
The MMT Language and System
The LATIN Logic Atlas

Florian Rabe

Jacobs University Bremen

Deducteam-Kwarc workshop, April 12 2013

1



MMT Vision

I Universal framework for mathematical-logical content
I Close relatives

I LF, Isabelle: but more universal, knowledge management,
more system integration

I OMDoc/OpenMath: but formal semantics, automation

I Typical use case

1. define a logical framework in MMT e.g., LF
2. use it to define a logic in MMT e.g., HOL
3. optionally: write and register plugins e.g., type checking
4. MMT induces a system for that logic

provides logical and knowledge management services
handles system integration

2



Statistics

I MMT language
I 5 years of development (with Michael)
I ∼ 100 pages write-up

I MMT API
I 5 years of development (with various students)
I 30,000 lines of Scala code
I ∼ 10 papers on individual aspects

3



Example: small scale
I Little theories: state every definition/theorem/algorithm in

the smallest possible theory/logic/logical framework
I Theory morphisms: transport results across

theories/logics/logical frameworks

t h e o r y Types { t y p e }
t h e o r y LF { i n c l u d e Types , Π , → , λ , @ }

t h e o r y L o g i c meta LF {o : type , ded : o → t y p e }
t h e o r y FOL meta LF {

i n c l u d e L o g i c
u : t y p e . ⇒ : o → o → o , . . .

}

t h e o r y Magma meta FOL { ◦ : u → u → u }
...
t h e o r y Ring meta FOL {

a d d i t i v e : CommutativeGroup
m u l t i p l i c a t i v e : Semigroup
. . .

}
4



Example: large scale

I LATIN atlas of logics: highly interconnected network of logic
formalizations

I Written in MMT/LF using Twelf

I 4 years, ∼ 10 authors, ∼ 1000 modules

I Focus on breadth (= many formal systems represented), not
so much depth (= theorems in particular systems)

I Each logic root for library of that logic

I Each edge yields library translation functor

Important meta-result: the logical framework should be flexible

5



Example: large scale

I LATIN atlas of logics: highly interconnected network of logic
formalizations

I Written in MMT/LF using Twelf

I 4 years, ∼ 10 authors, ∼ 1000 modules

I Focus on breadth (= many formal systems represented), not
so much depth (= theorems in particular systems)

I Each logic root for library of that logic

I Each edge yields library translation functor

Important meta-result: the logical framework should be flexible

5



MMT Design Methodology

1. Choose a typical problem
logical: e.g., type reconstruction, reflection
MKM: e.g., change management, querying

2. Survey and analyze the existing solutions

3. Differentiate between foundation-specific and
foundation-independent definitions/theorems/algorithms

4. Integrate the foundation-independent aspects into MMT
language and system

5. Define interfaces to supply the logic-specific aspects
formal and plugin interfaces

6. Repeat

6



Foundation-Independence

1. We can fix and implement a logical theory e.g., set theory

2. We can fix and implement a logic
then define many theories in it e.g., first-order logic

3. We can fix and implement a logical framework
then define many logics in it the foundation, e.g., LF

4. We can fix and implement meta-framework
then define many logical frameworks in it

foundation-independence, e.g., MMT

7



Foundation-Independence

1. We can fix and implement a logical theory e.g., set theory

2. We can fix and implement a logic
then define many theories in it e.g., first-order logic

3. We can fix and implement a logical framework
then define many logics in it the foundation, e.g., LF

4. We can fix and implement meta-framework
then define many logical frameworks in it

foundation-independence, e.g., MMT

7



Foundation-Independence

1. We can fix and implement a logical theory e.g., set theory

2. We can fix and implement a logic
then define many theories in it e.g., first-order logic

3. We can fix and implement a logical framework
then define many logics in it the foundation, e.g., LF

4. We can fix and implement meta-framework
then define many logical frameworks in it

foundation-independence, e.g., MMT

7



Foundation-Independence

1. We can fix and implement a logical theory e.g., set theory

2. We can fix and implement a logic
then define many theories in it e.g., first-order logic

3. We can fix and implement a logical framework
then define many logics in it the foundation, e.g., LF

4. We can fix and implement meta-framework
then define many logical frameworks in it

foundation-independence, e.g., MMT

7



The Promise and Danger of Abstraction

I Abstraction chain
theory → logic → foundation → MMT

I Promises: high-level results generic, reusable!

