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MMT Vision

I Universal framework for mathematical-logical content
I Close relatives

I LF, Isabelle: but more universal, knowledge management,
more system integration

I OMDoc/OpenMath: but formal semantics, automation

I Typical use case

1. define a logical framework in MMT e.g., LF
2. use it to define a logic in MMT e.g., HOL
3. optionally: write and register plugins e.g., type checking
4. MMT induces a system for that logic

provides logical and knowledge management services
handles system integration
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Statistics

I MMT language
I 5 years of development (with Michael)
I ∼ 100 pages write-up

I MMT API
I 5 years of development (with various students)
I 30,000 lines of Scala code
I ∼ 10 papers on individual aspects
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Example: small scale
I Little theories: state every definition/theorem/algorithm in

the smallest possible theory/logic/logical framework
I Theory morphisms: transport results across

theories/logics/logical frameworks

t h e o r y Types { t y p e }
t h e o r y LF { i n c l u d e Types , Π , → , λ , @ }

t h e o r y L o g i c meta LF {o : type , ded : o → t y p e }
t h e o r y FOL meta LF {

i n c l u d e L o g i c
u : t y p e . ⇒ : o → o → o , . . .

}

t h e o r y Magma meta FOL { ◦ : u → u → u }
...
t h e o r y Ring meta FOL {

a d d i t i v e : CommutativeGroup
m u l t i p l i c a t i v e : Semigroup
. . .

}
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Example: large scale

I LATIN atlas of logics: highly interconnected network of logic
formalizations

I Written in MMT/LF using Twelf

I 4 years, ∼ 10 authors, ∼ 1000 modules

I Focus on breadth (= many formal systems represented), not
so much depth (= theorems in particular systems)

I Each logic root for library of that logic

I Each edge yields library translation functor

Important meta-result: the logical framework should be flexible
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MMT Design Methodology

1. Choose a typical problem
logical: e.g., type reconstruction, reflection
MKM: e.g., change management, querying

2. Survey and analyze the existing solutions

3. Differentiate between foundation-specific and
foundation-independent definitions/theorems/algorithms

4. Integrate the foundation-independent aspects into MMT
language and system

5. Define interfaces to supply the logic-specific aspects
formal and plugin interfaces

6. Repeat

6



Foundation-Independence

1. We can fix and implement a logical theory e.g., set theory

2. We can fix and implement a logic
then define many theories in it e.g., first-order logic

3. We can fix and implement a logical framework
then define many logics in it the foundation, e.g., LF

4. We can fix and implement meta-framework
then define many logical frameworks in it

foundation-independence, e.g., MMT
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The Promise and Danger of Abstraction

I Abstraction chain
theory → logic → foundation → MMT

I Promises: high-level results generic, reusable!

I intuitions, documentation, teaching
I definitions, meta-theorems
I algorithms, implementations
I knowledge management

I Dangers: loss of precision general abstract nonsense?

I how useful are the abstract results?
are the deep results foundation-specific?

I how much work (if any) is needed for specialization?
hide the framework from the user
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MMT Research Hypothesis
abstraction pays off

I Representation language Yes!
I few ontological primitives — MMT language
I implemented in elegant data structures — MMT system

I Knowledge management services Yes!
I editing, parsing
I change management
I project management, distribution
I search, querying
I interactive browsing

I Logical services?
I module system Yes!
I type reconstruction Yes?
I computation current work
I theorem proving future work
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Features of MMT

few primitives . . . that unify different domain concepts

JaT judgments as types, proofs as terms
unifies expressions and derivations

HOAS higher-order abstract syntax unifies operators and binders

CoT category of theories unifies logical theories, logics, foundations

I languages as theories
I relations as theory morphisms

MS module system (little theories)
unifies inheritance and representation theorems

MaM models as morphisms (categorical logic)
unifies syntactical translations and semantic interpretations
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Features of MMT (2)

I current work: declaration patterns
unifies declarations and extension principles

I current work: induction, coinduction
unifies multiple constructions/reasoning principles

I current work: reflection
unifies meta- and object level

for example, module system
I meta-level: MMT theories
I object-level: record types
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The MMT System

Application-independence

1. data structures

2. logical and knowledge management services

3. individual applications

Advantages

I flexibility

I no compromises, hacks

I high code reuse

Disadvantages

I no running system bad for talks like this one

I starting MMT gives only an empty environment
no single name defined
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Implementing Services in MMT

I Isolate functionality into services

I Integrate interfaces with core
I Then do 2 implementation approaches

I plugin interfaces arbitrary implementations
I generic implementation

parametrized as declaratively as possible
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Logical Services Example: Type reconstruction

I type reconstruction
I input: judgment with unknown variables

λn:?λl :?cons ? c l ⇐ Πn:?list n→ ?

