
PIPS High-Level Software Interface

Pipsmake Configuration

Rémi Triolet, François Irigoin
and many other contributors

MINES ParisTech
Mathématiques et Systèmes

Centre de Recherche en Informatique
77305 Fontainebleau Cedex

France

Id: pipsmake-rc.tex 23481 2018-08-22 19:35:27Z ancourt

You can get a printable version of this document on
http://www.cri.ensmp.fr/pips/pipsmake-rc.htdoc/

pipsmake-rc.pdf and a HTML version on
http://www.cri.ensmp.fr/pips/pipsmake-rc.htdoc.

http://www.cri.ensmp.fr/pips/pipsmake-rc.htdoc/pipsmake-rc.pdf
http://www.cri.ensmp.fr/pips/pipsmake-rc.htdoc/pipsmake-rc.pdf
http://www.cri.ensmp.fr/pips/pipsmake-rc.htdoc

Chapter 1

Introduction

This paper describes high-level objects and functions that are potentially user-
visible in a PIPS 1 [33] interactive environment. It defines the internal software
interface between a user interface and program analyses and transformations.
This is clearly not a user guide but can be used as a reference guide, the best
one before source code because PIPS user interfaces are very closely mapped on
this document: some of their features are automatically derived from it.

Objects can be viewed and functions activated by one of PIPS existing user
interfaces: tpips2, the tty style interface which is currently recommended,
pips3 [11], the old batch interface, improved by many shell scripts4, wpips and
epips, the X-Window System interfaces. The epips interface is an extension of
wpips which uses Emacs to display more information in a more convenient way.
Unfortunately, right now these window-based interfaces are no longer working
and have been replaced by gpips. It is also possible to use PIPS through a
Python API, pyps.

From a theoretical point of view, the object types and functions available in
PIPS define an heterogeneous algebra with constructors (e.g. parser), extractors
(e.g. prettyprinter) and operators (e.g. loop unrolling). Very few combinations
of functions make sense, but many functions and object types are available.
This abundance is confusing for casual and experiences users as well, and it
was deemed necessary to assist them by providing default computation rules
and automatic consistency management similar to make. The rule interpretor
is called pipsmake6 and described in [10]. Its key concepts are the phase,
which correspond to a PIPS function made user-visible, for instance, a parser,
the resources, which correspond to objects used or defined by the phases, for
instance, a source file or an AST (parsed code), and the virtual rules, which
define the set of input resources used by a phase and the set of output resources
defined by the phase. Since PIPS is an interprocedural tool, some real inpu
resources are not known until execution. Some variables such as CALLERS or
CALLEES can be used in virtual rules. They are expanded at execution to obtain
an effective rule with the precise resources needed.

1http://www.cri.ensmp.fr/pips
2http://www.cri.ensmp.fr/pips/line-interface.html
3http://www.cri.ensmp.fr/pips/batch-interface.html
4Manual pages are available for Init, Select, Perform, Display, and Delete, and pips5.
6http://www.cri.ensmp.fr/pips/pipsmake.html

1

http://www.cri.ensmp.fr/pips
http://www.cri.ensmp.fr/pips/line-interface.html
http://www.cri.ensmp.fr/pips/batch-interface.html
http://www.cri.ensmp.fr/pips/pipsmake.html
http://www.cri.ensmp.fr/pips
http://www.cri.ensmp.fr/pips/line-interface.html
http://www.cri.ensmp.fr/pips/batch-interface.html
http://www.cri.ensmp.fr/pips/batch-interface.html
http://www.cri.ensmp.fr/pips/pipsmake.html

For debugging purposes and for advanced users, the precise choice and tuning
of an algorithm can be made using properties. Default properties are installed
with PIPS but they can be redefined, partly or entirely, by a properties.rc

file located in the current directory. Properties can also be redefined from the
user interfaces, for example with the command setproperty when the tpips
interface is used.

As far as their static structures are concerned, most object types are de-
scribed in more details in PIPS Internal Representation of Fortran and C code7.
A dynamic view is given here. In which order should functions be applied?
Which object do they produce and vice-versa which function does produce such
and such objects? How does PIPS cope with bottom-up and top-down interpro-
cedurality?

Resources produced by several rules and their associated rule must be given
alias names when they should be explicitly computed or activated by an inter-
active interface. This is otherwise not relevant. The alias names are used to FI: I do not

understand.generate automatically header files and/or test files used by PIPS interfaces.
No more than one resource should be produced per line of rule because

different files are automatically extracted from this one8. Another caveat is
that all resources whose names are suffixed with _file are considered printable
or displayable, and the others are considered binary data, even though they may
be ASCII strings.

This LATEX file is used by several procedures to derive some pieces of C code
and ASCII files. The useful information is located in the PipsMake areas, a very
simple literate programming environment... For instance alias information
is used to generate automatically menus for window-based interfaces such as
wpips or gpips. Object (a.k.a resource) types and functions are renamed using
the alias declaration. The name space of aliases is global. All aliases must
have different names. Function declarations are used to build a mapping table
between function names and pointer to C functions, phases.h. Object suffixes
are used to derive a header file, resources.h, with all resource names. Parts
of this file are also extracted to generate on-line information for wpips and
automatic completion for tpips.

The behavior of PIPS can be slightly tuned by using properties and some
environment variables. Most properties are linked to a particular phase, for
instance to prettyprint, but some are linked to PIPS infrastructure and are
presented in Chapter 2.

1.1 Informal Pipsmake Syntax

To understand and to be able to write new rules for pipsmake, a few things
need to be known.

1.1.1 Example

The rule:

proper_references > MODULE.proper_references

7http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
8See the local Makefile: pipsmake-rc, and alias file: wpips-rc.

2

http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
http://www.cri.ensmp.fr/pips/newgen/ri.htdoc

< PROGRAM.entities

< MODULE.code

< CALLEES.summary_effects

means that the method proper_references is used to generate the proper_references
resource of a given MODULE. But to generate this resource, the method needs
access to the resource holding the symbole table, entities, of the PROGRAM cur-
rently analyzed, the code resource (the instructions) of the given MODULE and
the summary_effects 6.2.4 resource (the side effects on the memory) of the
functions and procedures called by the given MODULE, the CALLEES.

Properties are also declared in this file. For instance

ABORT_ON_USER_ERROR FALSE

declares a property to stop interpreting user commands when an error is made
and sets its default value to false, which makes sense most of the time for
interactive uses of PIPS. But for non-regression tests, it may be better to turn
on this property.

1.1.2 Pipsmake variables

The following variables are defined to handle interprocedurality:

PROGRAM: the whole application currently analyzed;

MODULE: the current MODULE (a procedure or function);

ALL: all the MODULEs of the current PROGRAM, functions and compilation units;

ALLFUNC: all the MODULEs of the current PROGRAM that are functions;

CALLEES: all the MODULEs called in the given MODULE;

CALLERS: all the MODULEs that call the given MODULE.

These variables are used in the rule definitions and instantiated before pipsmake
infers which resources are pre-requisites for a rule.

The environment variable PIPS_IGNORE_FUNCTION_RX is taken as a regular
expression to filter out unwanted functions, such as static functions, inlined or
not, which arise in some standard header files from time to time. For instance,
with gcc 4.8, you should define

export PIPS_IGNORE_FUNCTION_RX=’!__bswap_’

1.2 Properties and Environment Variables

This paper also defines and describes global variables used to modify or fine
tune PIPS behavior. Since global variables are useful for some purposes, but
always dangerous, PIPS programmers are required to avoid them or to declare
them explicitly as properties. Properties have an ASCII name and can have
boolean, integer or string values.

Casual users should not use them. Some properties are modified for them by
the user interface and/or the high-level functions. Some property combinations

3

may be meaningless. More experienced users can set their values, using their
names and a user interface.

Experienced users can also modify properties by inserting a file called properties.rc
in their local directory. Of course, they cannot declare new properties, since
they would not be recognized by the PIPS system. The local property file is
read after the default property file, $PIPS_ROOT/etc/properties.rc. Some
user-specified property values may be ignored because they are modified by a
PIPS function before it had a chance to have any effect. Unfortunately, there
is no explicit indication of usefulness for the properties in this report.

The default property file can be used to generate a custom version of properties.rc.
It is derived automatically from this documentation, Documentation/pipsmake-rc.tex.

PIPS behavior can also be altered by Shell environment variables. Their
generic names is XXXX_DEBUG_LEVEL, where XXXX is a library or a phase or an
interface name (of course, there are exceptions). Theoretically these environ-
ment variables are also declared as properties, but this is generally forgotten by
programmers. A debug level of 0 is equivalent to no tracing. The amount of
tracing increases with the debug level. The maximum useful value is 9.

Another Shell environment variable, NEWGEN_MAX_TABULATED_ELEMENTS, is
useful to analyze large programs. Its default value is 12,000 but it is not un-
common to have to set it up to 200,000.

Properties and environement variables are listed below on a source library
basis. Properties used in more than one library or used by PIPS infrastructure
are presented first. Section 2.3 contains information about properties related to
infrastructure, external and user interface libraries. Properties for analyses are
grouped in Chapter 6. Properties for program transformations, parallelization
and distribution phases are listed in the next section in Chapters 9 and 8. User
output produced by different kinds of prettyprinters are presented in Chapter 10.
Chaper 11 is dedicated to properties of the libraries added by CEA to implement
Feautrier’s method.

1.3 Outline

Rule and object declaration are grouped in chapters: input files (Chapter 3),
syntax analysis and abstract syntax tree (Chapter 4), analyses (Chapter 6),
parallelizations (Chapter 8), program transformations (Chapter 9) and pret-
typrinters of output files (Chapter 10). Chapter 11 describes several analyses
defined by Paul Feautrier. Chapter 12 contains a set of menu declarations
for the window-based interfaces.

Virtually every PIPS programmer contributed some lines in this report. In-
consistencies are likely. Please report them to the PIPS team9!

9pips-support@cri.ensmp.fr

4

Contents

1 Introduction 1
1.1 Informal Pipsmake Syntax . 2

1.1.1 Example . 2
1.1.2 Pipsmake variables . 3

1.2 Properties and Environment Variables 3
1.3 Outline . 4

2 Global Options 17
2.1 Fortran Loops . 17
2.2 Logging . 17
2.3 PIPS Infrastructure . 18

2.3.1 Newgen . 18
2.3.2 C3 Linear Library . 18
2.3.3 PipsMake Library . 18
2.3.4 PipsDBM Library . 19
2.3.5 Top Level Library . 19
2.3.6 Warning Management . 21
2.3.7 Option for C Code Generation 21

2.4 User and Programming Interfaces 22
2.4.1 Tpips Command Line Interface 22
2.4.2 Pyps API . 22

3 Input Files 23
3.1 User File . 23
3.2 Preprocessing and Splitting . 24

3.2.1 Fortran 77 Preprocessing and Splitting 24
3.2.1.1 Fortran 77 Syntactic Verification 24
3.2.1.2 Fortran 77 File Preprocessing 25
3.2.1.3 Fortran 77 Split 25
3.2.1.4 Fortran Syntactic Preprocessing 25

3.2.2 C Preprocessing and Splitting 26
3.2.2.1 C Syntactic Verification 26

3.2.3 Fortran 90 Preprocessing and Splitting 27
3.2.4 Source File Hierarchy . 27

3.3 Source Files . 27
3.4 Regeneration of User Source Files 29

5

4 Building the Internal Representation 30
4.1 Entities . 30
4.2 Parsed Code and Callees . 31

4.2.1 Fortran 77 . 31
4.2.1.1 Fortran 77 Restrictions 31
4.2.1.2 Some Additional Remarks 32
4.2.1.3 Some Unfriendly Features 32
4.2.1.4 Declaration of the Standard Fortran 77 Parser . 32

4.2.2 Declaration of HPFC Parser 36
4.2.3 Declaration of the C Parsers 37

4.2.3.1 Language parsed by the C Parsers 37
4.2.3.2 Handling of C Code 37
4.2.3.3 Compilation Unit Parser 38
4.2.3.4 C Parser . 39
4.2.3.5 C Symbol Table 39
4.2.3.6 Properties Used by the C Parsers 39

4.2.4 Fortran 90 . 40
4.3 Controlized Code (Hierarchical Control Flow Graph) 40

4.3.1 Properties for Clean Up Sequences 43
4.3.2 Symbol Table Related to a Module Code 43

4.4 Parallel Code . 43

5 Pedagogical Phases 44
5.1 Using XML backend . 44
5.2 Operating of gen multi recurse 44
5.3 Prepending a comment . 44
5.4 Prepending a call . 45
5.5 Add a pragma to a module . 45

6 Static Analyses 47
6.1 Call Graph . 47
6.2 Memory Effects . 48

6.2.1 Proper Memory Effects 48
6.2.2 Filtered Proper Memory Effects 49
6.2.3 Cumulated Memory Effects 49
6.2.4 Summary Data Flow Information (SDFI) 51
6.2.5 IN and OUT Effects . 51
6.2.6 Proper and Cumulated References 52
6.2.7 Effect Properties . 52

6.2.7.1 Effects Filtering 52
6.2.7.2 Checking Pointer Updates 53
6.2.7.3 Dereferencing Effects 53
6.2.7.4 Effects of References to a Variable Length Array

(VLA) . 53
6.2.7.5 Memory Effects vs Environment Effects 54
6.2.7.6 Time Effects . 54
6.2.7.7 Effects of Unknown Functions 54
6.2.7.8 Other Properties Impacting EFfects 55

6.3 Live Memory Access Paths . 55
6.4 Reductions . 55

6

6.4.1 Reduction Propagation 56
6.4.2 Reduction Detection . 56

6.5 Chains (Use-Def Chains) . 56
6.5.1 Menu for Use-Def Chains 57
6.5.2 Standard Use-Def Chains (a.k.a. Atomic Chains) 57
6.5.3 READ/WRITE Region-Based Chains 57
6.5.4 IN/OUT Region-Based Chains 58
6.5.5 Chain Properties . 59

6.5.5.1 Add use-use Chains 59
6.5.5.2 Remove Some Chains 59

6.6 Dependence Graph (DG) . 59
6.6.1 Menu for Dependence Tests 60
6.6.2 Fast Dependence Test . 61
6.6.3 Full Dependence Test . 61
6.6.4 Semantics Dependence Test 61
6.6.5 Dependence Test with Convex Array Regions 61
6.6.6 Dependence Properties (Ricedg) 61

6.6.6.1 Dependence Test Selection 61
6.6.6.2 Statistics . 62
6.6.6.3 Algorithmic Dependences 63
6.6.6.4 Optimization . 64

6.7 Flinter . 64
6.8 Loop Statistics . 64
6.9 Semantics Analysis . 65

6.9.1 Transformers . 65
6.9.1.1 Menu for Transformers 66
6.9.1.2 Fast Intraprocedural Transformers 66
6.9.1.3 Full Intraprocedural Transformers 67
6.9.1.4 Fast Interprocedural Transformers 67
6.9.1.5 Full Interprocedural Transformers 67
6.9.1.6 Full Interprocedural Transformers with points-to 67
6.9.1.7 Refine Full Interprocedural Transformers 68
6.9.1.8 Summary Transformer 68

6.9.2 Preconditions . 68
6.9.2.1 Initial Precondition or Program Precondition . . 69
6.9.2.2 Intraprocedural Summary Precondition 69
6.9.2.3 Interprocedural Summary Precondition 70
6.9.2.4 Menu for Preconditions 71
6.9.2.5 Intra-Procedural Preconditions 71
6.9.2.6 Fast Inter-Procedural Preconditions 71
6.9.2.7 Full Inter-Procedural Preconditions 72

6.9.3 Total Preconditions . 72
6.9.3.0.1 Status: 73

6.9.3.1 Menu for Total Preconditions 73
6.9.3.2 Intra-Procedural Total Preconditions 73
6.9.3.3 Inter-Procedural Total Preconditions 74
6.9.3.4 Summary Total Precondition 74
6.9.3.5 Summary Total Postcondition 74
6.9.3.6 Final Postcondition 75

6.9.4 Semantic Analysis Properties 75

7

6.9.4.1 Value types . 75
6.9.4.2 Array Declarations and Accesses 76
6.9.4.3 Type Information 76
6.9.4.4 Integer Division 78
6.9.4.5 Flow Sensitivity 78
6.9.4.6 Context for statement and expression transformers 79
6.9.4.7 Interprocedural Semantics Analysis 79
6.9.4.8 Fix Point and Transitive Closure Operators . . . 79
6.9.4.9 Normalization Level 81
6.9.4.10 Evaluation of sizeof 82
6.9.4.11 Prettyprint . 82
6.9.4.12 Debugging . 82

6.9.5 Reachability Analysis: The Path Transformer 82
6.10 Continuation conditions . 83
6.11 Complexities . 83

6.11.1 Menu for Complexities . 84
6.11.2 Uniform Complexities . 84
6.11.3 Summary Complexity . 84
6.11.4 Floating Point Complexities 85
6.11.5 Complexity properties . 85

6.11.5.1 Debugging . 85
6.11.5.2 Fine Tuning . 85
6.11.5.3 Target Machine and Compiler Selection 86
6.11.5.4 Evaluation Strategy 86

6.12 Convex Array Regions . 87
6.12.1 Menu for Convex Array Regions 89
6.12.2 MAY READ/WRITE Convex Array Regions 89
6.12.3 MUST READ/WRITE Convex Array Regions 90
6.12.4 Summary READ/WRITE Convex Array Regions 91
6.12.5 IN Convex Array Regions 91
6.12.6 IN Summary Convex Array Regions 92
6.12.7 OUT Summary Convex Array Regions 92
6.12.8 OUT Convex Array Regions 92
6.12.9 Properties for Convex Array Regions 93

