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Introduction

Each statement reads and writes several memory locations to retrieve stored val-
ues and to store new values. Understanding the relationship between statements
and memory is one of the many keys to restructure and parallelize programs.
Several analyses provide different approximations of the statement effects on
memory. This document gathers the internal data structures used to represent
memory locations and the effects of statements 1.

1 Imported Domains

import entity from "ri.newgen"

import reference from "ri.newgen"

import preference from "ri.newgen"

import expression from "ri.newgen"

import statement from "ri.newgen"

External Psysteme

2 Representing Memory Locations

A first solution to represent memory locations would be to use dummy memory
addresses, potentially one for each memory cell. However analyses results would
be equivalent modulo a renaming of dummy addresses, making non-regression
tests more dificult. Moreover, analyses results would be difficult to interpret for
a human operator, and program transformations would lead to code difficult to
read for an end-user. This would not be a problem in a traditional compiler.
However, PIPS is a source-to-source compiler, and aims at generating user-
readable code, as close as possible to the user input code. The first target
language being Fortran 77, this primarily led to represent memory locations
as they are represented in the internal program representation, that is to say
as symbolic references on program variables. Hence a read of variable a is
represented as an effect on reference a, and a read of array element t[5] by an
effect on reference t[5]. t[*] is used to represent a set of unknown locations
in array t or to obtain a representation independent of the memory store.

However, this representation is highly imprecise to deal with sets of array
elements, which is necessary for effective dependence testing and program trans-
formations. Polyhedral sets (also called array regions [3][7]) were introduced to
refine the memory location representation for arrays. Internally, the reference
domain is still used, but parameterized by dummyphi variables. An additional

1Several of the newgen domains declared in this document were originally part of the
ri.tex file. They have been moved here because, strictly speaking, they do not deal with the
internal representation of programs, and because the extension to C programs required the
extension of the cell domain.

3



convex descriptor describes the relations between the phi variables and the
program variables values in the considered memory store.

It has been chosen not to append the descriptor to the memory location rep-
resentation, but to integrate it in the client domains. This seems more adapted
to alias-like analyses for which we intend to use a single descriptor to describe
the relationships between the sink and source memory cells representations.

For C programs, memory accesses are not solely represented by objects of the
reference domain (see ri.pdf), in particular when dereferencing pointers or
refering to aggregate data structures. Subsection 2.1 presents the choices made
to represent memory accesses through pointers and non-recursive data struc-
tures. Subsection 2.2 introduces new domains to enable analyses of recursive
data structures.

2.1 Pointers, non-recursive structs and unions

Many question arose with the introduction of C as an PIPS input language.
For memory location representation, most of them were due to pointers. A
discussion of the different issues encountered and the different solutions that
were considered can be found in ri_C.pdf. As it stretches over several pages,
we do not move or reproduce it here, but only present the final option.

It has been chosen to preserve the present represent representation of mem-
ory locations as symbolic references. This has the invaluable advantage of
backward compatibilty for the existing analyses. But it also enables the use of
existing operators and functions dealing with memory locations represented as
references, and thus enables a quicker integration of new functionalities neces-
sary do deal with C data structures.

This is not to the cost of the representation precision. Table 1 shows that
memory accesses involving pointers, arrays, structs and mix of them, can be
accuratly represented using symbolic references.

Unions are more difficult to track because they create an equivalence between
two structures located at the same address. We intend to represent accesses as
we would do it for structs, delaying the burden to disambiguate them to client
analyses.

2.2 Recursive data structures : GAPs

Recursive data structures such as linked lists or trees are frequent in C programs,
and being able to deal with them is essential. However, the reference domain
is not adapted to the collective representation of sets of recursive data structures
elements, because it can only describe fixed length access paths (that is to say
the number of indices of the reference must be numerically known and finite).