I intuitions, documentation, teaching
I definitions, meta-theorems
I algorithms, implementations
I knowledge management

I Dangers: loss of precision general abstract nonsense?

I how useful are the abstract results?
are the deep results foundation-specific?

I how much work (if any) is needed for specialization?
hide the framework from the user

8



MMT Research Hypothesis
abstraction pays off

I Representation language Yes!
I few ontological primitives — MMT language
I implemented in elegant data structures — MMT system

I Knowledge management services Yes!
I editing, parsing
I change management
I project management, distribution
I search, querying
I interactive browsing

I Logical services?
I module system Yes!
I type reconstruction Yes?
I computation current work
I theorem proving future work

9



MMT Research Hypothesis
abstraction pays off

I Representation language Yes!
I few ontological primitives — MMT language
I implemented in elegant data structures — MMT system

I Knowledge management services Yes!
I editing, parsing
I change management
I project management, distribution
I search, querying
I interactive browsing

I Logical services?
I module system Yes!
I type reconstruction Yes?
I computation current work
I theorem proving future work

9



MMT Research Hypothesis
abstraction pays off

I Representation language Yes!
I few ontological primitives — MMT language
I implemented in elegant data structures — MMT system

I Knowledge management services Yes!
I editing, parsing
I change management
I project management, distribution
I search, querying
I interactive browsing

I Logical services?
I module system Yes!
I type reconstruction Yes?
I computation current work
I theorem proving future work

9



MMT Research Hypothesis
abstraction pays off

I Representation language Yes!
I few ontological primitives — MMT language
I implemented in elegant data structures — MMT system

I Knowledge management services Yes!
I editing, parsing
I change management
I project management, distribution
I search, querying
I interactive browsing

I Logical services?
I module system Yes!
I type reconstruction Yes?
I computation current work
I theorem proving future work

9



Features of MMT

few primitives . . . that unify different domain concepts

JaT judgments as types, proofs as terms
unifies expressions and derivations

HOAS higher-order abstract syntax unifies operators and binders

CoT category of theories unifies logical theories, logics, foundations

I languages as theories
I relations as theory morphisms

MS module system (little theories)
unifies inheritance and representation theorems

MaM models as morphisms (categorical logic)
unifies syntactical translations and semantic interpretations

10



Features of MMT

few primitives . . . that unify different domain concepts

JaT judgments as types, proofs as terms
unifies expressions and derivations

HOAS higher-order abstract syntax unifies operators and binders

CoT category of theories unifies logical theories, logics, foundations

I languages as theories
I relations as theory morphisms

MS module system (little theories)
unifies inheritance and representation theorems

MaM models as morphisms (categorical logic)
unifies syntactical translations and semantic interpretations

10



Features of MMT

few primitives . . . that unify different domain concepts

JaT judgments as types, proofs as terms
unifies expressions and derivations

HOAS higher-order abstract syntax unifies operators and binders

CoT category of theories unifies logical theories, logics, foundations

I languages as theories
I relations as theory morphisms

MS module system (little theories)
unifies inheritance and representation theorems

MaM models as morphisms (categorical logic)
unifies syntactical translations and semantic interpretations

10



Features of MMT

few primitives . . . that unify different domain concepts

JaT judgments as types, proofs as terms
unifies expressions and derivations

HOAS higher-order abstract syntax unifies operators and binders

CoT category of theories unifies logical theories, logics, foundations

I languages as theories
I relations as theory morphisms

MS module system (little theories)
unifies inheritance and representation theorems

MaM models as morphisms (categorical logic)
unifies syntactical translations and semantic interpretations

10



Features of MMT

few primitives . . . that unify different domain concepts

JaT judgments as types, proofs as terms
unifies expressions and derivations

HOAS higher-order abstract syntax unifies operators and binders

CoT category of theories unifies logical theories, logics, foundations

I languages as theories
I relations as theory morphisms

MS module system (little theories)
unifies inheritance and representation theorems

MaM models as morphisms (categorical logic)
unifies syntactical translations and semantic interpretations

10



Features of MMT (2)

I current work: declaration patterns
unifies declarations and extension principles

I current work: induction, coinduction
unifies multiple constructions/reasoning principles

I current work: reflection
unifies meta- and object level

for example, module system
I meta-level: MMT theories
I object-level: record types