6.13 Live Memory Access Paths . 94
6.13.1 Live Paths . 94
6.13.2 Live Out Regions . 95
6.13.3 Live In/Out Effect . 95

6.14 Alias Analysis . 95
6.14.1 Dynamic Aliases . 95
6.14.2 Init Points-to Analysis . 96
6.14.3 Interprocedural Points to Analysis 97
6.14.4 Fast Interprocedural Points to Analysis 97
6.14.5 Intraprocedural Points to Analysis 97
6.14.6 Initial Points-to or Program Points-to 98
6.14.7 Pointer Values Analyses 99
6.14.8 Properties for pointer analyses 99

6.14.8.1 Impact of Types 99
6.14.8.2 Heap Modeling 100
6.14.8.3 Type Handling 101

8

6.14.8.4 Dereferenceing of Null and Undefined Pointers . 101
6.14.8.5 Limits of Points-to Analyses 102

6.14.9 Menu for Alias Views . 103
6.15 Complementary Sections . 103

6.15.1 READ/WRITE Complementary Sections 104
6.15.2 Summary READ/WRITE Complementary Sections . . . 104

7 Dynamic Analyses (Instrumentation) 105
7.1 Array Bound Checking . 105

7.1.1 Elimination of Redundant Tests: Bottom-Up Approach . 105
7.1.2 Insertion of Unavoidable Tests 106
7.1.3 Interprocedural Array Bound Checking 106
7.1.4 Array Bound Checking Instrumentation 107

7.2 Alias Verification . 107
7.2.1 Alias Propagation . 107
7.2.2 Alias Checking . 108

7.3 Used Before Set . 109

8 Parallelization, Distribution and Code Generation 110
8.1 Code Parallelization . 110

8.1.1 Parallelization properties 111
8.1.1.1 Properties controlling Rice parallelization 111

8.1.2 Menu for Parallelization Algorithm Selection 111
8.1.3 Allen & Kennedy’s Parallelization Algorithm 112
8.1.4 Def-Use Based Parallelization Algorithm 112
8.1.5 Parallelization and Vectorization for Cray Multiprocessors 112
8.1.6 Coarse Grain Parallelization 112
8.1.7 Global Loop Nest Parallelization 113
8.1.8 Coerce Parallel Code into Sequential Code 113
8.1.9 Detect Computation Intensive Loops 114
8.1.10 Limit parallelism using complexity 114
8.1.11 Limit Parallelism in Parallel Loop Nests 115

8.2 SIMDizer for SIMD Multimedia Instruction Set 115
8.2.1 SIMD Atomizer . 115
8.2.2 Loop Unrollling for SIMD Code Generation 116
8.2.3 Tiling for SIMD Code Generation 116
8.2.4 Preprocessing of Reductions for SIMD Code Generation . 117
8.2.5 Redundant Load-Store Elimination 117
8.2.6 Undo Some Atomizer Transformations (?) 118
8.2.7 If Conversion . 118
8.2.8 Loop Unswitching . 119
8.2.9 Scalar Renaming . 119
8.2.10 Tree Matching for SIMD Code Generation 119
8.2.11 SIMD properties . 120

8.2.11.1 Auto-Unroll . 120
8.2.11.2 Memory Organisation 121
8.2.11.3 Pattern file . 121

8.3 Code Distribution . 121
8.3.1 Shared-Memory Emulation 121
8.3.2 HPF Compiler . 122

9

8.3.2.1 HPFC Filter . 122
8.3.2.2 HPFC Initialization 122
8.3.2.3 HPF Directive removal 123
8.3.2.4 HPFC actual compilation 123
8.3.2.5 HPFC completion 124
8.3.2.6 HPFC install . 124
8.3.2.7 HPFCHigh Performance Fortran Compiler prop-

erties . 124
8.3.3 STEP: MPI code generation from OpenMP programs . . 126

8.3.3.1 STEP Directives 126
8.3.3.2 STEP Analysis 126
8.3.3.3 STEP code generation 127

8.3.4 PHRASE: high-level language transformation for partial
evaluation in reconfigurable logic 127
8.3.4.1 Phrase Distributor Initialisation 128
8.3.4.2 Phrase Distributor 128
8.3.4.3 Phrase Distributor Control Code 128

8.3.5 Safescale . 128
8.3.5.1 Distribution init 129
8.3.5.2 Statement Externalization 129

8.3.6 CoMap: Code Generation for Accelerators with DMA . . 129
8.3.6.1 Phrase Remove Dependences 129
8.3.6.2 Phrase comEngine Distributor 129
8.3.6.3 PHRASE ComEngine properties 130

8.3.7 Parallelization for Terapix architecture 130
8.3.7.1 Isolate Statement 130
8.3.7.2 GPU XML Output 131
8.3.7.3 Delay Communications 131
8.3.7.4 Hardware Constraints Solver 132
8.3.7.5 kernelize . 133
8.3.7.6 Communication Generation 136

8.3.8 Code Distribution on GPU 137
8.3.9 Task code generation for StarPU runtime 140
8.3.10 SCALOPES: task code generation for the SCMP archi-

tecture with SESAM HAL 141
8.3.10.1 First approach 141
8.3.10.2 General Solution 142

8.4 Automatic Resource-Constrained Static Task Parallelization . . . 143
8.4.1 Sequence Dependence DAG (SDG) 143
8.4.2 BDSC-Based Hierarchical Task Parallelization (HBDSC) . 143
8.4.3 SPIRE(PIPS) generation 145
8.4.4 SPIRE-Based Parallel Code Generation 145
8.4.5 MPI Code Generation . 146

9 Program Transformations 148
9.1 Loop Transformations . 148

9.1.1 Introduction . 148
9.1.2 Loop range Normalization 149
9.1.3 Label Elimination . 149
9.1.4 Loop Distribution . 149

10

9.1.5 Statement Insertion . 150
9.1.6 Loop Expansion . 150
9.1.7 Loop Fusion . 151
9.1.8 Index Set Splitting . 152
9.1.9 Loop Unrolling . 152

9.1.9.1 Regular Loop Unroll 152
9.1.9.2 Full Loop Unroll 153

9.1.10 Loop Fusion . 154
9.1.11 Strip-mining . 154
9.1.12 Loop Interchange . 155
9.1.13 Hyperplane Method . 155
9.1.14 Loop Nest Tiling . 155
9.1.15 Symbolic Tiling . 156
9.1.16 Loop Normalize . 157
9.1.17 Guard Elimination and Loop Transformations 158
9.1.18 Tiling for sequences of loop nests 158

9.2 Redundancy Elimination . 158
9.2.1 Loop Invariant Code Motion 158
9.2.2 Partial Redundancy Elimination 159
9.2.3 Identity Elimination . 159

9.3 Control-Flow Optimizations . 159
9.3.1 Control Simplification (a.k.a. Dead Code Elimination) . . 159

9.3.1.1 Properties for Control Simplification 161
9.3.2 Dead Code Elimination (a.k.a. Use-Def Elimination) . . . 161
9.3.3 Loop bound minimization 163
9.3.4 Control Restructurers . 163

9.3.4.1 Unspaghettify 164
9.3.4.2 Restructure Control 164
9.3.4.3 DO Loop Recovery 165
9.3.4.4 For Loop to DO Loop Conversion 165
9.3.4.5 For Loop to While Loop Conversion 166
9.3.4.6 Do While to While Loop Conversion 166
9.3.4.7 Spaghettify . 167
9.3.4.8 Full Spaghettify 168

9.3.5 Control Flow Normalisation (STF) 168
9.3.6 Trivial Test Elimination 168
9.3.7 Finite State Machine Generation 169

9.3.7.1 FSM Generation 169
9.3.7.2 Full FSM Generation 169
9.3.7.3 FSM Split State 170
9.3.7.4 FSM Merge States 170
9.3.7.5 FSM Properties 170

9.3.8 Control Counters . 170
9.4 Expression Transformations . 171

9.4.1 Atomizers . 171
9.4.1.1 General Atomizer 171
9.4.1.2 Limited Atomizer 171
9.4.1.3 Atomizer Properties 172

9.4.2 Partial Evaluation . 172
9.4.3 Reduction Detection . 173

11

9.4.4 Reduction Replacement 174
9.4.5 Forward Substitution . 174
9.4.6 Expression Substitution 175
9.4.7 Rename Operators . 175
9.4.8 Array to Pointer Conversion 177
9.4.9 Expression Optimization Using Algebraic Properties . . . 178
9.4.10 Common Subexpression Elimination 179

9.5 Hardware Accelerator . 180
9.5.1 FREIA Software . 180
9.5.2 FREIA SPoC . 182
9.5.3 FREIA Terapix . 183
9.5.4 FREIA OpenCL . 184
9.5.5 FREIA Sigma-C for Kalray MPPA-256 185
9.5.6 FREIA OpenMP + Async communications for Kalray

MPPA-256 . 185
9.6 Function Level Transformations 186

9.6.1 Inlining . 186
9.6.2 Unfolding . 187
9.6.3 Outlining . 188
9.6.4 Cloning . 190

9.7 Declaration Transformations . 191
9.7.1 Declarations Cleaning . 191
9.7.2 Array Resizing . 192

9.7.2.1 Top Down Array Resizing 192
9.7.2.2 Bottom Up Array Resizing 193
9.7.2.3 Full Bottom Up Array Resizing 193
9.7.2.4 Array Resizing Statistic 194
9.7.2.5 Array Resizing Properties 194

9.7.3 Scalarization . 195
9.7.3.1 Scalarization Based on Convex Array Regions . 196
9.7.3.2 Scalarization Based on Constant Array References198
9.7.3.3 Scalarization Based on Memory Effects and De-

pendence Graph 199
9.7.4 Induction Variable Substitution 199
9.7.5 Strength Reduction . 200
9.7.6 Flatten Code . 200
9.7.7 Split Update Operators 201
9.7.8 Split Initializations (C Code) 201
9.7.9 Set Return Type . 202
9.7.10 Cast Actual Parameters at Call Sites 202
9.7.11 Scalar and Array Privatization 202

9.7.11.1 Scalar Privatization 203
9.7.11.2 Declaration Localization 204
9.7.11.3 Array Privatization 204

9.7.12 Scalar and Array Expansion 206
9.7.12.1 Scalar Expansion 206
9.7.12.2 Array Expansion 206

9.7.13 Variable Length Array . 206
9.7.13.1 Check Initialize Variable Length Array 207
9.7.13.2 Initialize Variable Length Array 208

12

9.7.14 Freeze variables . 209
9.8 Miscellaneous transformations . 209

9.8.1 Type Checker . 210
9.8.2 Manual Editing . 210
9.8.3 Transformation Test . 210

9.9 Extensions Transformations . 211
9.9.1 OpenMP Pragma . 211

10 Output Files (Prettyprinted Files) 213
10.1 Parsed Printed Files (User View) 213

10.1.1 Menu for User Views . 213
10.1.2 Standard User View . 214
10.1.3 User View with Transformers 214
10.1.4 User View with Preconditions 214
10.1.5 User View with Total Preconditions 214
10.1.6 User View with Continuation Conditions 215
10.1.7 User View with Convex Array Regions 215
10.1.8 User View with Invariant Convex Array Regions 215
10.1.9 User View with IN Convex Array Regions 215
10.1.10User View with OUT Convex Array Regions 216
10.1.11User View with Complexities 216
10.1.12User View with Proper Effects 216
10.1.13User View with Cumulated Effects 216
10.1.14User View with IN Effects 217
10.1.15User View with OUT Effects 217

10.2 Printed File (Sequential Views) 217
10.2.1 Html output . 217
10.2.2 Menu for Sequential Views 218
10.2.3 Standard Sequential View 218
10.2.4 Sequential View with Transformers 218
10.2.5 Sequential View with Initial Preconditions 219
10.2.6 Sequential View with Complexities 219
10.2.7 Sequential View with Preconditions 219
10.2.8 Sequential View with Total Preconditions 220
10.2.9 Sequential View with Continuation Conditions 220
10.2.10Sequential View with Convex Array Regions 220

10.2.10.1 Sequential View with Plain Pointer Regions . . . 220
10.2.10.2 Sequential View with Proper Pointer Regions . . 220
10.2.10.3 Sequential View with Invariant Pointer Regions 221
10.2.10.4 Sequential View with Plain Convex Array Regions221
10.2.10.5 Sequential View with Proper Convex Array Re-

gions . 221
10.2.10.6 Sequential View with Invariant Convex Array

Regions . 221
10.2.10.7 Sequential View with IN Convex Array Regions 222
10.2.10.8 Sequential View with OUT Convex Array Regions222
10.2.10.9 Sequential View with Privatized Convex Array

Regions . 222
10.2.11Sequential View with Complementary Sections 222
10.2.12Sequential View with Proper Effects 223

13

10.2.13Sequential View with Cumulated Effects 223
10.2.14Sequential View with IN Effects 223
10.2.15Sequential View with OUT Effects 224
10.2.16Sequential View with Live Paths 224
10.2.17Sequential View with Proper Reductions 224
10.2.18Sequential View with Cumulated Reductions 224
10.2.19Sequential View with Static Control Information 225
10.2.20Sequential View with Points-To Information 225
10.2.21Sequential View with Simple Pointer Values 225
10.2.22Prettyprint Properties . 225

10.2.22.1 Language . 225
10.2.22.2 Layout . 226
10.2.22.3 Target Language Selection 228

10.2.22.3.1 Parallel output style 228
10.2.22.3.2 Default sequential output style 228

10.2.22.4 Display Analysis Results 228
10.2.22.5 Display Internals for Debugging 229

10.2.22.5.1 Warning: 230
10.2.22.6 Declarations . 231
10.2.22.7 FORESYS Interface 232
10.2.22.8 HPFC Prettyprinter 232
10.2.22.9 C Internal Prettyprinter 232
10.2.22.10Interface to Emacs 233

10.3 Printed Files with the Intraprocedural Control Graph 233
10.3.1 Menu for Graph Views . 233
10.3.2 Standard Graph View . 233
10.3.3 Graph View with Transformers 234
10.3.4 Graph View with Complexities 234
10.3.5 Graph View with Preconditions 234
10.3.6 Graph View with Preconditions 234
10.3.7 Graph View with Regions 235
10.3.8 Graph View with IN Regions 235
10.3.9 Graph View with OUT Regions 235
10.3.10Graph View with Proper Effects 235
10.3.11Graph View with Cumulated Effects 236
10.3.12 ICFG Properties . 236
10.3.13Graph Properties . 237

10.3.13.1 Interface to Graphics Prettyprinters 237
10.4 Parallel Printed Files . 237

10.4.1 Menu for Parallel View 237
10.4.2 Fortran 77 Parallel View 237
10.4.3 HPF Directives Parallel View 238
10.4.4 OpenMP Directives Parallel View 238
10.4.5 Fortran 90 Parallel View 238
10.4.6 Cray Fortran Parallel View 238

10.5 Call Graph Files . 238
10.5.1 Menu for Call Graphs . 239
10.5.2 Standard Call Graphs . 239
10.5.3 Call Graphs with Complexities 239
10.5.4 Call Graphs with Preconditions 239

14

10.5.5 Call Graphs with Total Preconditions 240
10.5.6 Call Graphs with Transformers 240
10.5.7 Call Graphs with Proper Effects 240
10.5.8 Call Graphs with Cumulated Effects 240
10.5.9 Call Graphs with Regions 241
10.5.10Call Graphs with IN Regions 241
10.5.11Call Graphs with OUT Regions 241

10.6 DrawGraph Interprocedural Control Flow Graph Files (DVICFG) 242
10.6.1 Menu for DVICFG’s . 242
10.6.2 Minimal ICFG with graphical filtered Proper Effects . . . 242

10.7 Interprocedural Control Flow Graph Files (ICFG) 242
10.7.1 Menu for ICFG’s . 242
10.7.2 Minimal ICFG . 243
10.7.3 Minimal ICFG with Complexities 243
10.7.4 Minimal ICFG with Preconditions 244
10.7.5 Minimal ICFG with Preconditions 244
10.7.6 Minimal ICFG with Transformers 244
10.7.7 Minimal ICFG with Proper Effects 244
10.7.8 Minimal ICFG with filtered Proper Effects 245
10.7.9 Minimal ICFG with Cumulated Effects 245
10.7.10Minimal ICFG with Regions 245
10.7.11Minimal ICFG with IN Regions 245
10.7.12Minimal ICFG with OUT Regions 246
10.7.13 ICFG with Loops . 246
10.7.14 ICFG with Loops and Complexities 246
10.7.15 ICFG with Loops and Preconditions 246
10.7.16 ICFG with Loops and Total Preconditions 247
10.7.17 ICFG with Loops and Transformers 247
10.7.18 ICFG with Loops and Proper Effects 247
10.7.19 ICFG with Loops and Cumulated Effects 247
10.7.20 ICFG with Loops and Regions 247
10.7.21 ICFG with Loops and IN Regions 248
10.7.22 ICFG with Loops and OUT Regions 248
10.7.23 ICFG with Control . 248
10.7.24 ICFG with Control and Complexities 248
10.7.25 ICFG with Control and Preconditions 249
10.7.26 ICFG with Control and Total Preconditions 249
10.7.27 ICFG with Control and Transformers 249
10.7.28 ICFG with Control and Proper Effects 249
10.7.29 ICFG with Control and Cumulated Effects 250
10.7.30 ICFG with Control and Regions 250
10.7.31 ICFG with Control and IN Regions 250
10.7.32 ICFG with Control and OUT Regions 250

10.8 Data Dependence Graph File . 251
10.8.1 Menu For Dependence Graph Views 251
10.8.2 Effective Dependence Graph View 251
10.8.3 Loop-Carried Dependence Graph View 251
10.8.4 Whole Dependence Graph View 252
10.8.5 Filtered Dependence Graph View 252
10.8.6 Filtered Dependence daVinci Graph View 252

15

10.8.7 Impact Check . 252
10.8.8 Chains Graph View . 253
10.8.9 Chains Graph Graphviz Dot View 253
10.8.10Data Dependence Graph Graphviz Dot View 253

10.8.10.1 Properties Used to Select Arcs to Display 253
10.8.11Properties for Dot output 254
10.8.12Loop Nest Dependence Cone 255

10.9 Fortran to C prettyprinter . 255
10.9.1 Properties for Fortran to C prettyprinter 256

10.10Prettyprinters Smalltalk . 258
10.11Prettyprinter for the Polyhderal Compiler Collection (PoCC) . . 258

10.11.1Rstream interface . 259
10.12Regions to loops . 259
10.13Prettyprinter for CLAIRE . 259

11 Feautrier Methods (a.k.a. Polyhedral Method) 262
11.1 Static Control Detection . 262
11.2 Scheduling . 262
11.3 Code Generation for Affine Schedule 263
11.4 Prettyprinters for CM Fortran . 263

12 User Interface Menu Layouts 264
12.1 View Menu . 264
12.2 Transformation Menu . 265

13 Conclusion 267

14 Known Problems 268

16

Chapter 2

Global Options

Options are called properties in PIPS. Most of them are related to a specific
phase, for instance the dependence graph computation. They are declared next
to the corresponding phase declaration. But some are related to one library or
even to several libraries and they are declared in this chapter.