A quick extension could have been the introduction of a special flag in-
dex meaning that up to a certain depth the path is recursive. However, some
intended program transformations could not sufficiently benefit from this ap-
proach, and we have searched for a new data structure to hold the necessary
information.

Experiments on real codes, and the need of a maximal compatibility with ex-
isting data structures, led us to chose an extension of Alain Deutsch’s Symbolic
Access Paths (SAPs) [4], which we call Generic Access Paths or GAPs. GAPs
are very similar to SAPs, but for path selectors, which, instead of being limited
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declarations reference effects

int a, *p;

a a

*p p[0]

int t[N], *p, (*q)[N], *u[N], **v;

*t t[0]

t[i] t[i]

*p p[0]

p[i] p[i]

(*q)[i] q[0][i]

*u[i] u[i][0]

*v[i] v[i][0]

typedef struct {
int num;

int tab1[N] ;

int *tab2; } mys;

mys a, b[N], *c, **d;

a.num a[.num]

a.tab1[j] a[.tab1][j]

a.tab2[k] a[.tab2][k]

b[i].num b[i][.num]

b[i].tab1[j] b[i][.tab1][j]

b[i].tab2[k] b[i][.tab2][k]

c->num c[0][1]

c->tab1[j] c[0][.tab1][j]

c->tab2[k] c[0][.tab2][k]

d[i]->num d[i][0][.num]

d[i]->tab1[j] d[i][0][.tab1][j]

d[i]->tab2[k] d[i][0][.tab2][k]

Table 1: Representing memory locations using references
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to variable names and struture field names, can additionally be any subscript
expression, thus allowing the representation of elements of arrays of linked lists
of arrays of linked lists...

For instance p[ i ]([0][. next])ˆ(c )[. tab ][ j ] represents the j-th element of the
tab field of the c-th element of the linked list towards which p[i] points.

For backward compatibility reasons, we intend to use GAPs internally only
for recursive data structures, but they could also be used for single scalar vari-
ables, stack or heap arrays, non-recursive aggregate data structures...

Gap = variable:entity x path_selectors

Path_selectors = path_selector*

Path_selector = expression + recursive_selector

Recursive_selector = basis:path_selectors* x

coefficient:expression

2.3 Cell domain

The domain cell is used to represent memory locations. Instead of
the reference domain, preference can be used to retain a link to the actual
program reference. This is mainly used for Fortran programs where all memory
locations references are internally represented as objects of domain reference.
However this does not make much sense for C programs because more complex
expressions are often used to refer to memory locations. GAPs have been added
for recursive data structures (see refsubsec:gaps for more details).

Cell = reference + preference + gap

3 Effects of statements and instructions

Each program variable is a unique set of memory locations. Effects can be
expressed as effects on these sets. They are called atomic effects, because a
whole data structure is seen as read or written as soon as one element is read or
written. Note that indirect effects due to pointer uses are related to unknown
memory locations.

The memory location representation can be refined for arrays. Certain sets
of array locations are handled, for instance intervals like A[I:J] or even the
so-called regular sections or Fortran 90 triplets, like A[0:N:2], which adds a
stride to the concept of interval. PIPS is able to handle polyhedral sets, called
array regions. Extension to non-convex sets, intersections of a lattice and a
polyhedron, is under investigation.

Memory effects are not always perfectly known. It is undecidable in the
general case. Effects can be labelled as MAY if they might happen, MUST if they
always happen, and EXACT if the abstract set used to represent them is equal to
the dynamic set of effects. In fact, must effects are not computed because with
polyhedral sets, they are either equal to the exact set or to the empty set.

Read and write effects are useful for dependence analyses. However, it is
sometimes interesting to see compound statements as black boxes. In this case
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we only want to known if the initial value of a memory location is used by the
statement, which is called a IN effect, or if the memory location is only used for
temporary storage. In the same way, it is important to know if the value left by
a statement in a memory location is dead when leaving a statement or if it is
used later by another statement execution. In the later case, it is called an OUT

effect. Currently IN effects are internally represented as READ effects, and OUT

effects as WRITE effects. The programmer must be aware of the type of effects
he is dealing with.

