
Automatic Source-to-Source Optimizations for Heterogeneous
 Architectures using Machine Learning

Maksim Berezov

CRI MINES ParisTech (France), PSL Research University

What is our goal?

Optimization complexity
Search space of possible transformations and their
parameters is very large
m = #transformations, s = optimization sequence size
#number of transformation sequences = m
#number of permutations = s!
Moreover, some transformations are parameterized.
For example, 2D tiling has 432 combinations of
parameters for 2x2 partitioning matrix, 6 scanning
directions, 6 tile sizes per dimension and 2 shapes.

Our pipeline

s

Challenges
Feature space design. Feature space must introduce the code itself
and must not be created artificially for a single transformation.
Code generator: Automatic code generation of C benchmarks is
required in order to obtain enough training data for ML models.
Phase-ordering of transformations: Phase ordering matters a lot
and this problem should be modeled from the point of view of Machine
Learning algorithms.
Generalization for different architectures: The type of architecture
should be a hyper-parameter.

Adviser: Corinne Ancourt

J2A ISMME

- Cummins, Chris, et al. "End-to-end deep learning of optimization heuristics."2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT).IEEE, 2017.
- Teixeira, SFX Thiago, et al. "Locus: a system and a language for program optimization."2019 IEEE/ACM International Symposium on Code Generation and Optimization (CGO).IEEE, 2019.
- Irigoin, François, and Rémi Triolet. "Supernode partitioning."Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 1988.
- Chen, Tianqi, et al. "Learning to optimize tensor programs."Advances in Neural Information Processing Systems. 2018.
- Malik, Abid M. "Optimal tile size selection problem using machine learning."2012 11th International Conference on Machine Learning and Applications. Vol. 2.IEEE, 2012.

Parameter selection for 2D tiling

CPU: Intel CoreTM i7-8700
 Processor @ 3.20GHz
– Microarchitecture: Coffee Lake
– Physical cores: 6
– Logical cores: 12
– Architecture: x86_64
– (L1/L2/L3): 32/256/12288 KB
(L1/L2 per cores; L3 shared)
RAM: DDR4 DIMM 32GB @ 2666Mhz
– Shape: Rectangular
– Cache: Extra Large Cache
– Exectuted on 6 Threads
– Compiled with -O0

Experimental results for 2D tiling transformation

Syrk. Speedup after 2D tiling for different
partitioning matrices References

Our goal is to generate a fast invariant version of a given code by applying a set
of legal source-to-source transformations (e.g. tiling, unrolling, interchange).
These transformations require input parameters to be applied. Our objective
is to find the best transformation parametersand sequence to minimize execution time.

Original code

Generated code (after 2D tiling transformation)

This code is semantically equivalent to the original
code but may execute faster on a parallel machine.