Skip this chapter on first reading. Also skip this chapter on second reading
because you are unlikely to need these properties until you develop in PIPS.

2.1 Fortran Loops

Are DO loops bodies executed at least once (F-66 style), or not (Fortran 77)?

ONE_TRIP_DO FALSE

is useful for use/def and semantics analysis but is not used for region analyses.
This dangerous property should be set to FALSE. It is not consistently checked
by PIPS phases, because nobody seems to use this obsolete Fortran feature
anymore.

2.2 Logging

With

LOG_TIMINGS FALSE

it is possible to display the amount of real, cpu and system times directly spent
in each phase as well as the times spent reading/writing data structures from/to
PIPS database. The computation of total time used to complete a pipsmake

request is broken down into global times, a set of phase times which is the
accumulation of the times spent in each phase, and a set of IO times, also
accumulated through phases.

Note that the IO times are included in the phase times.
With

LOG_MEMORY_USAGE FALSE

17

it is possible to log the amount of memory used by each phase and by each
request. This is mainly useful to check if a computation can be performed on
a given machine. This memory log can also be used to track memory leaks.
Valgrind may be more useful to track memory leaks.

2.3 PIPS Infrastructure

PIPS infrastructure is based on a few external libraries, Newgen and Linear, and
on three key PIPS 1 libraries:

• pipsdbm which manages resources such as code produced by PIPS and
ensures persistance,

• pipsmake which ensures consistency within a workspace with respect to
the producer-consumer rules declared in this file,

• and top-level which defines a common API for all PIPS user interfaces,
whether human or API.

2.3.1 Newgen

Newgen offers some debugging support to check object consistency (gen_consistent_p
and gen_defined_p), and for dynamic type checking. See Newgen documentation[50][51].

2.3.2 C3 Linear Library

This library is external and offers an independent debugging system.
The following properties specify how null (

SYSTEM_NULL "<null␣system >"

), undefined

SYSTEM_UNDEFINED "<undefined␣system >"

) or non feasible systems

SYSTEM_NOT_FEASIBLE "{0== -1}"

are prettyprinted by PIPS.

2.3.3 PipsMake Library

With

CHECK_RESOURCE_USAGE FALSE

it is possible to log and report differences between the set of resources actually
read and written by the procedures called by pipsmake and the set of resources
declared as read or written in pipsmake.rc file.

ACTIVATE_DEL_DERIVED_RES TRUE

1http://www.cri.ensmp.fr/pips

18

http://www.cri.ensmp.fr/pips
http://www.cri.ensmp.fr/pips

controls the rule activation process that may delete from the database all the
derived resources from the newly activated rule to make sure that non-consistent
resources cannot be used by accident.

PIPSMAKE_CHECKPOINTS 0

controls how often resources should be saved and freed. 0 means never, and a
positive value means every n applications of a rule. This feature was added to
allow long big automatic tpips scripts that can coredump and be restarted latter
on close to the state before the core. As another side effect, it allows to free the
memory and to keep memory consumption as moderate as possible, as opposed
to usual tpips runs which keep all memory allocated. Note that it should not
be too often saved, because it may last a long time, especially when entities are
considered on big workspaces. The frequency may be adapted in a script, rarely
at the beginning to more often latter.

2.3.4 PipsDBM Library

Shell environment variables PIPSDBM_DEBUG_LEVEL can be set to ? to check
object consistency when they are stored in the database, and to ? to check
object consistency when they are stored or retrieved (in case an intermediate
phase has corrupted some data structure unwillingly).

You can control what is done when a workspace is closed and resources are
saved. The

PIPSDBM_RESOURCES_TO_DELETE "obsolete"

property can be set to to ”obsolete” or to ”all”.
Note that it is not managed from pipsdbm but from pipsmake, which knows

what is obsolete or not.

2.3.5 Top Level Library

The top-level library is built on top of the pipsmake and pipsdbm libraries to
factorize functions useful to build a PIPS user interface or API.

Property

USER_LOG_P TRUE

controls the logging of the session in the database of the current workspace. This
log can be processed by PIPS utility logfile2tpips to generate automatically
a tpips script which can be used to replay the current PIPS session, workspace
by workspace, regardless of the PIPSuser interface used.

Property

ABORT_ON_USER_ERROR FALSE

specifies how user errors impact execution once the error message is printed
on stderr: return and go ahead, usually when PIPS is used interactively (de-
fault behavior), or abort and core dump for debugging purposes and for script
executions, especially non-regression tests.

Property

19

CLOSE_WORKSPACE_AND_QUIT_ON_ERROR FALSE

specifies that user and internal errors must preserve as much as possible the
workspace created by PIPS. This behavior stores on disk, as much as possible,
all information available on the process that has just failed. This is useful when
PIPS is called by another tool. This is not compatible with ABORT_ON_USER_ERROR 2.3.5,
which seeks an immediate termination of the PIPS process.

Property

MAXIMUM_USER_ERROR 2

specifies the number of user error allowed before the programs brutally aborts.
Property

ACTIVE_PHASES "PRINT_SOURCE␣PRINT_CODE␣PRINT_PARALLELIZED77_CODE␣PRINT_CALL_GRAPH␣PRINT_ICFG␣TRANSFORMERS_INTER_FULL␣INTERPROCEDURAL_SUMMARY_PRECONDITION␣PRECONDITIONS_INTER_FULL␣ATOMIC_CHAINS␣RICE_SEMANTICS_DEPENDENCE_GRAPH␣MAY_REGIONS"

specifies which pipsmake phases should be used when several phases can be
used to produce the same resource. This property is used when a workspace
is created. A workspace is the database maintained by PIPS to contain all
resources defined for a whole application or for the whole set of files used to
create it.

Property

PIPSMAKE_WARNINGS TRUE

controls whether to show warning when reading and activating pipsmake rules.
Turning it off is useful when validating with a specialized version of PIPS, as
some undesirable warnings can be shown then.

Resources that create ambiguities for pipsmake are at least:

• parsed printed file

• printed file

• callgraph file

• icfg file

• parsed code, because several parsers are available

• transformers

• summary precondition

• preconditions

• regions

• chains

• dg

This list must be updated according to new rules and new resources declared
in this file. Note that no default parser is usually specified in this property,
because it is selected automatically according to the source file suffixes when
possible.

Until October 2009, the active phases were:

20

ACTIVE_PHASES "PRINT_SOURCE PRINT_CODE PRINT_PARALLELIZED77_CODE

PRINT_CALL_GRAPH PRINT_ICFG TRANSFORMERS_INTRA_FAST

INTRAPROCEDURAL_SUMMARY_PRECONDITION

PRECONDITIONS_INTRA ATOMIC_CHAINS

RICE_FAST_DEPENDENCE_GRAPH MAY_REGIONS"

They still are used for the old non-regression tests.
Property

CONSISTENCY_ENFORCED_P FALSE

specifies that properties cannot be set once a PIPS database has been created.
Pipsmake does not know the impacts of properties on the resources. Setting
a property can make a resource obsolete, but pipsmake is going to use it as
consistent. To avoid the issue, set CONSISTENCY_ENFORCED_P 2.3.5 to true and
tpips2 will detect a user error if a property is possibly altered during a pro-
cessing phase.

2.3.6 Warning Management

User warnings may be turned off. Definitely, this is not the default option! Most
warnings must be read to understand surprising results. This property is used
by library misc.

NO_USER_WARNING FALSE

By default, PIPS reports errors generated by system call stat which is used
in library pipsdbm to check the time a resource has been written and hence its
temporal consistency.

WARNING_ON_STAT_ERROR TRUE

Error messages are also copied in the Warnings file.

2.3.7 Option for C Code Generation

The syntactic constraints of C89 have been eased for declarations in C99, where
it is possible to intersperse statement declarations within executable statements.
This property is used to request C89 compatible code generation.

C89_CODE_GENERATION FALSE

So the default option is to generate C99 code, which may be changed because
it is likely to make the code generated by PIPS unparsable by PIPS.

There is no guarantee that each code generation phase is going to comply
with this property. It is up to each developper to decide if this global property
is to be used or not in his/her local phase.

2http://www.cri.ensmp.fr/pips/line-interface.html

21

http://www.cri.ensmp.fr/pips/line-interface.html
http://www.cri.ensmp.fr/pips/line-interface.html

2.4 User and Programming Interfaces

2.4.1 Tpips Command Line Interface

tpips is one of PIPS user interfaces.

TPIPS_IS_A_SHELL FALSE

controls whether tpips should behave as an extended shell and consider any
input command that is not a tpips command a Shell command.

2.4.2 Pyps API

This property is automatically set to TRUE when pyps is running.

PYPS FALSE

22

Chapter 3

Input Files

3.1 User File

An input program is a set of user Fortran 77, Fortran 90 or C source files and
a name, called a workspace. The files are looked for in the current directory,
then by using the colon-separated PIPS_SRCPATH variable for other directories
where they might be found. The first occurrence of the file name in the ordered
directories is chosen, which is consistent with PATH and MANPATH behaviour.

The source files are splitted by PIPS at the program initialization phase to
produce one PIPS-private source file for each procedure, subroutine or function,
and for each block data. A function like fsplit is used and the new files are
stored in the workspace, which simply is a UNIX sub-directory of the current
directory. These new files have names suffixed by .f.orig.

Since PIPS performs interprocedural analyses, it expects to find a source
code file for each procedure or function called. Missing modules can be replaced
by stubs, which can be made more or less precise with respect to their effects
on formal parameters and global variables. A stub may be empty. Empty stubs
can be automatically generated if the code is properly typed (see Section 3.3).

The user source files should not be edited by the user once PIPS has been
started because these editions are not going to be taken into account unless a
new workspace is created. But their preprocessed copies, the PIPS source files,
safely can be edited while running PIPS. The automatic consistency mechanism
makes sure that any information displayed to the user is consistent with the
current state of the sources files in the workspace. These source files have
names terminated by the standard suffix, .f.

New user source files should be automatically and completely re-built when
the program is no longer under PIPS control, i.e. when the workspace is closed.
An executable application can easily be regenerated after code transformations
using the tpips1 interface and requesting the PRINTED FILE resources for all
modules, including compilation units in C:

display PRINTED FILE[%ALL]

Note that compilation units can be left out with:

display PRINTED FILE[%ALLFUNC]

1http://www.cri.ensmp.fr/pips/line-interface.html

23

http://www.cri.ensmp.fr/pips/line-interface.html
http://www.cri.ensmp.fr/pips/line-interface.html

In both cases with C source code, the order of modules may be unsuitable for
direct recompilation and compilation units should be included anyway, but this
is what is done by explicitly requesting the code regeneration as described in
§ 3.4.

Note that PIPS expects proper ANSI Fortran 77 code. Its parser was not
designed to locate syntax errors. It is highly recommended to check source files
with a standard Fortran compiler (see Section 3.2) before submitting them to
PIPS.

3.2 Preprocessing and Splitting

3.2.1 Fortran 77 Preprocessing and Splitting

The Fortran 77 files specified as input to PIPS by the user are preprocessed in
various ways.

3.2.1.1 Fortran 77 Syntactic Verification

If the PIPS_CHECK_FORTRAN shell environment variable is defined to false or no
or 0, the syntax of the source files is not checked by compiling it with a C com-
piler.If the PIPS_CHECK_FORTRAN shell environment variable is defined to true or
yes or 1, the syntax of the file is checked by compiling it with a Fortran 77 com-
piler. If the PIPS_CHECK_FORTRAN shell environment variable is not defined, the
check is performed according to CHECK_FORTRAN_SYNTAX_BEFORE_RUNNING_PIPS 3.2.1.1.

The Fortran compiler is defined by the PIPS_FLINT environment variable. If
it is undefined, the default compiler is f77 -c -ansi).

In case of failure, a warning is displayed. Note that if the program cannot
be compiled properly with a Fortran compiler, it is likely that many problems
will be encountered within PIPS.

The next property also triggers this preliminary syntactic verification.

CHECK_FORTRAN_SYNTAX_BEFORE_RUNNING_PIPS TRUE

PIPS requires source code for all leaves in its visible call graph. By default,
a user error is raised by Function initializer if a user request cannot be
satisfied because some source code is missing. It also is possible to generate
some synthetic code (also known as stubs) and to update the current module
list but this is not a very satisfying option because all interprocedural analysis
results are going to be wrong. The user should retrieve the generated .f files in
the workspace, under the Tmp directory, and add some assignments (def) and
uses to mimic the action of the real code to have a sufficient behavior from the
point of view of the analysis or transformations you want to apply on the whole
program. The user modified synthetic files should then be saved and used to
generate a new workspace.

If PREPROCESSOR_MISSING_FILE_HANDLING 3.2.1.1 is set to "query", a script
can optionally be set to handle the interactive request using PREPROCESSOR_MISSING_FILE_GENERATOR 3.2.1.1.
This script is passed the function name and prints the filename on standard out-
put. When empty, it uses an internal one.

Valid settings: error or generate or query.

PREPROCESSOR_MISSING_FILE_HANDLING "error"

24

PREPROCESSOR_MISSING_FILE_GENERATOR ""

The generated stub can have various default effect, say to prevent over-
optimistic parallelization.

STUB_MEMORY_BARRIER FALSE

STUB_IO_BARRIER FALSE

3.2.1.2 Fortran 77 File Preprocessing

If the file suffix is .F then the file is preprocessed. By default PIPS uses
gfortran -E for Fortran files. This preprocessor can be changed by setting
the PIPS_FPP environment variable.

Moreover the default preprocessing options are -P -D__PIPS__ -D__HPFC__

and they can be extended (not replaced...) with the PIPS_FPP_FLAGS environ-
ment variable.

3.2.1.3 Fortran 77 Split

The file is then split into one file per module using a PIPS specialized version
of fsplit2. This preprocessing also handles

1. Hollerith constants by converting them to the quoted syntax3;

2. unnamed modules by adding MAIN000 or PROGRAM MAIN000 or or DATA000
or BLOCK DATA DATA000 according to needs.

The output of this phase is a set of .f_initial files in per-module subdi-
rectories. They constitute the resource INITIAL_FILE.

3.2.1.4 Fortran Syntactic Preprocessing

A second step of preprocessing is performed to produce SOURCE_FILE files with
standard Fortran suffix .f from the .f_initial files. The two preprocessing
steps are shown in Figure 3.1.

Each module source file is then processed by top-level to handle Fortran
include and to comment out IMPLICIT NONE which are not managed by PIPS.
Also this phase performs some transformations of complex constants to help the
PIPS parser. Files referenced in Fortran include statements are looked for from
the directory where the Fortran file is. The Shell variable PIPS_CPP_FLAGS is
not used to locate these include files.

2The PIPS version of fsplit is derived from the BSD fsplit and several improvements
have been performed.

3Hollerith constants are considered obsolete by the new Fortran standards and date back
to 1889...

25

/

$PIPS_ROOT

Share

properties.rc

pipsmake.rc

USER_FILE foo.f bar.f foo.h

current directory

example.workspace

foo1.f.orig

foo2.f.orig

bar.f.orig

foo1.f

foo2.f

bar.f

properties.rc

pipsmake.rc

SOURCE_FILE

fsplit

cpp

main000

Hollerith

Implicit none

Include (F77)

Complex constant

Figure 3.1: Preprocessing phases: from a user file to a source file

3.2.2 C Preprocessing and Splitting

The C preprocessor is applied before the splitting. By default PIPS uses cpp -C

for C files. This preprocessor can be changed by setting the PIPS_CPP environ-
ment variable.

Moreover the -D__PIPS__ -D__HPFC__ -U__GNUC__ preprocessing options
are used and can be extended (not replaced) with the PIPS_CPP_FLAGS envi-
ronment variable.