Note that spurious effects are added in loop bodies to avoid... and/or simu-
late later a control dependence by a data dependence . These effects are read see PJ
effects due to the loop bounds and increment evaluations.

Note also that read effects of Fortran DO loop indices due to the incremen-
tations are ignored because they are never upward exposed. This is due to
the compound nature of the PIPS DO construct. If it was decomposed into
elementary parts, there would be no such surprising approximations. Note
that read effects which might be due to bound or increment expressions as
in DO I = I, 10*I, I must be preserved.

3.1 Effect representation

Effect = cell x action x approximation x descriptor

Descriptor = convexunion:Psysteme* + convex:Psysteme +

none:unit

Domain effect is used to represent a read or write access to a variable or
through a pointer, i.e. to abstract a reference in a statement. Statement effects
are used to compute array regions, transformers and preconditions, to build
use-def chains, dependence graphs, Summary Data Flow Information (SDFI),
known as summary effects at the module level, and as cumulated effects at the
statement level, and array regions. Proper effects, cumulated effects, summary
effects and array regions are all of type effect but they are distinguished by
pipsmake as difference resources. Proper effects, cumulated effects and summary
effects are called simple effects and they do not store information in the last field,
descriptor.

Field cell specifies which memory locations are accessed. In Fortran, vari-
ables, scalar or array, are accessed directly. In C, it may be a pointer spec-
ifying an indirect adressing. A cell is either a reference or a persistant2

preference. Attribute persistant is used for so-called reference and simple
effects to keep track of actual program references, that should not be modified or
freed. This feature is useful for several program analyses or transformations(see
the pipsmake-rc documentation).

This persistant attribute is not welcome for more advanced effects, such as
regions, which use pseudo-references based on PHI variables. Memory allocation
is even more difficult to manage when the persistant attribute is declared at the
type level and not at the object level. This explains why the field reference

was moved down and accessed now through the field cell.

2Persitant is a Newgen attribute carried by a type or by a field. It means that recursive
Newgen procedures must stop there. This impacts especially the free and copy functions.
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Field action specifies if the memory access is a read or a write, for read/write
effects, and if the memory value is read from the statement store for a in effect
or region, and if the memory value written by the statement is later read for a
out effect or region. So, read and in effects and regions have action read while
write and out effects and regions have action write.

Field approximation is used to specify if all the memory addresses of the
reference for simple effects, or of the set of array elements defined by the
descriptor for array regions, are or not accessed for sure. For instance, a
conditional is going to generate may effects, and a sequence, exact effects3.

Simple effects and regions may reference a global variable which is in the
scope of the callee but not in the scope of the caller or a static variable of
the callee declared in a SAVE statement. In the first case, the effect translation
process from the callee to the caller must use a unique canonical name for such a
variable, although the caller does not provide one. In order to define a canonical
name, a module whose scope the variable belongs to is arbitrarily chosen and its
name is used to prefix the variable name. There is no known trivial choice for
this module. Currently, the module name of the first variable in the common
variable list is used:

ram section(storage ram(entity storage(<my common>)))

Unfortunately, this name depends on the module parsing order. It would be
much better to use the lexicographic order among callees, assuming that callees
are known before any analysis is started, which is true, and assuming that
scopes are known, which is not true because some modules may be analyzed
before some other ones are parsed (see pipsmake in [8][1]).

Field reference can be used to specify that an effect is limited to a sub-
array since a range can be used as subscript expression of a reference. This
facility is used when the cumulated effects of a callee are translated into proper
effects of the CALL site in the caller scope. For regions, field reference defines
the accessed variable as well as pseudo-variables, known as PHI variables. There
is one PHI variable per array dimension.