11



The MMT System

Application-independence

1. data structures

2. logical and knowledge management services

3. individual applications

Advantages

I flexibility

I no compromises, hacks

I high code reuse

Disadvantages

I no running system bad for talks like this one

I starting MMT gives only an empty environment
no single name defined

12



The MMT System

Application-independence

1. data structures

2. logical and knowledge management services

3. individual applications

Advantages

I flexibility

I no compromises, hacks

I high code reuse

Disadvantages

I no running system bad for talks like this one

I starting MMT gives only an empty environment
no single name defined

12



Implementing Services in MMT

I Isolate functionality into services

I Integrate interfaces with core
I Then do 2 implementation approaches

I plugin interfaces arbitrary implementations
I generic implementation

parametrized as declaratively as possible

13



Logical Services Example: Type reconstruction

I type reconstruction
I input: judgment with unknown variables

λn:?λl :?cons ? c l ⇐ Πn:?list n→ ?

I output: derivation of judgment and solution for variables

I plugin implementation
I Twelf does type reconstruction for an LF file, exports as MMT
I MMT module system added to Twelf

1 month full time work
I generic implementation

I parametrized by sets of rules ∼ 8 rule types
I origin of rules up to plugins

LF plugins provides ∼ 10 rules, each a few lines of code

14



Logical Services Example: Type reconstruction

I type reconstruction
I input: judgment with unknown variables

λn:?λl :?cons ? c l ⇐ Πn:?list n→ ?

I output: derivation of judgment and solution for variables

I plugin implementation
I Twelf does type reconstruction for an LF file, exports as MMT
I MMT module system added to Twelf

1 month full time work

I generic implementation
I parametrized by sets of rules ∼ 8 rule types
I origin of rules up to plugins

LF plugins provides ∼ 10 rules, each a few lines of code

14



Logical Services Example: Type reconstruction

I type reconstruction
I input: judgment with unknown variables

λn:?λl :?cons ? c l ⇐ Πn:?list n→ ?

I output: derivation of judgment and solution for variables

I plugin implementation
I Twelf does type reconstruction for an LF file, exports as MMT
I MMT module system added to Twelf

1 month full time work
I generic implementation

I parametrized by sets of rules ∼ 8 rule types
I origin of rules up to plugins

LF plugins provides ∼ 10 rules, each a few lines of code

14



Application Example: Editing

I IDE like based on MMT projects

I jEdit text editor with MMT as plugin
I Generic default implementations for parsing

I outer syntax: extensible through keyword handlers
I inner syntax: extensible through notation language

I Cross-references MMT data structures ↔ source locations
I outline view
I hyperlinks (= click on operator, jump to declaration/definition)
I context-sensitive auto-completion: show identifiers that

I are in scope
I have the right type

15



Application Example: Editing

Example feature: pop up shows reconstructed arguments

16



Application Example: Editing
Example feature: auto-completion shows only identifiers that are in
scope and have the right type

17



Application Example: LaTeX Integration

I Unified document format LaTeX + MMT

I Processed by LaTeX

I MMT-relevant aspects represented in special macros
sent to MMT via HTTP during compilation

I LaTeX queries MMT at run time via HTTP

1. parse
2. type reconstruct
3. generate high-quality LaTeX cross-references, tooltips

18



Application Example: LaTeX Integration
Example feature

I upper part: LATEXsource for the item on associativity
I lower part: pdf after compiling with LATEX-MMT
I type argument M of equality symbol is inferred and added by

MMT

19



Application example: Interactive Browsing

I MMT API exposed through HTTP server

I Javascript/Ajax for interactive browsing of MMT projects
e.g., definition lookup, dynamic type inference

I Interactive graph view

I Immediate editing ongoing work

20



The LATIN Library

I Joint project between DFKI Bremen and Jacobs Univ. Bremen
I Development of an atlas of logics and logic translations

I reference catalog of standardized logics
I documentation platform

I All parts of a logic represented in MMT/LF
I Easy part

I Logical syntax proof theory as MMT/LF theories
I Judgments as types, higher-order abstract syntax

I Hard part
I Foundations of mathematics as LF signatures
I Models as morphisms from the syntax to the foundation