This PIPS_CPP_FLAGS variable can also be used to locate the include files.
Directories to search are specified with the -Ifile option, as usual for the C
preprocessor.

3.2.2.1 C Syntactic Verification

If the PIPS_CHECK_C shell environment variable is defined to false or no or 0,
the syntax of the source files is not checked by compiling it with a C compiler.
If the PIPS_CHECK_C shell environment variable is defined to true or yes or
1, the syntax of the file is checked by compiling it with a C compiler. If the
PIPS_CHECK_C shell environment variable is not defined, the check is performed
according to CHECK_C_SYNTAX_BEFORE_RUNNING_PIPS 3.2.2.1.

The environment variable PIPS_CC is used to define the C compiler available.
If it is undefined, the compiler chosen is gcc -c).

In case of failure, a warning is displayed.
If the environement variable PIPS_CPP_FLAGS is defined, it should contain

the options -Wall and -Werror for the check to be effective.

26

The next property also triggers this preliminary syntactic verification.

CHECK_C_SYNTAX_BEFORE_RUNNING_PIPS TRUE

Although its default value is FALSE, it is much safer to set it to true when
dealing with new sources files. PIPS is not designed to process non-standard
source code. Bugs in source files are not well explained or localized. They can
result in weird behaviors and inexpected core dumps. Before complaining about
PIPS, it is higly recommended to set this property to TRUE.

Note: the C and Fortran syntactic verifications could be controlled by a
unique property.

3.2.3 Fortran 90 Preprocessing and Splitting

The Fortran 90 parser is a separate program, derived from gcc Fortran parser.
It is activated directly when the workspace is created, and not by pipsmake.

3.2.4 Source File Hierarchy

The source files may be placed in different directories and have the same name,
which makes resource management more difficult. The default option is to
assume that no file name conflicts occur. This is the historical option and it
leads to much simpler module names.

PREPROCESSOR_FILE_NAME_CONFLICT_HANDLING FALSE

3.3 Source Files

A source_file contains the code of exactly one module. Source files are created
from user source files at program initialization by fsplit or a similar function
if fsplit is not available (see Section 3.2). A source file may be updated by the
user4, but not by PIPS. Program transformations are performed on the internal
representation (see 4) and visible in the prettyprinted output (see 10).

Source code splitting and preprocessing, e.g. cpp, are performed by the func-
tion create_workspace() from the top-level library, in collaboration with
db_create_workspace() from library pipsdbm which creates the workspace di-
rectory. The user source files have names suffixed by .f or .F if cpp must be
applied. They are split into original user_files with suffix .f.orig. These so-
called original user files are in fact copies stored in the workspace. The syntactic
PIPS preprocessor is applied to generate what is known as a source_file by
PIPS. This process is fully automatized and not visible from PIPS user inter-
faces. However, the cpp preprocessor actions can be controlled using the Shell
environment variable PIPS_CPP_FLAGS.

Function initializer is only called when the source code is not found. If
the user code is properly typed, it is possible to force initializer to generate
empty stubs by setting properties PREPROCESSOR_MISSING_FILE_HANDLING 3.2.1.1
and, to avoid inconsistency, PARSER_TYPE_CHECK_CALL_SITES 4.2.1.4. But re-
member that many Fortran codes use subroutines with variable numbers of

4The X-window interface, wpips has an edit entry in the transformation menu.

27

arguments and with polymorphic types. Fortran varargs mechanism can be
achieved by using or not the second argument according to the first one. Poly-
morphism can be useful to design an IO package or generic array subroutine,
e.g. a subroutine setting an array to zero or a subroutine to copy an array into
another one.

The current default option is to generate a user error if some source code is
missing. This decision was made for two reasons:

1. too many warnings about typing are generated as soon as polymorphism
is used;

2. analysis results and code transformations are potentially wrong because no
memory effects are synthesized; see Properties MAXIMAL_PARAMETER_EFFECTS_FOR_UNKNOWN_FUNCTIONS 6.2.7.7
and MAXIMAL_EFFECTS_FOR_UNKNOWN_FUNCTIONS 6.2.7.7.

Sometimes, a function happen to be defined (and not only declared) inside
a header file with the inline keyword. In that case PIPS can consider it as
a regular module or just ignore it, as its presence may be system-dependant.
Property IGNORE_FUNCTION_IN_HEADER 3.3 control this behavior and must be
set before workspace creation.

IGNORE_FUNCTION_IN_HEADER TRUE

Modules can be flagged as “stubs”, aka functions provided to PIPS but which
shouldn’t be inlined or modified. Property PREPROCESSOR_INITIALIZER_FLAG_AS_STUB 3.3
controls if the initializer should declare new files as stubs.

bootstrap_stubs > PROGRAM.stubs

flag_as_stub > PROGRAM.stubs

< PROGRAM.stubs

PREPROCESSOR_INITIALIZER_FLAG_AS_STUB TRUE

initializer > MODULE.user_file

> MODULE.initial_file

Note: the generation of the resource user_file here above is mainly directed
in having the resource concept here. More thought is needed to have the concept
of user files managed by pipsmake.

MUST appear after initializer:

filter_file > MODULE.source_file

< MODULE.initial_file

< MODULE.user_file

In C, the initializer can generate directly a c_source_file and its compila-
tion unit.

c_initializer > MODULE.c_source_file

> COMPILATION_UNIT.c_source_file

> MODULE.input_file_name

28

3.4 Regeneration of User Source Files

The unsplit 3.4 phase regenerates user files from available printed_file. The
various modules that where initially stored in single file are appended together in
a file with the same name. Not that just fsplit is reversed, not a preprocessing
through cpp. Also the include file preprocessing is not reversed.

Regeneration of user files. The various modules that where initially stored
in single file are appended together in a file with the same name.

alias unsplit ’User files Regeneration’

unsplit > PROGRAM.user_file

< ALL.user_file

< ALL.printed_file

unsplit_parsed > PROGRAM.user_file

< ALL.user_file

< ALL.parsed_printed_file

29

Chapter 4

Building the Internal
Representation

The abstract syntax tree, a.k.a intermediate representation, a.k.a. internal rep-
resentation, is presented in [34] and in PIPS Internal Representation of Fortran
and C code1.

4.1 Entities

Program entities are stored in PIPS unique symbol table2, called entities. For-
tran entities, like intrinsics and operators, are created by bootstrap at program
initialization. The symbol table is updated with user local and global variables
when modules are parsed or linked together. This side effect is not disclosed to
pipsmake.

bootstrap > PROGRAM.entities

The entity data structure is described in PIPS Internal Representation of
Fortran and C code3.

The declaration of new intrinsics is not easy because it was assumed that
there number was fixed and limited by the Fortran standard. In fact, Fortran ex-
tensions define new ones. To add a new intrinsic, C code in bootstrap/bootstrap.c
and in effects-generic/intrinsics.c must be added to declare its name,
type and Read/Write memory effects.

Information about entities generated by the parsers is printed out condi-
tionally to property: PARSER_DUMP_SYMBOL_TABLE 4.2.1.4. which is set to false
by default. Unless you are debugging the parser, do not set this property to
TRUE but display the symbol table file. See Section 4.2.1.4 for Fortran and
Section 4.2.3 for C.

1http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
2FI: retrospectively, having a unique symbol table for all modules was a design mistake.

The decision was made to have homogeneous accesses to local and global entities. It was also
made to match NewGen tabulated type declaration.

3http://www.cri.ensmp.fr/pips/newgen/ri.htdoc

30

http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
http://www.cri.ensmp.fr/pips/newgen/ri.htdoc

4.2 Parsed Code and Callees

Each module source code is parsed to produce an internal representation called
parsed_code and a list of called module names, callees.

4.2.1 Fortran 77

Source code is assumed to be fully Fortran-77 compliant. The syntax should
be checked by a standard Fortran compiler, e.g. fort77 or at least gfortran,
before the PIPS Fortran 77 parser is activated. On the first encountered error,
the parser may be able to emit a useful message or the non-analyzed part of the
source code is printed out.

PIPS input language is standard Fortran 77 with few extensions and some
restrictions. The input character set includes underscore, _, and varying length
variable names, i.e. they are not restricted to 6 characters are supported as well
as dependent types for arrays.

4.2.1.1 Fortran 77 Restrictions

1. ENTRY statements are not recognized and a user error is generated. Very
few cases of this obsolete feature were encountered in the codes initially
used to benchmark PIPS. ENTRY statements have to be replaced manu-
ally by SUBROUTINE or FUNCTION and appropriate commons. If the parser
bumps into a call to an ENTRY point, it may wrongly diagnose a missing
source code for this entry, or even generate a useless but pipsmake satis-
fying stub if the corresponding property has been set (see Section 3.3).

2. Multiple returns are not in PIPS Fortran.

3. ASSIGN and assigned GOTO are not in PIPS Fortran.

4. Computed GOTOs are not in PIPS Fortran. They are automatically replaced
by a IF...ELSEIF...ENDIF construct in the parser.

5. Functional formal parameters are not accepted. This is deeply exploited
in pipsmake.

6. Integer PARAMETERs must be initialized with integer constant expres-
sions because conversion functions are not implemented.

7. DO loop headers should have no label. Add a CONTINUE just before the
loop when it happens. This can be performed automatically if the property
PARSER_SIMPLIFY_LABELLED_LOOPS 4.2.1.4 is set to TRUE. This restriction
is imposed by the parallelization phases, not by the parser.

8. Complex constants, e.g. (0.,1.), are not directly recognized by the
parser. They must be replaced by a call to intrinsic CMPLX. The PIPS

preprocessing replaces them by a call to COMPLX .

9. Function formulae are not recognized by the parser. An undeclared array
and/or an unsupported macro is diagnosed. They may be substituted in
an unsafe way by the preprocessor if the property

PARSER_EXPAND_STATEMENT_FUNCTIONS 4.2.1.4

31

is set. If the substitution is considered possibly unsafe, a warning is dis-
played.

These parser restrictions were based on funding constraints. They are mostly
alleviated by the preprocessing phase. PerfectClub and SPEC-CFP95 bench-
marks are handled without manual editing, but for ENTRY statements which
are obsoleted by the current Fortran standard.

4.2.1.2 Some Additional Remarks

• The PIPS preprocessing stage included in fsplit() is going to name un-
named modules MAIN000 and unnamed blockdata DATA000 to be consistent
with the generated file name.

• Hollerith constants are converted to a more readable quoted form, and
then output as such by the prettyprinter.

4.2.1.3 Some Unfriendly Features

1. Source code is read in columns 1-72 only. Lines ending in columns 73 and
beyond usually generate incomprehensible errors. A warning is generated
for lines ending after column 72.

2. Comments are carried by the following statement. Comments carried by
RETURN, ENDDO, GOTO or CONTINUE statements are not always preserved
because the internal representation transforms these statements or because
the parallelization phase regenerates some of them. However, they are
more likely to be hidden by the prettyprinter. There is a large range of
prettyprinter properties to obtain less filtered view of the code.

3. Formats and character constants are not properly handled. Multi-line
formats and constants are not always reprinted in a Fortran correct form.

4. Declarations are exploited on-the-fly. Thus type and dimension informa-
tion must be available before common declaration. If not, wrong common
offsets are computed at first and fixed later in Function EndOfProcedure).
Also, formal arguments implicitly are declared using the default implicit
rule. If it is necessary to declare them, this new declarations should occur
before an IMPLICIT declaration. Users are surprised by the type redefini-
tion errors displayed.

4.2.1.4 Declaration of the Standard Fortran 77 Parser

parser > MODULE.parsed_code

> MODULE.callees

< PROGRAM.entities

< MODULE.source_file

For parser debugging purposes, it is possible to print a summary of the
symbol table, when enabling this property:

PARSER_DUMP_SYMBOL_TABLE FALSE

32

This should be avoided and the resource symbol_table_file be displayed in-
stead.

The prettyprint of the symbol table for a Fortran or C module is generated
with:

parsed_symbol_table > MODULE.parsed_symbol_table_file

< PROGRAM.entities

< MODULE.parsed_code

Input Format

Some subtle errors occur because the PIPS parser uses a fixed format. Columns
73 to 80 are ignored, but the parser may emit a warning if some characters are
encountered in this comment field.

PARSER_WARN_FOR_COLUMNS_73_80 TRUE

ANSI extension

PIPS has been initially developed to parse correct Fortran compliant programs
only. Real applications use lots of ANSI extensions. . . and they are not always
correct! To make sure that PIPS output is correct, the input code should be
checked against ANSI extensions using property

CHECK FORTRAN SYNTAX BEFORE PIPS

(see Section 3.2) and the property below should be set to false.

PARSER_ACCEPT_ANSI_EXTENSIONS TRUE

Currently, this property is not used often enough in PIPS parser which let
go many mistakes... as expected by real users!

Array Range Extension

PIPS has been developed to parse correct Fortran-77 compliant programs only.
Array ranges are used to improve readability. They can be generated by PIPS
prettyprinter. They are not parsed as correct input by default.

PARSER_ACCEPT_ARRAY_RANGE_EXTENSION FALSE

Type Checking

Each argument list at calls to a function or a subroutine is compared to the
functional type of the callee. Turn this off if you need to support variable
numbers of arguments or if you use overloading and do not want to hear about
it. For instance, an IO routine can be used to write an array of integers or an
array of reals or an array of complex if the length parameter is appropriate.

Since the functional typing is shaky, let’s turn it off by default!

PARSER_TYPE_CHECK_CALL_SITES FALSE

33

Loop Header with Label

The PIPS implementation of Allen&Kennedy algorithm cannot cope with la-
beled DO loops because the loop, and hence its label, may be replicated if the
loop is distributed. The parser can generate an extra CONTINUE statement to
carry the label and produce a label-free loop. This is not the standard option
because PIPS is designed to output code as close as possible to the user source
code.

PARSER_SIMPLIFY_LABELLED_LOOPS FALSE

Most PIPS analyses work better if do loop bounds are affine. It is sometimes
possible to improve results for non-affine bounds by assigning the bound to an
integer variables and by using this variable as bound. But this is implemented
for Fortran, but not for C.

PARSER_LINEARIZE_LOOP_BOUNDS FALSE

Entry

The entry construct can be seen as an early attempt at object-oriented pro-
gramming. The same object can be processed by several function. The object
is declared as a standard subroutine or function and entry points are placed in
the executable code. The entry points have different sets of formal parameters,
they may share some common pieces of code, they share the declared variables,
especially the static ones.

The entry mechanism is dangerous because of the flow of control between en-
tries. It is now obsolete and is not analyzed directly by PIPS. Instead each entry
may be converted into a first class function or subroutine and static variables are
gathered in a specific common. This is the default option. If the substitution is
not acceptable, the property may be turned off and entries results in a parser
error.

PARSER_SUBSTITUTE_ENTRIES TRUE

Alternate Return

Alternate returns are put among the obsolete Fortran features by the Fortran 90
standard. It is possible (1) to refuse them (option ”NO”), or (2) to ignore them
and to replace alternate returns by STOP (option ”STOP”), or (3) to substitute
them by a semantically equivalent code based on return code values (option
”RC” or option ”HRC”). Option (2) is useful if the alternate returns are used
to propagate error conditions. Option (3) is useful to understand the impact
of the alternate returns on the control flow graph and to maintain the code
semantics. Option ”RC” uses an additional parameter while option ”HRC”
uses a set of PIPS run-time functions to hide the set and get of the return code
which make declaration regeneration less useful. By default, the first option is
selected and alternate returns are refused.

To produce an executable code, the declarations must be regenerated: see
property PRETTYPRINT_ALL_DECLARATIONS 10.2.22.6 in Section 10.2.22.6. This
is not necessary with option ”HRC”. Fewer new declarations are needed if

34

variable PARSER_RETURN_CODE_VARIABLE 4.2.1.4 is implicitly integer because
its first letter is in the I-N range.

With option (2), the code can still be executed if alternate returns are used
only for errors and if no errors occur. It can also be analyzed to understand
what the normal behavior is. For instance, OUT regions are more likely to be
exact when exceptions and errors are ignored.

Formal and actual label variables are replaced by string variables to pre-
serve the parameter ordre and as much source information as possible. See
PARSER_FORMAL_LABEL_SUBSTITUTE_PREFIX 4.2.1.4 which is used to generate
new variable names.

PARSER_SUBSTITUTE_ALTERNATE_RETURNS "NO"

PARSER_RETURN_CODE_VARIABLE "I_PIPS_RETURN_CODE_"

PARSER_FORMAL_LABEL_SUBSTITUTE_PREFIX "FORMAL_RETURN_LABEL_"

The internal representation can be hidden and the alternate returns can
be prettyprinted at the call sites and modules declaration by turning on the
following property:

PRETTYPRINT_REGENERATE_ALTERNATE_RETURNS FALSE

Using a mixed C / Fortran RI is troublesome for comments handling: some-
times the comment guard is stored in the comment, sometime not. Sometimes
it is on purpose, sometimes it is not. When following property is set to true,
PIPS 4 does its best to prettyprint comments correctly.

PRETTYPRINT_CHECK_COMMENTS TRUE

If all modules have been processed by PIPS, it is possible not to regenerate
alternate returns and to use a code close to the internal representation. If they
are regenerated in the call sites and module declaration, they are nevertheless
not used by the code generated by PIPS which is consistent with the internal
representation.