Field context only is used for effects known as array regions. They were
defined by Rémi Triolet in [7] and extended by Béatrice Creusillet in [3].

There should not be much strict aliasing between effects in an effect list, but
this is (was?) not checked and enforced. Some efforts are made when translating
the summary effects of a callee into the caller’s frame to avoid this problem.

3.1.1 Nature of an Effect

Action = read:action_kind + write:action_kind

Two different memory effects are used in Bernstein parallelization conditions
[2] and in other program transformation conditions: read (a.k.a. use) and write
(a.k.a. def).

To generalize use-def chains and dependence graphs to C source code, several
new kinds of state mutations must be taken into account. The usual state at
low level includes only the memory (a.k.a. the store), but, at C source level,

3Needless to say, reality is much more complex. This oversimplified statement is only
written to support some intuition about may and exact information.
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local variable and type declarations must also be considered before distributing
loops or eliminating seemingly useless statements. So two new kinds of actions
are added: environment for variable declarations and type_declaration for
declarations of types, struct, union and enum. This information is carried by
the action_kind domain.

Action_kind = store:unit + environment:unit +

type_declaration:unit

IN regions are represented by read effects and OUT regions by write effects.
The action kind is store.

3.1.2 Approximation of an Effect

Approximation = may:unit + must:unit + exact:unit

It is not always possible to determine statically if a statement guarded by
control structures such as loops and tests is always executed. Thus, it is not
possible to know for sure that a variable is read or written by such a compound
statement. Some executions may always access it, some other ones may never
access it, and some may access it or not dependeing on the statement occurence.
Such effects are of the may kind.

Sometimes, a simple statement, such as an assignment like J = 2, has a
known effect. Here J is written. Such exact effects can be used in use/def
chains analysis to kill some scalar variables.

3.2 Lists of effects

The effects domain is a list of individual effects. Each effect can only be a read
or a write and is related to only one entity, most of the time a variable entity4,
but possibly an area entity or even an entity representing a set of areas5. Lots of
individual effects are linked to each statements, especially compound statements
like blocks, tests, loops and unstructured.

Control effects, such as STOP or exception, are not computed. PIPS only
deals with memory effects. Fortran exceptions like overflows or zero divides are
considered programm errors and the error behaviors are not taken into account
in PIPS analyses.

Effects and the types defined in the following subsections are not used to
represent code, but to store analysis result. These types are declared in the
internal representation for historical reasons.

Effects = effects:effect*

The next domain can be used to store summary effects of callees (comment
out of date?). It’s use for the ressource useful variable effects/regions that de-
scribe the variable and region of variable really use by the code.

entity effects = entity->effects

The next domain can be used to store a statement to effects mapping. Should
be used for proper and cumulated effects and references.

4In Fortran, the entity is always a variable entity.
5Areas and set of areas are used to express imprecise memory effects due to pointer deref-

erencing.
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1 int ∗∗p , ∗∗q , ∗a , ∗b ;
2 a = ( int ∗) mal loc (10∗ s izeof ( int ) ) ;
3 b = ( int ∗) mal loc (10∗ s izeof ( int ) ) ;
4 p = &a ;
5 p [ 0 ] [ 2 ] = 0 ;
6 p = &b ;
7 q = p ;
8 p [ 0 ] [ 2 ] = 0 ;
9 q [ 0 ] [ 2 ] = 0 ;

Listing 1: Varying paths

statement effects = persistent statement->effects

3.2.1 Effects Classes

Effects classes = classes:effects*

The type effects classes is used to store equivalence classes of dynamic
aliases, i.e. aliases created at call sites. Effects classes are lists of effects, i.e.
lists of lists of regions.

3.2.2 Mapping from Statements to Effects

A different mapping from reachable statements to effect lists is computed by
each effect analysis. Because NewGen did not offer the map type construct,
there is no NewGen type for these mappings. They are encoded as hash tables
and used with primitives provided by the NewGen library. They are stored on
and read from disk by PIPS interprocedural database manager, pipsdbm.