I output: derivation of judgment and solution for variables

I plugin implementation
I Twelf does type reconstruction for an LF file, exports as MMT
I MMT module system added to Twelf

1 month full time work
I generic implementation

I parametrized by sets of rules ∼ 8 rule types
I origin of rules up to plugins

LF plugins provides ∼ 10 rules, each a few lines of code
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Application Example: Editing

I IDE like based on MMT projects

I jEdit text editor with MMT as plugin
I Generic default implementations for parsing

I outer syntax: extensible through keyword handlers
I inner syntax: extensible through notation language

I Cross-references MMT data structures ↔ source locations
I outline view
I hyperlinks (= click on operator, jump to declaration/definition)
I context-sensitive auto-completion: show identifiers that

I are in scope
I have the right type
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Application Example: Editing

Example feature: pop up shows reconstructed arguments
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Application Example: Editing
Example feature: auto-completion shows only identifiers that are in
scope and have the right type
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Application Example: LaTeX Integration

I Unified document format LaTeX + MMT

I Processed by LaTeX

I MMT-relevant aspects represented in special macros
sent to MMT via HTTP during compilation

I LaTeX queries MMT at run time via HTTP

1. parse
2. type reconstruct
3. generate high-quality LaTeX cross-references, tooltips
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Application Example: LaTeX Integration
Example feature

I upper part: LATEXsource for the item on associativity
I lower part: pdf after compiling with LATEX-MMT
I type argument M of equality symbol is inferred and added by

MMT
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Application example: Interactive Browsing

I MMT API exposed through HTTP server

I Javascript/Ajax for interactive browsing of MMT projects
e.g., definition lookup, dynamic type inference

I Interactive graph view

I Immediate editing ongoing work
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The LATIN Library

I Joint project between DFKI Bremen and Jacobs Univ. Bremen
I Development of an atlas of logics and logic translations

I reference catalog of standardized logics
I documentation platform

I All parts of a logic represented in MMT/LF
I Easy part

I Logical syntax proof theory as MMT/LF theories
I Judgments as types, higher-order abstract syntax

I Hard part
I Foundations of mathematics as LF signatures
I Models as morphisms from the syntax to the foundation
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Current State

I 700 little theories including
I propositional, (unsorted, sorted, dependently-sorted)

first-order, higher-order, common, modal, description, linear
logic

I λ-cube, Curry and Church-style type theories
I ZFC set theory, Mizar’s set theory, Isabelle/HOL
I category theory

I 500 little morphisms including
I relativization of quantifiers from sorted first-order, modal, and

description logics to unsorted first-order logic
I negative translation from classical to intuitionistic logic
I translation from type theory to set theory
I translations between ZFC, Mizar, Isabelle/HOL
I Curry-Howard correspondence between logic, type theory, and

category theory
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Little Theories in LATIN

PL

ML SFOL DFOL
FOL

CL

DL
HOL

OWL
MizarZFCIsabelle/HOL

Base

¬ . . . ∧

PL

∧Mod

∧Syn

∧Pf

23



Representing Logics in LATIN

I Lsyn: Syntax of L: connectives, quantifiers, etc.
e.g., ⇒: o → o → o

I Lpf : Proof theory of L: judgments, proof rules
e.g., impE : ded (A ⇒ B) → dedA → dedB

I Lmod : Model theory of L in terms of foundation F
e.g., univ : set, nonempty : true (univ 6= ∅)

Lsyn

Lpf

F

Lmod
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Example

I FOLSyn: i : type, o : type, ded : o → type, ¬, ∧, . . .

I FOLPf : ¬I , ¬E , ∧El , ∧Er , ∧I , . . .

I ZFC : set : type, prop : type, true : prop → type, ∅ : set, . . .

I FOLMod : univ : set, nonempty : true (univ 6= ∅)

I FOLmod : i := univ , o := {∅, {∅}}, ded := λp(p
.

= {∅})

FOLSyn

FOLPf

FOLMod

ZFC

FOLmod
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Representing Logics and Models

F

LMod

L

Lmod

Σ

ΣMod

Σmod

F

M

idF L encodes syntax and proof theory
F encodes foundation of mathematics
LMod axiomatizes models
Lmod interprets syntax in model

Σ encodes a theory of L,
extends L with functions, axioms, etc.
ΣMod correspondingly extends LMod

Σmod interprets syntax in model

M encodes a model of Σ,
interprets free symbols of LMod and ΣMod

in terms of F
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Conclusion

I Very general, customizable framework goal: universal

I Foundation-independent representation language
integrates best primitives

I Interface for logical and knowledge management services

I Rapid prototyping logic systems scalable
I Interesting for

I less well-supported logics
I new, changing logics
I generic applications/services
I system integration/combination
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