Here is a possible implementation of the two PIPS run-time subroutines
required by the hidden return code (”HRC”) option:

subroutine SET I PIPS RETURN CODE (irc)
common /PIPS RETURN CODE COMMON/irc shared
irc shared = irc
end
subroutine GET I PIPS RETURN CODE (irc)
common /PIPS RETURN CODE COMMON/irc shared
irc = irc shared
end

Note that the subroutine names depend on the PARSER_RETURN_CODE_VARIABLE 4.2.1.4
property. They are generated by prefixing it with SET_ and GET_. There imple-
mentation is free. The common name used should not conflict with application
common names. The ENTRY mechanism is not used because it would be desug-
ared by PIPS anyway.

4http://www.cri.ensmp.fr/pips

35

http://www.cri.ensmp.fr/pips
http://www.cri.ensmp.fr/pips

Assigned GO TO

By default, assigned GO TO and ASSIGN statements are not accepted. These
constructs are obsolete and will not be part of future Fortran standards.

However, it is possible to replace them automatically in a way similar to
computed GO TO. Each ASSIGN statement is replaced by a standard integer
assignment. The label is converted to its numerical value. When an assigned
GO TO with its optional list of labels is encountered, it is transformed into a
sequence of logical IF statement with appropriate tests and GO TO’s. According
to Fortran 77 Standard, Section 11.3, Page 11-2, the control variable must be set
to one of the labels in the optional list. Hence a STOP statement is generated
to interrupt the execution in case this happens, but note that compilers such
as SUN f77 and g77 do not check this condition at run-time (it is undecidable
statically).

PARSER_SUBSTITUTE_ASSIGNED_GOTO FALSE

Assigned GO TO without the optional list of labels are not processed. In
other words, PIPS make the optional list mandatory for substitution. It usually
is quite easy to add manually the list of potential targets.

Also, ASSIGN statements cannot be used to define a FORMAT label. If the
desugaring option is selected, an illegal program is produced by PIPS parser.

Statement Function

This property controls the processing of Fortran statement functions by text
substitution in the parser. No other processing is available and the parser stops
with an error message when a statement function declaration is encountered.

The default used to be not to perform this unchecked replacement, which
might change the semantics of the program because type coercion is not enforced
and actual parameters are not assigned to intermediate variables. However most
statement functions do not require these extra-steps and it is legal to perform
the textual substitution. For user convenience, the default option is textual
substitution.

Note that the parser does not have enough information to check the validity
of the transformation, but a warning is issued if legality is doubtful. If strange
results are obtained when executing codes transformed with PIPS, his property
should be set to false.

A better method would be to represent them somehow a local functions in
the internal representation, but the implications for pipsmake and other issues
are clearly not all foreseen. . . (Fabien Coelho).

PARSER_EXPAND_STATEMENT_FUNCTIONS TRUE

4.2.2 Declaration of HPFC Parser

This parser takes a different Fortran file but applies the same processing as
the previous parser. The Fortran file is the result of the preprocessing by the
hpfc_filter 8.3.2.1 phase of the original file in order to extract the directives
and switch them to a Fortran 77 parsable form. As another side-effect, this
parser hides some callees from pipsmake. This callees are temporary functions

36

used to encode HPF directives. Their call sites are removed from the code
before requesting full analyses to PIPS. This parser is triggered automatically
by the hpfc_close 8.3.2.5 phase when requested. It should never be selected
or activated by hand.

hpfc_parser > MODULE.parsed_code

> MODULE.callees

< PROGRAM.entities

< MODULE.hpfc_filtered_file

4.2.3 Declaration of the C Parsers

Three C parsers are used by PIPS 5. The first one, called the C preprocessor
parser, is used to break down a C file or a set of C files into multiple files,
with one function per file and a global file with all external declarations, the
compilation unit. This is performed when PIPS 6 is launched and its workspace
is created.

The second one is called the C parser. It is designed to parse the function
files. The last one is called the compilation unit parser and it deals with the
compilation unit file.

4.2.3.1 Language parsed by the C Parsers

The C parsers are all based on the same initial set of lexical and syntactic rules
designed for C77. They support some C99 extensions such as VLA, declarations
in for loops...

The language parsed is larger than the language handled interprocedurally
by PIPS:

1. recursion is not supported;

2. pointers to function are not supported;

3. internal functions, a gcc extension, are not supported.

4.2.3.2 Handling of C Code

A C file is seen in PIPS as a compilation unit, that contains all the objects
declarations that are global to this file, and as many as module (function or
procedure) definitions defined in this file.

Thus the compilation unit contains the file-global macros, the include state-
ments, the local and global variable definitions, the type definitions, and the
function declarations if any found in the C file.

When the PIPS workspace is created by PIPS preprocessor, each C file is
preprocessed7 using for instance gcc -E8 and broken into a new which contains

5http://www.cri.ensmp.fr/pips
6http://www.cri.ensmp.fr/pips
7Macros are interpreted and include files are expanded. The result depends on the C

preprocessor used,on its option and on the system environment (/usr/include,...).
8It can be redefined using CPP PIPS and PIPS CPP FLAGS environment variables as explained

in § 3.2.2.

37

http://www.cri.ensmp.fr/pips
http://www.cri.ensmp.fr/pips
http://www.cri.ensmp.fr/pips
http://www.cri.ensmp.fr/pips

only the file-global variable declarations, the function declarations and the type
definitions, and one C file for each C function defined in the initial C file.

The new compilation units must be parsed before the new files, containing
each one exactly one function definition, can be parsed. The new compilation
units are named like the initial file names but with a bang extension.

For example, considering a C file foo.c with 2 function definitions:

enum { N = 2008 } ;
typedef f loat data t ;
data t matrix [N] [N] ;
extern int errno ;

int c a l c (data t a [N] [N]) {
[. . .]

}

int main (int argc , char ∗argv []) {
[. .]

}

After preprocessing, it leads to a file foo.cpp_processed.c that is then split
into a new foo!.cpp_processed.c compilation unit containing

enum { N = 2008 } ;
typedef f loat data t ;
data t matrix [N] [N] ;
extern int errno ;

int c a l c (data t a [N] [N]) ; }

int main (int argc , char ∗argv []) ;

and 2 module files containing the definitions of the 2 functions, a calc.c

int c a l c (data t a [N] [N]) {
[. . .]

}

and a main.c

int main (int argc , char ∗argv []) {
[. .]

}

Note that it is possible to have an empty compilation unit and no module file
if the original file does not contain sensible C informations (such as an empty
file containing only blank characters and so on).

4.2.3.3 Compilation Unit Parser

compilation_unit_parser > COMPILATION_UNIT.declarations

< COMPILATION_UNIT.c_source_file

< PROGRAM.entities

38

The resource COMPILATION_UNIT.declarations produced by compilation unit parser

is a special resource used to force the parsing of the new compilation unit before
the parsing of its associated functions. It is in fact a hash table containing the
file-global C keywords and typedef names defined in each compilation unit.

In fact phase compilation unit parser also produces parsed code and callees
resources for the compilation unit. This is done to work around the fact that
rule c parser was invoked on compilation units by later phases, in particular for
the computation of initial preconditions, breaking the declarations of function
prototypes. These two resources are not declared here because pipsmake gets
confused between the different rules to compute parsed code : there is no simple
way to distinguish between compilation units and modules at some times and
handling them similarly at other times.

4.2.3.4 C Parser

c_parser > MODULE.parsed_code

> MODULE.callees

< PROGRAM.entities

< MODULE.c_source_file

< MODULE.input_file_name

< COMPILATION_UNIT.declarations

If you want to parse some C code using tpips, it is possible to select the C
parser with

activate C_PARSER

but this is not necessary as the parser is selected according to the source file
extension. Some properties useful (have a look at properties) to deal with a C
program are

PRETTYPRINT_C_CODE TRUE (obsolete, replaced by PRETTYPRINT_LANGUAGE ‘‘C’’)

PRETTYPRINT_STATEMENT_NUMBER FALSE

PRETTYPRINT_BLOCK_IF_ONLY TRUE

4.2.3.5 C Symbol Table

A prettyprint of the symbol table for a C module can be generated with passes
parsed_symbol_table ?? and symbol_table ??.

The EXTENDED_VARIABLE_INFORMATION 4.2.3.5 property can be used to ex-
tend the information available for variables. By default the entity name, the
offset and the size are printed. Using this property the type and the user name,
which may be different from the internal name, are also displayed.

EXTENDED_VARIABLE_INFORMATION FALSE

4.2.3.6 Properties Used by the C Parsers

The C_PARSER_RETURN_SUBSTITUTION 4.2.3.6 property can be used to handle
properly multiple returns within one function. The current default value is false,
which preserves best the source aspect but modifies the control flow because the
calls to return are assumed to flow in sequence. If the property is set to true, C

39

return statement are replaced, when necessary, either by a simple goto for void
functions, or by an assignment of the returned value to a special variable and a
goto. A unique return statement is placed at the syntactic end of the function.
For functions with no return statement or with a unique return statement placed
at the end of their bodies, this property is useless.

C_PARSER_RETURN_SUBSTITUTION FALSE

The C99 for-loop with a declaration such as for(int i = a ;...;...) can be
represented in the RI with a naive representation such as:

{
int i = a ;
for (; . . . ; . . .)

}

This is done when the C_PARSER_GENERATE_NAIVE_C99_FOR_LOOP_DECLARATION 4.2.3.6
property is set to TRUE

C_PARSER_GENERATE_NAIVE_C99_FOR_LOOP_DECLARATION FALSE

Else, we can generate more or less other representation. For example, with
some declaration splitting, we can generate a more representative version:

{
int i ;
for (i = a ; . . . ; . . .)

}

if C_PARSER_GENERATE_COMPACT_C99_FOR_LOOP_DECLARATION 4.2.3.6 property
set to FALSE.

C_PARSER_GENERATE_COMPACT_C99_FOR_LOOP_DECLARATION FALSE

Else, we can generate a more compact (but newer representation that can
choke some parts of PIPS 9...) like:

statement with ” i n t i ; ” d e c l a r a t i on
i n s t r u c t i o n for (i = a ; . . . ; . . .)

}

This representation is not yet implemented.

4.2.4 Fortran 90

The Fortran 90 parser is not integrated in pipsmake. It is activated earlier when
the workspace is created.

4.3 Controlized Code (Hierarchical Control Flow
Graph)

PIPS analyses and transformations take advantage of a hierarchical control flow
graph (HCFG), which preserves structured part of code as such, and uses a

9http://www.cri.ensmp.fr/pips

40

http://www.cri.ensmp.fr/pips
http://www.cri.ensmp.fr/pips

control flow graph only when no syntactic representation is available (see [33]).
The encoding of the relationship between structured and unstructured parts
of code is explained elsewhere, mainly in the PIPS Internal Representation of
Fortran and C code10.

The controlizer 4.3 is the historical controlizer phase that removes GOTO
statements in the parsed code and generates a similar representation with small
CFGs. It was developped for Fortran 77 code.

The Fortran controlizer phase was too hacked and undocumented to be im-
proved and debugged for C99 code so a new version has been developed, doc-
umented and is designed to be simpler and easier to understand. But, for
comparison, the Fortran controlizer phase can still be used.

controlizer > MODULE.code

< PROGRAM.entities

< MODULE.parsed_code

For debugging and validation purpose, by setting at most one of the PIPS_USE_OLD_CONTROLIZER
or PIPS_USE_NEW_CONTROLIZER environment variables, you can force the use of
the specific version of the controlizer you want to use. This override the setting
by activate. Ronan?

Note that the controlizer choice impacts the HCFG when Fortran entries
are used. If you do not know what Fortran entries are, it is deprecated stuff
anyway... ,

The new_controlizer 4.3 removes GOTO statements in the parsed code and
generates a similar representation with small CFGs. It is designed to work
according to C and C99 standards. Sequences of sequence and variable dec-
larations are handled properly. However, the prettyprinter is tuned for code
generated by controlizer 4.3, which does not always minimize the number of
goto statements regenerated.

The hierarchical control flow graph built by the controlizer 4.3 is pretty
crude. The partial control flow graphs, called unstructured statements, are
derived from syntactic constructs. The control scope of an unstructured is the
smallest enclosing structured construct, whether a loop, a test or a sequence.
Thus some statements, which might be seen as part of structured code, end up
as nodes of an unstructured.

Note that sequences of statements are identified as such by controlizer 4.3.
Each of them appears as a unique node.

Also, useless CONTINUE statements may be added as provisional landing
pads and not removed. The exit node should never have successors but this
may happen after some PIPS function calls. The exit node, as well as several
other nodes, also may be unreachable. After clean up, there should be no un-
reachable node or the only unreachable node should be the exit node. Function
unspaghettify 9.3.4.1 (see Section 9.3.4.1) is applied by default to clean up
and to reduce the control flow graphs after controlizer 4.3.

The GOTO statements are transformed in arcs but also in CONTINUE state-
ments to preserve as many user comments as possible.

The top statement of a module returned by the controlizer 4.3 used to
contain always an unstructured instruction with only one node. Several phases

10http://www.cri.ensmp.fr/pips/newgen/ri.htdoc

41

http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
http://www.cri.ensmp.fr/pips/newgen/ri.htdoc

in PIPS assumed that this always is the case, although other program transfor-
mations may well return any kind of top statement, most likely a block. This
is no longer true. The top statement of a module may contain any kind of
instruction.

Here is declared the C and C99 controlizer:

new_controlizer > MODULE.code

< PROGRAM.entities

< MODULE.parsed_code

Control restructuring eliminates empty sequences but as empty true or false
branch of structured IF. This semantic property of PIPS Internal Representa-
tion of Fortran and C code11 is enforced by libraries effects, regions, hpfc,
effects-generic.

WARN_ABOUT_EMPTY_SEQUENCES FALSE

By unsetting this property unspaghettify 9.3.4.1 is not applied implicitly
in the controlizer phase.

UNSPAGHETTIFY_IN_CONTROLIZER TRUE

The next property is used to convert C for loops into C while loops. The
purpose is to speed up the re-use of Fortran analyses and transformation for C
code. This property is set to false by default and should ultimately disappear.
But for new user convenience, it is set to TRUE by activate_language() when
the language is C.

FOR_TO_WHILE_LOOP_IN_CONTROLIZER FALSE

The next property is used to convert C for loops into C do loops when
syntactically possible. The conversion is not safe because the effect of the loop
body on the loop index is not checked. The purpose is to speed up the re-use
of Fortran analyses and transformation for C code. This property is set to false
by default and should disappear soon. But for new user convenience, it is set
to TRUE by activate_language() when the language is C.

FOR_TO_DO_LOOP_IN_CONTROLIZER FALSE

This can also explicitly applied by calling the phase described in § 9.3.4.4.

FORMAT Restructuring

To able deeper code transformation, FORMATs can be gathered at the very
beginning of the code or at the very end according to the following options in
the unspaghettify or control restructuring phase.

GATHER_FORMATS_AT_BEGINNING FALSE

GATHER_FORMATS_AT_END FALSE

11http://www.cri.ensmp.fr/pips/newgen/ri.htdoc

42

http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
http://www.cri.ensmp.fr/pips/newgen/ri.htdoc

4.3.1 Properties for Clean Up Sequences

To display the statistics about cleaning-up sequences and removing useless CON-
TINUE or empty statement.

CLEAN_UP_SEQUENCES_DISPLAY_STATISTICS FALSE

There is a trade-off between keeping the comments associated to labels and
goto and the cleaning that can be do on the control graph.

By default, do not fuse empty control nodes that have labels or comments:

FUSE_CONTROL_NODES_WITH_COMMENTS_OR_LABEL FALSE

By default, do not fuse sequences with internal declarations. Turning this
to TRUE results in variable renamings when the same variable name is used at
several places in the analyzed module.

CLEAN_UP_SEQUENCES_WITH_DECLARATIONS FALSE

4.3.2 Symbol Table Related to a Module Code

The prettyprint of the symbol table for a Fortran or C module is generated with:

symbol_table > MODULE.symbol_table_file

< PROGRAM.entities

< MODULE.code

4.4 Parallel Code

The internal representation includes special field to declare parallel constructs
such as parallel loops. A parallel code internal representation does not differ
fundamentally from a sequential code.

43

Chapter 5

Pedagogical Phases

Although this phases should be spread elsewhere in this manual, we have put
some pedagogical phases useful to jump into PIPS first.

5.1 Using XML backend

A phase that displays, in debug mode, statements matching an XPath expression
on the internal representation:

alias simple_xpath_test ’Output debug information about XPath matching’

simple_xpath_test > MODULE.code

< PROGRAM.entities

< MODULE.code

5.2 Operating of gen multi recurse

A phase that displays the explore path of function gen multi recurse.

alias gen_multi_recurse_explorer ’Output debug information about XPath matching’

gen_multi_recurse_explorer > MODULE.code

< PROGRAM.entities

< MODULE.code

5.3 Prepending a comment

Prepends a comment to the first statement of a module. Useful to apply post-
processing after PIPS.

alias prepend_comment ’Prepend a comment to the first statement of a module’

prepend_comment > MODULE.code

< PROGRAM.entities

< MODULE.code

44

The comment to add is selected by this property:

PREPEND_COMMENT "/*␣This␣comment␣is␣added␣by␣PREPEND_COMMENT␣phase␣*/"

5.4 Prepending a call

This phase inserts a call to function MY_TRACK just before the first statement of a
module. Useful as a pedagogical example to explore the internal representation
and Newgen. Not to be used for any pratical purpose as it is bugged. Debugging
it is a pedagogical exercise.

alias prepend_call ’Insert a call to MY_TRACK just before the first statement of a module’

prepend_call > MODULE.code

> MODULE.callees

< PROGRAM.entities

< MODULE.code

The called function could be defined by this property:

PREPEND_CALL "MY_TRACK"

but it is not.