For details about effect analyses available see the Effects Section in the PIPS
phase descriptions).

3.2.3 Mapping from Expressions to effects

persistant_expression_to_effects = persistent expression->effects

4 Effects and pointer analyses

In languages involving pointers, elements of symbolic references which are store-
dependent are not anymore confined to array indices or polyhedra describing
array indices relations with values of program variables, but include the whole
memory access path description.

For instance, in Listing 1, p [0][2] on line 5 refers to a [2] whereas on line 8
it refers to b[2]: in the symbolic reference p [0][2] , p[0] is a varying part that
depends on the memory store. On the contrary, p [0][2] on line 8 and q [0][2]
on line 9 refer to the same memory location whereas their symbolic references
are syntactically different.
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Thus taking into account some kind of pointer analysis is necessary to be
able to disambiguate symbolic references during effect analyses and all kind of
dependence tests used throughout the parallelization processes.

Pointer analyses try to gather the relations that exist between memory lo-
cations, due to pointer values. May alias analyses for instance describe the
possible overlaps between memory locations. Points-to analyses establish the
relations existing between pointers and the memory locations they point to. We
also intend to design another analysis (called Pointer Values) to gather the re-
lations existing between the values of pointers as well as the memory locations
represented by pointer values.

For all this kind of analyses6 we need to know the cells whose values, ad-
dresses or locations are described, the type of information each cell represents
(value, address or location), the approximation of the relation (exact, may or
must) and a compulsory descriptor. It’s still unclear if some kind of additional
information is needed to handle casts.

Interpreted_cell = cell x cell_interpretation

Cell_interpretation = value_of:unit + address_of:unit

a location tag could be added for analyses describing relations between
memory locations, but they are not planned for the moment.

Cell_relation = first:interpreted_cell x

second:interpreted_cell x approximation x descriptor

Cell_relations = list:cell_relation*

Statement_cell_relations = persistent statement->cell_relations

6Points-to analyses are currenlty under development using alternative domains described
in points to private.pdf.
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Annexe: NewGen Declarations – effects.newgen
–

-- --------------------------------------------------------

-- --------------------------------------------------------

--

-- WARNING

--

-- THIS FILE HAS BEEN AUTOMATICALLY GENERATED

--

-- DO NOT MODIFY IT

--

-- --------------------------------------------------------

-- --------------------------------------------------------

-- Imported domains

-- ----------------

import entity from "ri.newgen" ;

import reference from "ri.newgen" ;

import preference from "ri.newgen" ;

import expression from "ri.newgen" ;

import statement from "ri.newgen" ;

-- External domains

-- ----------------

external Psysteme ;

-- Domains

-- -------

action_kind = store:unit + environment:unit + type_declaration:unit ;

action = read:action_kind + write:action_kind ;

approximation = may:unit + must:unit + exact:unit ;

cell_interpretation = value_of:unit + address_of:unit ;

cell = reference + preference + gap ;

cell_relation = first:interpreted_cell x second:interpreted_cell x approximation x descriptor ;

cell_relations = list:cell_relation* ;

descriptor = convexunion:Psysteme* + convex:Psysteme + none:unit ;

effect = cell x action x approximation x descriptor ;

effects_classes = classes:effects* ;

effects = effects:effect* ;

entity_effects = entity->effects ;

gap = variable:entity x path_selectors ;

interpreted_cell = cell x cell_interpretation ;

path_selector = expression + recursive_selector ;

path_selectors = path_selector* ;

persistant_expression_to_effects = persistent expression->effects ;

recursive_selector = basis:path_selectors* x coefficient:expression ;

statement_cell_relations = persistent statement->cell_relations ;

statement_effects = persistent statement->effects ;
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torat, Ecole des mines de Paris, Décembre 1996. 3, 8
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