21



Current State

I 700 little theories including
I propositional, (unsorted, sorted, dependently-sorted)

first-order, higher-order, common, modal, description, linear
logic

I λ-cube, Curry and Church-style type theories
I ZFC set theory, Mizar’s set theory, Isabelle/HOL
I category theory

I 500 little morphisms including
I relativization of quantifiers from sorted first-order, modal, and

description logics to unsorted first-order logic
I negative translation from classical to intuitionistic logic
I translation from type theory to set theory
I translations between ZFC, Mizar, Isabelle/HOL
I Curry-Howard correspondence between logic, type theory, and

category theory

22



Little Theories in LATIN

PL

ML SFOL DFOL
FOL

CL

DL
HOL

OWL
MizarZFCIsabelle/HOL

Base

¬ . . . ∧

PL

∧Mod

∧Syn

∧Pf

23



Representing Logics in LATIN

I Lsyn: Syntax of L: connectives, quantifiers, etc.
e.g., ⇒: o → o → o

I Lpf : Proof theory of L: judgments, proof rules
e.g., impE : ded (A ⇒ B) → dedA → dedB

I Lmod : Model theory of L in terms of foundation F
e.g., univ : set, nonempty : true (univ 6= ∅)

Lsyn

Lpf

F

Lmod

24



Representing Logics in LATIN

I Lsyn: Syntax of L: connectives, quantifiers, etc.
e.g., ⇒: o → o → o

I Lpf : Proof theory of L: judgments, proof rules
e.g., impE : ded (A ⇒ B) → dedA → dedB

I Lmod : Model theory of L in terms of foundation F
e.g., univ : set, nonempty : true (univ 6= ∅)

Lsyn

Lpf

F

Lmod

24



Representing Logics in LATIN

I Lsyn: Syntax of L: connectives, quantifiers, etc.
e.g., ⇒: o → o → o

I Lpf : Proof theory of L: judgments, proof rules
e.g., impE : ded (A ⇒ B) → dedA → dedB

I Lmod : Model theory of L in terms of foundation F
e.g., univ : set, nonempty : true (univ 6= ∅)

Lsyn

Lpf

F

Lmod

24



Example

I FOLSyn: i : type, o : type, ded : o → type, ¬, ∧, . . .

I FOLPf : ¬I , ¬E , ∧El , ∧Er , ∧I , . . .

I ZFC : set : type, prop : type, true : prop → type, ∅ : set, . . .

I FOLMod : univ : set, nonempty : true (univ 6= ∅)

I FOLmod : i := univ , o := {∅, {∅}}, ded := λp(p
.

= {∅})

FOLSyn

FOLPf

FOLMod

ZFC

FOLmod

25



Representing Logics and Models

F

LMod

L

Lmod

Σ

ΣMod

Σmod

F

M

idF L encodes syntax and proof theory
F encodes foundation of mathematics
LMod axiomatizes models
Lmod interprets syntax in model

Σ encodes a theory of L,
extends L with functions, axioms, etc.
ΣMod correspondingly extends LMod

Σmod interprets syntax in model

M encodes a model of Σ,
interprets free symbols of LMod and ΣMod

in terms of F

26



Representing Logics and Models

F

LMod

L

Lmod

Σ

ΣMod

Σmod

F

M

idF L encodes syntax and proof theory
F encodes foundation of mathematics
LMod axiomatizes models
Lmod interprets syntax in model

Σ encodes a theory of L,
extends L with functions, axioms, etc.
ΣMod correspondingly extends LMod

Σmod interprets syntax in model

M encodes a model of Σ,
interprets free symbols of LMod and ΣMod

in terms of F

26



Representing Logics and Models

F

LMod

L

Lmod

Σ

ΣMod

Σmod

F

M

idF L encodes syntax and proof theory
F encodes foundation of mathematics
LMod axiomatizes models
Lmod interprets syntax in model

Σ encodes a theory of L,
extends L with functions, axioms, etc.
ΣMod correspondingly extends LMod

Σmod interprets syntax in model

M encodes a model of Σ,
interprets free symbols of LMod and ΣMod

in terms of F

26



Conclusion

I Very general, customizable framework goal: universal

I Foundation-independent representation language
integrates best primitives

I Interface for logical and knowledge management services

I Rapid prototyping logic systems scalable
I Interesting for

I less well-supported logics
I new, changing logics
I generic applications/services
I system integration/combination

27