5.5 Add a pragma to a module

This phase prepend or appends a pragma to a module.

alias add_pragma ’Prepends or append a pragma to the code of a module’

add_pragma > MODULE.code

< PROGRAM.entities

< MODULE.code

The pragma name can be defined by this property:

PRAGMA_NAME "MY_PRAGMA"

The pragma can be append or prepend thanks to this property:

PRAGMA_PREPEND TRUE

The pass clear_pragma 5.5 clears all pragma, this should be done on any
input with unhandled pragma, we don’t what semantic we might break.

clear_pragma > MODULE.code

< PROGRAM.entities

< MODULE.code

The pass pragma_outliner 5.5 is used for outlining a sequence of statements
contained between two given sentinel pragmas using properties PRAGMA_OUTLINER_BEGIN 5.5
and PRAGMA_OUTLINER_END 5.5. The name of the new function is controlled us-
ing PRAGMA_OUTLINER_PREFIX 5.5.

45

pragma_outliner > MODULE.code

> MODULE.callees

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.regions

< CALLEES.summary_regions

< MODULE.summary_regions

< MODULE.transformers

< MODULE.preconditions

PRAGMA_OUTLINER_BEGIN "begin"

PRAGMA_OUTLINER_END "end"

PRAGMA_OUTLINER_PREFIX "pips_outlined"

Remove labels that are not usefull

remove_useless_label > MODULE.code

< PROGRAM.entities

< MODULE.code

Loop labels can be kept thanks to this property:

REMOVE_USELESS_LABEL_KEEP_LOOP_LABEL FALSE

46

Chapter 6

Static Analyses

Analyses encompass the computations of call graphs, the memory effects, re-
ductions, use-def chains, dependence graphs, interprocedural checks (flinter),
semantics information (transformers and preconditions), continuations, com-
plexities, convex array regions, dynamic aliases and complementary regions.

6.1 Call Graph

All lists of callees are needed to build the global lists of callers for each module.
The callers and callees lists are used by pipsmake to control top-down and
bottom-up analyses. The call graph is assumed to be a DAG, i.e. no recursive
cycle exists, but it is not necessarily connected.

The height of a module can be used to schedule bottom-up analyses. It is
zero if the module has no callees. Else, it is the maximal height of the callees
plus one.

The depth of a module can be used to schedule top-down analyses. It is zero
if the module has no callers. Else, it it the maximal depth of the callers plus
one.

callgraph > ALL.callers

> ALL.height

> ALL.depth

< ALL.callees

The following pass generates a uDrawGraph1 version of the callgraph. Its
quite partial since it should rely on an hypothetical all callees, direct and indi-
rect, resource.

alias dvcg_file ’Graphical Call Graph’

alias graph_of_calls ’For current module’

alias full_graph_of_calls ’For all modules’

graph_of_calls > MODULE.dvcg_file

< ALL.callees

1http://www.informatik.uni-bremen.de/uDrawGraph

47

http://www.informatik.uni-bremen.de/uDrawGraph
http://www.informatik.uni-bremen.de/uDrawGraph

full_graph_of_calls > PROGRAM.dvcg_file

< ALL.callees

6.2 Memory Effects

The data structures used to represent memory effects and their computation
are described in [34]. Another description is available on line, in PIPS Internal
Representation of Fortran and C code2 Technical Report.

Note that the standard name in the Dragon book is likely to be Gen and
Kill sets in the standard data flow analysis framework, but PIPS uses the more
general concept of effect developped by P. Jouvelot and D. Gifford [38] and its
analyses are mostly based on the abstract syntac tree (AST) rather than the
control flow graph (CFG).

6.2.1 Proper Memory Effects

The proper memory effects of a statement basically are a list of variables that
may be read (used) or written (defined) by the statement. They are used to
build use-def chains (see [1] or a later edition) and then the dependence graph.

Proper means that the effects of a compound statement do not include the
effects of lower level statements. For instance, the body of a loop, true and false
branches of a test statement, control nodes in an unstructured statement ... are
ignored to compute the proper effects of a loop, a test or an unstructured.

Two families of effects are computed : pointer effects are effects in which
intermediary access paths may refer to different memory locations at different
program points; regular effects are constant path effects, which means that
their intermediary access paths all refer to unique memory locations. The same
distinction holds for convex array regions (see section 6.12).

proper effects with points to and proper effects with pointer values

are alternatives to compute constant path proper effects using points-to (see sub-
section 6.14.5) or pointer values analyses (see subsection 6.14.7). This is still at
an experimental stage.

Summary effects (see Section 6.2.4) of a called module are used to compute
the proper effects at the corresponding call sites. They are translated from the
callee’s scope into the caller’s scope. The translation is based on the actual-
to-formal binding. If too many actual arguments are defined, a user warning is
issued but the processing goes on because a simple semantics is available: ignore
useless actual arguments. If too few actual arguments are provided, a user error
is issued because the effects of the call are not defined.

Variables private to loops are handled like regular variable.
See proper_effects 6.2.1
See proper_effects 6.2.1

proper_pointer_effects > MODULE.proper_pointer_effects

< PROGRAM.entities

< MODULE.code

< CALLEES.summary_pointer_effects

2http://www.cri.ensmp.fr/pips/newgen/ri.htdoc

48

http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
http://www.cri.ensmp.fr/pips/newgen/ri.htdoc

proper_effects > MODULE.proper_effects

< PROGRAM.entities

< MODULE.code

< CALLEES.summary_effects

When pointers are used, points-to information is useful to obtain precise
proper memory effects.

Because points-to analysis is able to detect some cases of segfaults, variables
that are not defined/written can nevertheless have a different abstract value at
the beginning and at the end of a piece of code.

This leads to difficulties with memory effects. Firstly, if a piece of code
is not reachable because a segfault always occurs before it is executed, it has
no memory effects (as usual, the PIPS output is pretty surprising...). Secondly,
cumulated memory effects can either be any effect that is linked to any execution
of a piece of code or any effect that happens when the executions reach the end
of the piece of code.

So EffectsWithPointsTo contains weird results either because the code al-
ways segfault somewhere or because the code might segfault because a function
argument is not checked before it is used. Hence, effects disappear or must
effects become may effects.

proper_effects_with_points_to > MODULE.proper_effects

< PROGRAM.entities

< MODULE.code

< MODULE.points_to

< CALLEES.summary_effects

proper_effects_with_pointer_values > MODULE.proper_effects

< PROGRAM.entities

< MODULE.code

< MODULE.simple_pointer_values

< CALLEES.summary_effects

6.2.2 Filtered Proper Memory Effects
To be con-
tinued...by
whom?

This phase collects information about where a given global variable is actually
modified in the program.

filter_proper_effects > MODULE.filtered_proper_effects

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< CALLEES.summary_effects

6.2.3 Cumulated Memory Effects

Cumulated effects of statements are lists of read or written variables, just like
the proper effects (see Section 6.2.1).

Cumulated means that the effects of a compound statement, do loop, test
or unstructured, include the effects of the lower level statements such as a loop
body or a test branch.

49

For return, exit and abort statements (only for the main function or what
is consider as the main function), cumulated effects will also add the read on
LUNS (Logical Units) that are present for the function. The goal of adding read
LUNS for these statements is to improve OUT Effects (and Regions) especially
for the last statements that make a write on LUNS.

cumulated_effects > MODULE.cumulated_effects

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

TODO: inline documentation

cumulated_effects_with_points_to > MODULE.cumulated_effects

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

TODO: inline documentation

cumulated_effects_with_pointer_values > MODULE.cumulated_effects

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

TODO: inline documentation

cumulated_pointer_effects > MODULE.cumulated_pointer_effects

< PROGRAM.entities

< MODULE.code

< MODULE.proper_pointer_effects

TODO: inline documentation

cumulated_pointer_effects_with_points_to > MODULE.cumulated_pointer_effects

< PROGRAM.entities

< MODULE.code

< MODULE.proper_pointer_effects

< MODULE.points_to

TODO: inline documentation

cumulated_pointer_effects_with_pointer_values > MODULE.cumulated_pointer_effects

< PROGRAM.entities

< MODULE.code

< MODULE.proper_pointer_effects

< MODULE.simple_pointer_values

50

6.2.4 Summary Data Flow Information (SDFI)

Summary data flow information is the simplest interprocedural information
needed to take procedure into account in a parallelizer. It was introduced in
Parafrase (see [40]) under this name, but should be called summary memory
effects in PIPS context.

The summary_effects 6.2.4 of a module are the cumulated memory effects of
its top level statement (see Section 6.2.3), but effects on local dynamic variables
are ignored (because they cannot be observed by the callers3) and subscript
expressions of remaining effects are eliminated.

summary_pointer_effects > MODULE.summary_pointer_effects

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_pointer_effects

summary_effects > MODULE.summary_effects

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

6.2.5 IN and OUT Effects

IN and OUT memory effects of a statement s are memory locations whose input
values are used by statement s or whose output values are used by statement
s continuation. Variables allocated in the statement are not part of the IN or
OUT effects. Variables defined before they are used ar not part of the IN effects.
OUT effects require an interprocedural analysis4

in_effects > MODULE.in_effects

> MODULE.cumulated_in_effects

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< CALLEES.in_summary_effects

in_summary_effects > MODULE.in_summary_effects

< PROGRAM.entities

< MODULE.code

< MODULE.in_effects

out_summary_effects > MODULE.out_summary_effects

< PROGRAM.entities

< MODULE.code

< CALLERS.out_effects

out_effects > MODULE.out_effects

< PROGRAM.entities

< MODULE.code

3Unless it accesses illegally the stack: see Tom Reps, http://pages.cs.wisc.edu/ reps
4They are not validated as of June 21, 2008 (FI).

51

< MODULE.out_summary_effects

< MODULE.cumulated_in_effects

6.2.6 Proper and Cumulated References

The concept of proper references is not yet clearly defined. The original idea
is to keep track of the actual objects of Newgen domain reference used in
the program representation of the current statement, while retaining if they
correspond to a read or a write of the corresponding memory locations. Proper
references are represented as effects.

For C programs, where memory accesses are not necessarily represented by
objects of Newgen domain reference, the semantics of this analysis is unclear.

Cumulated references gather proper references over the program code, with-
out taking into account the modification of memory stores by the program
execution.

FC: I should implement real summary references?

proper_references > MODULE.proper_references

< PROGRAM.entities

< MODULE.code

< CALLEES.summary_effects

cumulated_references > MODULE.cumulated_references

< PROGRAM.entities

< MODULE.code

< MODULE.proper_references

6.2.7 Effect Properties

Effects are a first or second level analysis. They are analyzed using only some
information about pointers, either none, or points-to or pointer values. They are
used by many passes such as dependence graph analysis (Rice Pass), semantics
analysis (Transformers passes), convex array regions analysis...

It is often tempting, useful or necessary to ignore some effects. It is always
safer to ignore effects when they are used by a pass to avoid possible incon-
sistencies due to other passes using effects. However, it may be necessary to
ignore some effects in an effect pass because effects are merged and cannot be
unmerged by a later pass. Of course, this is not a standard setting for PIPS
and the semantics of the resulting codes or later analyses is unknown in general,
but to the person who makes the decision for a subset of input codes or for
experimental reasons.

6.2.7.1 Effects Filtering

Filter this variable in phase filter_proper_effects 6.2.2.

EFFECTS_FILTER_ON_VARIABLE ""

Property USER_EFFECTS_ON_STD_FILES 6.2.7.1 is used to control the way
the user uses stdout, stdin and stderr. The default case (FALSE) means
that the user does not modify these global variables. When set to TRUE, they

52

are considered as user variables, and dereferencing them through calls to stdio
functions leads to less precise effects.

USER_EFFECTS_ON_STD_FILES FALSE

6.2.7.2 Checking Pointer Updates

When set to TRUE, EFFECTS_POINTER_MODIFICATION_CHECKING 6.2.7.2 enables
pointer modification checking during the computation of cumulated effects and/or
RW convex array regions. Since this is still at experimentation level, it’s de-
fault value is FALSE. This property should disappear when pointer modification
analyses are more mature.

EFFECTS_POINTER_MODIFICATION_CHECKING FALSE

6.2.7.3 Dereferencing Effects

The default (and correct) behaviour for the computation of effects is to trans-
form dereferencing paths into constant paths using the information available,
either none or points-to or pointer values, and abstract locations used to repre-
sent sets of locations.

When property CONSTANT_PATH_EFFECTS 6.2.7.3 is set to FALSE, the latter
transformation is skipped. Effects are then equivalent to pointer effects. This
property is available for backward compatibility and experimental purpose. It
must be born in mind that analyses and transformations using the resulting
effects may yield uncorrect results. This property also affects the computation
of convex array regions.

CONSTANT_PATH_EFFECTS TRUE

Since CONSTANT_PATH_EFFECTS 6.2.7.3 may be set to FALSE erroneously,
some tests are included in conflicts testing to avoid generating wrong code. How-
ever, these tests are costly, and can be turned off by setting TRUST_CONSTANT_PATH_EFFECTS_IN_CONFLICTS 6.2.7.3
to FALSE. This must be used with care and only when there is no aliasing.

TRUST_CONSTANT_PATH_EFFECTS_IN_CONFLICTS FALSE

EFFECTS_IGNORE_DEREFERENCING 6.2.7.3 is set to FALSE. This must be used
with extreme care and only when pointer operations are known no to matter with
the analysis performed because only a subset of input codes is used. Constant
path effects are obtained by filtering constant path effects and by dropping
effects due to a pointer-related address computation as in *p=3; or p->i=3;.

EFFECTS_IGNORE_DEREFERENCING FALSE

6.2.7.4 Effects of References to a Variable Length Array (VLA)

Property VLA_EFFECT_READ 6.2.7.4 makes a read effect on variables dimension
of an variable-length array (vla) at each use of it. For instance, with an array
declared as a[size], at each occurence of a, like a[i], a READ effect will
be made for size. Normally, no reason to set it to FALSE. For parallelization
purpose, maybe want to set it to false?

53

VLA_EFFECT_READ TRUE

6.2.7.5 Memory Effects vs Environment Effects

Property MEMORY_EFFECTS_ONLY 6.2.7.5 is used to restrict the action kind of an
effect action to store. In other words, variable declarations and type declara-
tions are not considered to alter the execution state when this property is set
to TRUE. This is fine for Fortran code because variables cannot be declared
among executable statements and because new type cannot be declared. But
this leads to wrong result for C code when loop distribution or use-def elimina-
tion is performed.

Currently, PIPS does not have the capability to store default values depend-
ing on the source code language. The default value is TRUE to avoid disturbing
too many phases of PIPS at the same time while environment and type decla-
ration effects are introduced.

MEMORY_EFFECTS_ONLY TRUE

6.2.7.6 Time Effects

Some programs do measure execution times. All code placed between measure-
ment points must not be moved out, as can happen when loops are distributed
or, more generally, instructions are rescheduled. Since loops using time effects
are not parallel, a clock variable is always updated when a time-related function
is called. This is sufficient to avoid most problems, but not all of them because
time effects of all other executed statements are kept implicit, i.e. the real time
clock is not updated: and loops can still be distributed. If time measurements
are key, this property must be turned on. By default, it is turned off.

TIME_EFFECTS_USED FALSE

6.2.7.7 Effects of Unknown Functions

Some source code is sometimes missing. PIPS 5 does not have any way to
guess the memory effects of functions whose source code is missing. Several
approaches are possible to approximate the exact effects. Two optimistic ones
are implemented: either we assume that the function only computes a result and
has no side effects thru pointer parameters, global variables or static variables
(default option), or we assume the maximal possible effects through pointers
(this should be clarified: for all pointers p, *p is written) but not thru static or
global variables.

MAXIMAL_PARAMETER_EFFECTS_FOR_UNKNOWN_FUNCTIONS FALSE

For safety, a pessimitic option is be implemented and a maximal memory
effect, *ANYMODULE*:*ANYWHERE*, is associated to such unknown functions.

MAXIMAL_EFFECTS_FOR_UNKNOWN_FUNCTIONS FALSE

These two properties should not be true simultaneously.

5http://www.cri.ensmp.fr/pips

54

http://www.cri.ensmp.fr/pips
http://www.cri.ensmp.fr/pips

6.2.7.8 Other Properties Impacting EFfects

Property ALIASING_ACROSS_TYPES 6.14.8.1 has an impact on effect computa-
tion. When the locations used or defined by a memory effect are unknown, an
abstract location is used to represent either all possible locations of the program
(TRUE) or all locations of a certain type (FALSE).

6.3 Live Memory Access Paths

6.4 Reductions

The proper reductions are computed from a code.

proper_reductions > MODULE.proper_reductions

< PROGRAM.entities

< MODULE.code

< MODULE.proper_references

< CALLEES.summary_effects

< CALLEES.summary_reductions

The cumulated reductions propagate the reductions in the code, upwards.

cumulated_reductions > MODULE.cumulated_reductions

< PROGRAM.entities

< MODULE.code

< MODULE.proper_references

< MODULE.cumulated_effects

< MODULE.proper_reductions

This pass summarizes the reductions candidates found in a module for export
to its callers. The summary effects should be used to restrict attention to
variable of interest in the translation?

summary_reductions > MODULE.summary_reductions

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_reductions

< MODULE.summary_effects

Some possible (simple) transformations could be added to the code to mark
reductions in loops, for latter use in the parallelization.

