecessors:control* x successors:control* ;

controlmap = persistant statement->control ;

descriptor = convexunion:Psysteme* + convex:Psysteme + none:unit ;

dimension = lower:expression x upper:expression ;

effect = cell x action x approximation x descriptor ;

effects = effects:effect* ;

effects_classes = classes:effects* ;

entity_effects = entity->effects ;

entity_int = entity->int ;

execution = sequential:unit + parallel:unit ;

expression = syntax x normalized ;

formal = function:entity x offset:int ;

functional = parameters:parameter* x result:type ;

instruction = sequence + test + loop + whileloop + goto:statement + call + unstructured ;

loop = index:entity x range x body:statement x label:entity x execution x locals:entity* ;

mode = value:unit + reference:unit ;

normalized = linear:Pvecteur + complex:unit ;

parameter = type x mode ;

persistant_expression_to_effects = persistant expression -> effects ;

persistant_statement_to_control = persistant statement -> persistant control ;

persistant_statement_to_int = persistant statement -> int ;

persistant_statement_to_statement = persistant statement -> persistant statement ;

predicate = system:Psysteme ;
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preference = persistant reference ;

ram = function:entity x section:entity x offset:int x shared:entity* ;

range = lower:expression x upper:expression x increment:expression ;

reference = variable:entity x indices:expression* ;

sequence = statements:statement* ;

statement = label:entity x number:int x ordering:int x comments:string x instruction ;

statement_effects = persistent statement->effects ;

storage = return:entity + ram + formal + rom:unit ;

symbolic = expression x constant ;

syntax = reference + range + call ;

tabulated entity = name:string x type x storage x initial:value ;

test = condition:expression x true:statement x false:statement ;

transformer = arguments:entity* x relation:predicate ;

type = statement:unit + area + variable + functional + varargs:type + unknown:unit + void:unit ;

unstructured = entry:control x exit:control ;

value = code + symbolic + constant + intrinsic:unit + unknown:unit ;

variable = basic x dimensions:dimension* ;

whileloop = condition:expression x body:statement x label:entity ;
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Appendix B

Proposed new internal
representation (modified
structures only)

This information may be outdated. Please check ri.newgen for PIPS current
data structures. This information was useful initially to estimate the changes in
the data structure and the impact on the existing code. It does not seem useful
to maintain it now that the C parser is implemented..

basic = int:int + float:int + logical:int + overloaded:unit + complex:int

+ string:value + bit:int + pointer:type + derived:entity + typedef:entity;

instruction = sequence + test + loop + whileloop + goto:statement + call +

unstructured + forloop + expression;

forloop = initialization:expression x condition:expression x

incrementation:expression x body:statement ;

statement = label:entity x number:int x ordering:int x comments:string x

instruction x declarations:entity* x decls_text:string ;

syntax = reference + range + call + cast + sizeofexpression + subscript + application;

cast = type x expression ;

sizeofexpression = type + expression ;

subscript = array:expression x indices:expression* ;

application = function:expression x arguments:expression* ;

type = statement:unit + area + variable + functional + varargs:type +

unknown:unit + void:unit + struct:entity* + union:entity* + enum:entity*;
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variable = basic x dimensions:dimension* x qualifiers:qualifier* ;

qualifier = const:unit + restrict:unit + volatile:unit + register:unit + auto:unit;

whileloop = condition:expression x body:statement x label:entity x

evaluation ;

evaluation = before:unit + after:unit ;

value = code + symbolic + constant + intrinsic:unit + unknown:unit + expression;
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