The following is NOT implemented. Anyway, should the cumulated reductions
be simply used by the prettyprinter instead?

loop_reductions > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_reductions

55

6.4.1 Reduction Propagation

tries to transform

{
a = b + c ;
r = r + a ;

}
into

{
r = r +b ;
r = r +c ;

}

reduction_propagation > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.proper_reductions

< MODULE.dg

6.4.2 Reduction Detection

tries to transform

{
a = b + c ;
b = d + a ;

}
which hides a reduction on b into

{
b = b + c ;
b = d + b ;

}
when possible

reduction_detection > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.dg

6.5 Chains (Use-Def Chains)

Use-def and def-use chains are a standard data structure in optimizing compil-
ers [1]. These chains are used as a first approximation of the dependence graph.
Chains based on convex array regions (see Section 6.12) are more effective for
interprocedural parallelization.

If chains based on convex array regions have been selected, the simplest
dependence test must be used because regions carry more information than any
kind of preconditions. Preconditions and loop bound information already are
included in the region predicate.

56

6.5.1 Menu for Use-Def Chains

alias chains ’Use-Def Chains’

alias atomic_chains ’Standard’

alias region_chains ’Regions’

alias in_out_regions_chains ’In-Out Regions’

6.5.2 Standard Use-Def Chains (a.k.a. Atomic Chains)

The algorithm used to compute use-def chains is original because it is based on
PIPS hierarchical control flow graph and not on a unique control flow graph.

This algorithm generates inexistent dependencies on loop indices. These
dependence arcs appear between DO loop headers and implicit DO loops in
IO statements, or between one DO loop header and unrelated DO loop bound
expressions using that index variable. It is easy to spot the problem because
loop indices are not privatized. A prettyprint option,

PRETTYPRINT_ALL_PRIVATE_VARIABLES 10.2.22.5.1

must be set to true to see if the loop index is privatized or not. The problem
disappears when some loop indices are renamed.

The problem is due to the internal representation of DO loops: PIPS has
no way to distinguish between initialization effects and increment effects. They
have to be merged as proper loop effects. To reduce the problem, proper effects
of DO loops do not include the index read effect due to the loop incrementation.

Artificial arcs are added to... (Pierre Jouvelot, help!).

atomic_chains > MODULE.chains

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

6.5.3 READ/WRITE Region-Based Chains

Such chains are required for effective interprocedural parallelization. The de-
pendence graph is annotated with proper regions, to avoid inaccuracy due to
summarization at simple statement level (see Section 6.12).

Region-based chains are only compatible with the Rice Fast Dependence
Graph option (see Section 6.6.1) which has been extended to deal with them6.
Other dependence tests do not use region descriptors (their convex system),
because they cannot improve the Rice Fast Dependence test based on regions.

Regions chains are built using proper regions which are particular READ and
WRITE regions. For simple statements (assignments, calls to intrinsic functions),
summarization is avoided to preserve accuracy. At this inner level of the pro-
gram control flow graph, the extra amount of memory necessary to store regions
without computing their convex hull should not be too high compared to the
expected gain for dependence analysis. For tests and loops, proper regions con-
tain the regions associated to the condition or the range. And for external calls,

6When using regions, the fast qualifier does not stand anymore, because the dependence
test involves dealing with convex systems that contain much more constraints than when using
the sole array indices.

57

proper regions are the summary regions of the callee translated into the caller’s
name space, to which are merely appended the regions of the expressions passed
as argument (no summarization for this step).

region_chains > MODULE.chains

< PROGRAM.entities

< MODULE.code

< MODULE.proper_regions

6.5.4 IN/OUT Region-Based Chains

Beware : this option is for experimental use only; resulting parallel code may
not be equivalent to input code (see the explanations below).

When in_out_regions_chains 6.5.4 is selected, IN and OUT regions (see
Sections 6.12.5 and 6.12.8) are used at call sites instead of READ and WRITE
regions. For all other statements, usual READ and WRITE regions are used.

As a consequence, arrays and scalars which could be declared as local in
callees, but are exposed to callers because they are statically allocated or are
formal parameters, are ignored, increasing the opportunities to detect parallel
loops. But as the program transformation which consists in privatizing vari-
ables in modules is not yet implemented in PIPS, the code resulting from the
parallelization with in_out_regions_chains 6.5.4 may not be equivalent to
the original sequential code. The privatization here is non-standard: for in-
stance, variables declared in commons or static should be stack allocated to
avoid conflicts.

As for region-based chains (see Section 6.5.3), the simplest dependence test
should be selected for best results.

in_out_regions_chains > MODULE.chains

< PROGRAM.entities

< MODULE.code

< MODULE.proper_regions

< MODULE.in_regions

< MODULE.out_regions

The following loop in Subroutine inout cannot be parallelized legally be-
cause Subroutine foo uses a static variable, y. However, PIPS will display this
loop as (potentially) parallel if the in_out option is selected for use-def chain
computation. Remember that IN/OUT regions require MUST regions to obtain
interesting results (see Section 6.12.5).

subroutine inout(a,n)

real a(n)

do i = 1, n

call foo(a(i))

enddo

end

subroutine foo(x)

save y

58

y = x

x = x + y

end

6.5.5 Chain Properties

6.5.5.1 Add use-use Chains

It is possible to put use-use dependence arcs in the dependence graph. This
is useful for estimation of cache memory traffic and of communication for dis-
tributed memory machine (e.g. you can parallelize only communication free
loops). Beware of use-use dependence on scalar variables. You might expect
scalars to be broadcasted and/or replicated on each processor but they are not
handled that way by the parallelization process unless you manage to have them
declared private with respect to all enclosing loops.

This feature is not supported by PIPS user interfaces. Results may be hard
to interpret. It is useful to print the dependence graph.

KEEP_READ_READ_DEPENDENCE FALSE

6.5.5.2 Remove Some Chains

It is possible to mask effects on local variables in loop bodies. This is dangerous
with current version of Allen & Kennedy which assumes that all the edges
are present, the ones on private variables being partially ignored but for loop
distribution. In other words, this property should always be set to false.

CHAINS_MASK_EFFECTS FALSE

It also is possible to keep only true data-flow (Def – Use) dependences in
the dependence graph. This was an attempt at mimicking the effect of direct
dependence analysis and at avoiding privatization. However, direct dependence
analysis is not implemented in the standard tests and spurious def-use depen-
dence arcs are taken into account.

CHAINS_DATAFLOW_DEPENDENCE_ONLY FALSE

These last two properties are not consistent with PIPS current development
(1995/96). It is assumed that all dependence arcs are present in the dependence
graph. Phases using the latter should be able to filter out irrelevant arcs, e.g.
pertaining to privatized variables.

6.6 Dependence Graph (DG)

The dependence graph is used primarily by the parallelization algorithms. A
dependence graph is a refinement of use-def chains (Section 6.5). It is location-
based and not value-based.

59

There are several ways to compute a dependence graph. Some of them are
fast (Banerjee’s one for instance) but provide poor results, others might be
slower (Rémi Triolet’s one for instance) but produce better results.

Three different dependence tests are available, all based on Fourier-Motzkin
elimination improved with a heuristics for the integer domain. The fast ver-
sion uses subscript expressions only (unless convex array regions were used to
compute use-def chains, in which case regions are used instead). The full ver-
sion uses subscript expressions and loop bounds. The semantics version uses
subscript expressions and preconditions (see 6.9).

Note that, for interprocedural parallelization, precise array regions only are
used by the fast dependence test if the proper kind of use-def chains has been
previously selected (see Section 6.5.3).

There are several kinds of dependence graphs. Most of them share the
same overall data structure: a graph with labels on arcs and vertices. usu-
ally, the main differences are in the labels that decorate arcs; for instance,
Kennedy’s algorithm requires dependence levels (which loop actually creates
the dependence) while algorithms originated from CSRD prefer DDVs (rela-
tions between loop indices when the dependence occurs). Dependence cones
introduced in [26, 35, 36, 37] are even more precise [56].

The computations of dependence level and dependence cone [55] are both
implemented in PIPS. DDV’s are not computed. Currently, only dependence
levels are exploited by parallelization algorithms.

The dependence graph can be printed with or without filters (see Sec-
tion 10.8). The standard dependence graph includes all arcs taken into account
by the parallelization process (Allen & Kennedy [2]), except those that are
due to scalar private variables and that impact the distribution process only.
The loop carried dependence graph does not include intra-iteration dependences
and is a good basis for iteration scheduling. The whole graph includes all arcs,
but input dependence arcs.

It is possible to gather some statistics about dependences by turning on
property RICEDG_PROVIDE_STATISTICS 6.6.6.2 (more details in the properties).
A Shell script from PIPS utilities, print-dg-statistics, can be used in com-
bination to extract the most relevant information for a whole program.

During the parallelization phases, is is possible to ignore arcs related to states
of the libc, such as the heap memory management, because thread-safe libraries
do perform the updates within critical sections. But these arcs are part of the
use-def chains and of the dependence graph. If they were removed instead of
being ignored, use-def elimination would remove all free statements.

The main contributors for the design and development of dependence analy-
sis are Rémi Triolet, François Irigoin and Yi-qing Yang [55]. The code was
improved by Corinne Ancourt and Béatrice Creusillet.

6.6.1 Menu for Dependence Tests

alias dg ’Dependence Test’

alias rice_fast_dependence_graph ’Preconditions Ignored’

alias rice_full_dependence_graph ’Loop Bounds Used’

alias rice_semantics_dependence_graph ’Preconditions Used’

alias rice_regions_dependence_graph ’Regions Used’

60

6.6.2 Fast Dependence Test

Use subscript expressions only, unless convex array regions were used to compute
use-def chains, in which case regions are used instead. rice regions dependence graph

is a synonym for this rule, but emits a warning if region chains is not selected.

rice_fast_dependence_graph > MODULE.dg

< PROGRAM.entities

< MODULE.code

< MODULE.chains

< MODULE.cumulated_effects

6.6.3 Full Dependence Test

Use subscript expressions and loop bounds.

rice_full_dependence_graph > MODULE.dg

< PROGRAM.entities

< MODULE.code

< MODULE.chains

< MODULE.cumulated_effects

6.6.4 Semantics Dependence Test

Uses subscript expressions and preconditions (see 6.9).

rice_semantics_dependence_graph > MODULE.dg

< PROGRAM.entities

< MODULE.code

< MODULE.chains

< MODULE.preconditions

< MODULE.cumulated_effects

6.6.5 Dependence Test with Convex Array Regions

Synonym for rice fast dependence graph, except that it emits a warning
when region chains is not selected.

rice_regions_dependence_graph > MODULE.dg

< PROGRAM.entities

< MODULE.code

< MODULE.chains

< MODULE.cumulated_effects

6.6.6 Dependence Properties (Ricedg)

6.6.6.1 Dependence Test Selection

This property seems to be now obsolete. The dependence test choice is now
controlled directly and only by rules in pipsmake. The procedures called by
these rules may use this property. Anyway, it is useless to set it manually.

DEPENDENCE_TEST "full"

61

6.6.6.2 Statistics

Provide the following counts during the dependence test. There are three parts:
numbers of dependencies and independences (fields 1-10), dimensions of refer-
enced arrays and dependence natures (fields 11-25) and the same information
for constant dependencies (fields 26-40), decomposition of the dependence test
in elementary steps (fields 41-49), use and complexity of Fourier-Motzkin’s pair-
wise elimination (fields 50, 51 and 52-68).

1 array reference pairs, i.e. number of tests effected (used to be the number
of use-def, def-use and def-def pairs on arrays);

2 number of independences found (on array reference pairs);

Note: field 1 minus field 2 is the number of array dependencies.

3 numbers of loop independent dependences between references in the same
statement (not useful for program transformation and parallelization if
statements are preserved); it should be subtracted from field 2 to compare
results with other parallelizers;

4 numbers of constant dependences;

5 numbers of exact dependences;

Note: field 5 must be greater or equal to field 4.

6 numbers of inexact dependences involved only by the elimination of equa-
tion;

7 numbers of inexact dependences involved only by the F-M elimination;

8 numbers of inexact dependences involved by both elimination of equation
and F-M elimination;

Note: the sum of fields 5 to 8 and field 2 equals field 1

9 number of dependences among scalar variables;

10 numbers of dependences among loop index variables;

11-40 dependence types detail table with the dimensions [5][3] and constant de-
pendence detail table with the dimensions [5][3]; the first index is the array
dimension (from 0 to 4 - no larger arrays has ever been found); the second
index is the dependence nature (1: d-u, 2: u-d, 3: d-d); both arrays are
flatten according to C rule as 5 sequences of 3 natures;

Note: the sum of fields 11 to 25 should be equal to the sum of field 9 and
2 minus field 1.

Note: the fields 26 to 40 must be less than or equal to the corresponding
fields 11 to 25

41 numbers of independences found by the test of constant;

42 numbers of independences found by the GCD test;

43 numbers of independences found by the normalize test;

62

44 numbers of independences found by the lexico-positive test for constant
Di variables;

45 numbers of independences found during the projection on Di variables by
the elimination of equation;

46 numbers of independences found during the projection on Di variables by
the Fourier-Motzkin’s elimination;

47 numbers of independences found during the test of faisability of Di sub-
system by the elimination of equation;

48 numbers of independences found during the test of faisability of Di sous-
system by the Fourier-Motzkin’s elimination;

49 numbers of independences found by the test of lexico-positive for Di sub-
system;

Note: the sum of fields 41 to 49 equals field 2

50 total number of Fourier-Motzkin’s pair-wise eliminations used;

51 number of Fourier-Motzkin’s pair-wise elimination in which the system
size doesn’t augment after the elimination;

52-68 complexity counter table of dimension [17]. The complexity of one pro-
jection by F-M is the product of the number of positive inequalities and
the number of negatives inequalities that contain the eliminated variable.
This is an histogram of the products. Products which are less than or
equal to 4 imply that the total number of inequalities does not increase.
So if no larger product exists, field 50 and 51 must be equal.

The results are stored in the current workspace in MODULE.resulttestfast,
MODULE.resultesttestfull, or MODULE.resulttestseman according to the test
selected.

RICEDG_PROVIDE_STATISTICS FALSE

Provide the statistics above and count all array reference pairs including
these involved in call statement.

RICEDG_STATISTICS_ALL_ARRAYS FALSE

6.6.6.3 Algorithmic Dependences

This property can be set to only take into account true flow dependences (Def
– Use) during the computation of SCC by the Allen&Kennendy algorithm.

Note that this is different from the CHAINS DATAFLOW DEPENDENCE ONLY
property, which is set to compute a partial data dependence graph.

Warning: if set, this property may potentially yields incorrect parallel code
because dynamic single assignment is not guaranteed.

RICE_DATAFLOW_DEPENDENCE_ONLY FALSE

63

6.6.6.4 Optimization

The default option is to compute the dependence graph only for loops which
can be parallelized using Allen & Kennedy algorithm. However it is possible to
compute the dependences in all cases, even for loop containing test, goto, etc...
by setting this option to TRUE.

Of course, this information is not used by the parallelization phase which is
restricted to loops meeting the A&K conditions. By the way, the hierarchical
control flow graph is not exploited either by the parallelization phase.

COMPUTE_ALL_DEPENDENCES FALSE

6.7 Flinter

Function flinter 6.7 performs some intra and interprocedural checks about
formal/actual argument pairs, use of COMMONs,... It was developed by
Laurent Aniort and Fabien Coelho. Ronan Keryell added the uninitialized
variable checking.

alias flinted_file ’Flint View’

flinter > MODULE.flinted_file

< PROGRAM.entities

< MODULE.code

< CALLEES.code

< MODULE.proper_effects

< MODULE.chains

In the past, flinter 6.7 used to require MODULE.summary effects to check
the parameter passing modes and to make sure that no module would attempt
an assignment on an expression. However, this kind of bug is detected by the
effect analysis. . . which was required by flinter.

Resource CALLEES.code is not explicitly required but it produces the global
symbols which function flinter 6.7 needs to check parameter lists.

6.8 Loop Statistics

Computes statistics about loops in module. It computes the number of perfectly
and imperfectly nested loops and gives their depths. And it gives the number
of nested loops which we can treat with our algorithm.

loop_statistics > MODULE.stats_file

< PROGRAM.entities

< MODULE.code

Note: it does not seem to behave like a standard analysis, associating in-
formation to the internal representation. Instead, an ASCII file seems to be
created.

64

6.9 Semantics Analysis

PIPS semantics analysis targets mostly integer scalar variables. It is a two-pass
process, with a bottom-up pass computing transformers 6.9.1, and a top-
down pass propagating preconditions 6.9.2. Transformers and preconditions
are specially powerful case of return and jump functions [12]. They abstract
relations between program states with polyhedra and encompass most standard
interprocedural constant propagations as well as most interval analyses. It is a
powerful relational symbolic analysis.

Unlike [16] their computations are based on PIPS Hierarchical Control Flow
Graph and on syntactic constructs instead of a standard flow graph. The best
presentation of this part of PIPS is in [27].

A similar analysis is available in Parafrase-2 []. It handles polynomial equa-
tions between scalar integer variables. SUIF [] also performs some kind of se-
mantics analysis.

The semantics analysis part of PIPS was designed and developed by François
Irigoin.

6.9.1 Transformers
RK: The
following
is hard to
read without
any example
for some-
one that
knows noth-
ing about
PIPS... FI:
do you want
to have ev-
erything in
this docu-
mentation?

A transformer is an approximate relation between the symbolic initial values of
scalar variables and their values after the execution of a statement, simple or
compound (see [34] and [27]). In abstract interpretation terminology, a trans-
former is an abstract command linking the input abstract state of a statement
and its output abstract state.

By default, only integer scalar variables are analyzed, but properties can be
set to handle boolean, string and floating point scalar variables7 : SEMANTICS_ANALYZE_SCALAR_INTEGER_VARIABLES 6.9.4.1
SEMANTICS_ANALYZE_SCALAR_BOOLEAN_VARIABLES 6.9.4.1 SEMANTICS_ANALYZE_SCALAR_STRING_VARIABLES 6.9.4.1
SEMANTICS_ANALYZE_SCALAR_FLOAT_VARIABLES 6.9.4.1 SEMANTICS_ANALYZE_SCALAR_COMPLEX_VARIABLES 6.9.4.1
SEMANTICS_ANALYZE_SCALAR_POINTER_VARIABLES 6.9.4.1 SEMANTICS_ANALYZE_CONSTANT_PATH 6.9.4.1

Transformers can be computed intraprocedurally by looking at each func-
tion independently or they can be computed interprocedurally starting with the
leaves of the call tree8.

Intraprocedural algorithms use cumulated_effects 6.2.3 to handle proce-
dure calls correctly. In some respect, they are interprocedural since call state-
ments are accepted. Interprocedural algorithms use the summary_transformer 6.9.1.8
of the called procedures.

Fast algorithms use a very primitive non-iterative transitive closure algo-
rithm (two possible versions: flow sensitive or flow insensitive). Full algorithms
use a transitive closure algorithm based on vector subspace (i.e. à la Karr [39])
or one based on the discrete derivatives [29, 5]. The iterative fix point algorithm
for transformers (i.e. Halbwachs/Cousot [16] is implemented but not used
because the results obtained with transitive closure algorithms are faster and
up-to-now sufficient. Property SEMANTICS_FIX_POINT_OPERATOR 6.9.4.8 is set
to select the transitive closure algorithm used.

7Floating point values are combined exactly, which is not correct but still useful when dead
code can be eliminated according to some parameter value.

8Recursive calls are not handled. Hopefully, they are detected by pipsmake to avoid looping
forever.

65

Additional information, such as array declarations and array references, can
be used to improve transformers. See the property documentation for:

SEMANTICS_TRUST_ARRAY_DECLARATIONS 6.9.4.2 SEMANTICS_TRUST_ARRAY_REFERENCES 6.9.4.2
Within one procedure, the transformers can be computed in forward mode,

using precondition information gathered along. Transformers can also be re-
computed once the preconditions are available. In both cases, more precise
transformers are obtained because the statement can be better modelized using
precondition information. For instance, a non-linear expression can turn out to
be linear because the values of some variables are numerically known and can
be used to simplify the initial expression. See properties:

SEMANTICS_RECOMPUTE_EXPRESSION_TRANSFORMERS 6.9.4.6
SEMANTICS_COMPUTE_TRANSFORMERS_IN_CONTEXT 6.9.4.6
SEMANTICS_RECOMPUTE_FIX_POINTS_WITH_PRECONDITIONS 6.9.4.8
and phase refine_transformers 6.9.1.7.
Unstructured control flow graphs can lead to very long transformer compu-

tations, whose results are usually not interesting. Their sizes are limited by two
properties:

SEMANTICS_MAX_CFG_SIZE2 6.9.4.5 SEMANTICS_MAX_CFG_SIZE1 6.9.4.5
discussed below.
Default value were set in the early nineties to obtain results fast enough for

live demonstrations. They have not been changed to preserve the non-regression
tests. However since 2005, processors are fast enough to use the most precise
options in all cases.

A transformer map contains a transformer for each statement of a module. It
is a mapping from statements to transformers (type statement mapping, which
is not a NewGen file). Transformers maps are stored on and retrieved from disk
by pipsdbm.

6.9.1.1 Menu for Transformers

alias transformers ’Transformers’

alias transformers_intra_fast ’Quick Intra-Procedural Computation’

alias transformers_inter_fast ’Quick Inter-Procedural Computation’

alias transformers_intra_full ’Full Intra-Procedural Computation’

alias transformers_inter_full ’Full Inter-Procedural Computation’

alias transformers_inter_full_with_points_to ’Full Inter-Procedural with points-to Computation’

alias refine_transformers ’Refine Transformers’

6.9.1.2 Fast Intraprocedural Transformers

Build the fast intraprocedural transformers.

transformers_intra_fast > MODULE.transformers

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.summary_effects

< MODULE.proper_effects

66

6.9.1.3 Full Intraprocedural Transformers

Build the improved intraprocedural transformers.

transformers_intra_full > MODULE.transformers

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.summary_effects

< MODULE.proper_effects

6.9.1.4 Fast Interprocedural Transformers

Build the fast interprocedural transformers.

transformers_inter_fast > MODULE.transformers

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.summary_effects

< CALLEES.summary_transformer

< MODULE.proper_effects

< PROGRAM.program_precondition

6.9.1.5 Full Interprocedural Transformers

Build the improved interprocedural transformers (This should be used as default
option.).

transformers_inter_full > MODULE.transformers

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.summary_effects

< CALLEES.summary_transformer

< MODULE.proper_effects

< PROGRAM.program_precondition

6.9.1.6 Full Interprocedural Transformers with points-to

Build the improved interprocedural transformers with points-to informations

transformers_inter_full_with_points_to > MODULE.transformers

< PROGRAM.entities

< MODULE.code

< MODULE.points_to

< MODULE.cumulated_effects

< MODULE.summary_effects

< CALLEES.summary_transformer

< MODULE.proper_effects

< PROGRAM.program_precondition

67

6.9.1.7 Refine Full Interprocedural Transformers

Rebuild the interprocedural transformers using interprocedural preconditions.
Intraprocedural preconditions are also used to refine all transformers.

refine_transformers > MODULE.transformers

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.summary_effects

< CALLEES.summary_transformer

< MODULE.proper_effects

< MODULE.transformers

< MODULE.preconditions

< MODULE.summary_precondition

< PROGRAM.program_precondition

Rebuild the interprocedural transformers using interprocedural precondi-
tions and points-to information. Intraprocedural preconditions are also used
to refine all transformers.

refine_transformers_with_points_to > MODULE.transformers

< PROGRAM.entities

< MODULE.code

< MODULE.points_to

< MODULE.cumulated_effects

< MODULE.summary_effects

< CALLEES.summary_transformer

< MODULE.proper_effects

< MODULE.transformers

< MODULE.preconditions

< MODULE.summary_precondition

< PROGRAM.program_precondition

6.9.1.8 Summary Transformer

A summary transformer is an interprocedural version of the module statement
transformer, obtained by eliminating dynamic local, a.k.a. stack allocated, vari-
ables. The filtering is based on the module summary effects. Note: each module
has a UNIQUE top-level statement.

A summary_transformer 6.9.1.8 is of Newgen type transformer.

summary_transformer > MODULE.summary_transformer

< PROGRAM.entities

< MODULE.transformers

< MODULE.summary_effects

6.9.2 Preconditions

A precondition for a statement s in a modulem is a predicate true for every state
reachable from the initial state of m, in which s is executed. A precondition

68

is of NewGen type ”transformer” (see PIPS Internal Representation of Fortran
and C code9) and preconditions is of type statement_mapping.

Option preconditions_intra 6.9.2.5 associates a precondition to each state-
ment, assuming that no information is available at the module entry point.

Inter-procedural preconditions may be computed with intra-procedural trans-
formers but the benefit is not clear. Intra-procedural preconditions may be
computed with inter-procedural transformers. This is faster that a full in-
terprocedural analysis because there is no need for a top-down propagation
of summary preconditions. This is compatible with code transformations like
partial_eval 9.4.2, simplify_control 9.3.1 and dead_code_elimination 9.3.2.

Since these two options for transformer and precondition computations are
independent and that transformers_inter_full 6.9.1.5 and preconditions_inter_full 6.9.2.7
must be both (independently) selected to obtain the best possible results. These
two options are recommended.

6.9.2.1 Initial Precondition or Program Precondition

All DATA initializations contribute to the global initial state of the program. The
contribution of each module is computed independently. Note that variables
statically initialized behave as static variables and are preserved between calls
according to Fortran standard. The module initial states are abstracted by an
initial precondition based on integer scalar variables only.

Note: To be extended to handle C code. To be extended to handle properly
unknown modules.

initial_precondition > MODULE.initial_precondition

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.summary_effects

All initial preconditions, including the initial precondition for the main, are
combined to define the program precondition which is an abstraction of the
program initial state.

program_precondition > PROGRAM.program_precondition

< PROGRAM.entities

< ALL.initial_precondition

The program precondition can only be used for the initial state of the main
procedure. Although it appears below for all interprocedural analyses and it
always is computed, it only is used when a main procedure is available.

6.9.2.2 Intraprocedural Summary Precondition

A summary precondition is of type ”transformer”, but the argument list must
be empty as it is a simple predicate on the initial state. So in fact it is a state
predicate.

The intraprocedural summary precondition uses DATA statement for the
main module and is the TRUE constant for all other modules.

9http://www.cri.ensmp.fr/pips/newgen/ri.htdoc

69

http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
http://www.cri.ensmp.fr/pips/newgen/ri.htdoc

intraprocedural_summary_precondition > MODULE.summary_precondition

< PROGRAM.entities

< MODULE.initial_precondition

Interprocedural summary preconditions can be requested instead. They are
not described in the same section in order to introduce the summary precondi-
tion resource at the right place in pipsmake.rc.

No menu is declared to select either intra- or interprocedural summary pre-
conditions.

6.9.2.3 Interprocedural Summary Precondition

By default, summary preconditions are computed intraprocedurally. The inter-
procedural option must be explicitly activated.

An interprocedural summary precondition for a module is derived from all its
call sites. Of course, preconditions must be known for all its callers’ statements.
The summary precondition is the convex hull of all call sites preconditions, trans-
lated into a proper environment which is not necessarily the module’s frame.
Because of invisible global and static variables and aliasing, it is difficult for a
caller to know which variables might be used by the caller to represent a given
memory location. To avoid the problem, the current summary precondition is
always translated into the caller’s frame. So each module must first translate its
summary precondition, when receiving it from the resource manager (pipsdbm)
before using it.

Note: the previous algorithm was based on a on-the-fly reduction by convex
hull. Each time a call site was encountered while computing a module precon-
ditions, the callee’s summary precondition was updated. This old scheme was
more efficient but not compatible with program transformations because it was
impossible to know when the summary preconditions of the modules had to be
reset to the infeasible (a.k.a. empty) precondition.

An infeasible precondition means that the module is never called although
a main is present in the workspace. If no main module is available, a TRUE
precondition is generated. Note that, in both cases, the impact of static ini-
tializations propagated by link edition is taken into account although this is
prohibited by the Fortran Standard which requires a BLOCKDATA construct
for such initializations. In other words, a module which is never called has an
impact on the program execution and its declarations should not be destroyed.

interprocedural_summary_precondition > MODULE.summary_precondition

< PROGRAM.entities

< PROGRAM.program_precondition

< CALLERS.preconditions

< MODULE.callers

An interprocedural summary precondition for a module is derived from all
its call sites.

interprocedural_summary_precondition_with_points_to > MODULE.summary_precondition

< PROGRAM.entities

< PROGRAM.program_precondition

< CALLERS.preconditions

70

< MODULE.callers

< MODULE.points_to

The following rule is obsolete. It is context sensitive and its results depends
on the history of commands performed on the workspace.

summary_precondition > MODULE.summary_precondition

< PROGRAM.entities

< CALLERS.preconditions

< MODULE.callers

6.9.2.4 Menu for Preconditions

alias preconditions ’Preconditions’

alias preconditions_intra ’Intra-Procedural Analysis’

alias preconditions_inter_fast ’Quick Inter-Procedural Analysis’

alias preconditions_inter_full ’Full Inter-Procedural Analysis’

alias preconditions_intra_fast ’Fast intra-Procedural Analysis’

6.9.2.5 Intra-Procedural Preconditions

Only build the preconditions in a module without any interprocedural propaga-
tion. The fast version uses a fast but crude approximation of preconditions for
unstructured code.

preconditions_intra > MODULE.preconditions

< PROGRAM.entities

< MODULE.cumulated_effects

< MODULE.transformers

< MODULE.summary_effects

< MODULE.summary_transformer

< MODULE.summary_precondition

< MODULE.code

preconditions_intra_fast > MODULE.preconditions

< PROGRAM.entities

< MODULE.cumulated_effects

< MODULE.transformers

< MODULE.summary_effects

< MODULE.summary_transformer

< MODULE.summary_precondition

< MODULE.code

6.9.2.6 Fast Inter-Procedural Preconditions

Option preconditions_inter_fast 6.9.2.6 uses the module own precondition
derived from its callers as initial state value and propagates it downwards in the
module statement.

The fast versions use no fix-point operations for loops.

71

preconditions_inter_fast > MODULE.preconditions

< PROGRAM.entities

< PROGRAM.program_precondition

< MODULE.code

< MODULE.cumulated_effects

< MODULE.transformers

< MODULE.summary_precondition

< MODULE.summary_effects

< CALLEES.summary_effects

< MODULE.summary_transformer

6.9.2.7 Full Inter-Procedural Preconditions

Option preconditions_inter_full 6.9.2.7 uses the module own precondition
derived from its callers as initial state value and propagates it downwards in the
module statement.

The full versions use fix-point operations for loops.

preconditions_inter_full > MODULE.preconditions

< PROGRAM.entities

< PROGRAM.program_precondition

< MODULE.code

< MODULE.cumulated_effects

< MODULE.transformers

< MODULE.summary_precondition

< MODULE.summary_effects

< CALLEES.summary_transformer

< MODULE.summary_transformer

Option preconditions_inter_full_with_points_to 6.9.2.7 uses the mod-
ule own precondition derived from its callers as initial state value and propagates
it downwards in the module statement.

preconditions_inter_full_with_points_to > MODULE.preconditions

< PROGRAM.entities

< PROGRAM.program_precondition

< MODULE.code

< MODULE.points_to

< MODULE.cumulated_effects

< MODULE.transformers

< MODULE.summary_precondition

< MODULE.summary_effects

< CALLEES.summary_transformer

< MODULE.summary_transformer

6.9.3 Total Preconditions

Total preconditions are interesting to optimize the nominal behavior of a termi-
nating application. It is assumed that the application ends in the main proce-

72

dure. All other exits, aborts or stops, explicit or implicit such as buffer overflows
and zero divide and null pointer dereferencing, are considered exceptions. This
also applies at the module level. Modules nominally return. Other control flows
are considered exceptions. Non-terminating modules have an empty total pre-
condition10. The standard preconditions can be refined by anding with the total
preconditions to get information about the nominal behavior. Similar sources
of increased accuracy are the array declarations and the array references, which
can be exploited directly with properties described in section 6.9.4.2. These two
properties should be set to true whenever possible.

Hence, a total precondition for a statement s in a module m is a predicate
true for every state from which the final state of m, in which s is executed, is
reached. It is an over-approximation of the theoretical total precondition. So, if
the predicate is false, the final control state cannot be reached. A total precon-
dition is of NewGen type ”transformer” (see PIPS Internal Representation of
Fortran and C code11) and total preconditions is of type statement_mapping.

The relationship with continuations (see Section 6.10) is not clear. Total
preconditions should be more general but no must version exist.

Option total_preconditions_intra 6.9.3.2 associates a precondition to
each statement, assuming that no information is available at the module return
point.

Inter-procedural total preconditions may be computed with intra-procedural
transformers but the benefit is not clear. Intra-procedural total preconditions
may be computed with inter-procedural transformers. This is faster than a full
interprocedural analysis because there is no need for a top-down propagation of
summary total postconditions.

Since these two options for transformer and total precondition computations
are independent, transformers_inter_full 6.9.1.5 and total_preconditions_inter 6.9.3.3
must be both (independently) selected to obtain the best possible results.

6.9.3.0.1 Status: This is a set of experimental passes. The intraprocedural
part is implemented. The interprocedural part is not implemented yet, waiting
for an expressed practical interest. Neither C for loops nor repeat loops are
supported.

6.9.3.1 Menu for Total Preconditions

alias total_preconditions ’Total Preconditions’

alias total_preconditions_intra ’Total Intra-Procedural Analysis’

alias total_preconditions_inter ’Total Inter-Procedural Analysis’

6.9.3.2 Intra-Procedural Total Preconditions

Only build the total preconditions in a module without any interprocedural
propagation. No specific condition must be met when reaching a RETURN
statement.

10Non-termination conditions could also be propagated backwards to provide an over-
approximation of the conditions under which an application never terminates, i.e. conditions
for liveness.

11http://www.cri.ensmp.fr/pips/newgen/ri.htdoc

73

http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
http://www.cri.ensmp.fr/pips/newgen/ri.htdoc
http://www.cri.ensmp.fr/pips/newgen/ri.htdoc

total_preconditions_intra > MODULE.total_preconditions

< PROGRAM.entities

< MODULE.cumulated_effects

< MODULE.transformers

< MODULE.preconditions

< MODULE.summary_effects

< MODULE.summary_transformer

< MODULE.code

6.9.3.3 Inter-Procedural Total Preconditions

Option total_preconditions_inter 6.9.3.3 uses the module own total post-
condition derived from its callers as final state value and propagates it backwards
in the module statement. This total module postcondition must be true when
the RETURN statement is reached.

total_preconditions_inter > MODULE.total_preconditions

< PROGRAM.entities

< PROGRAM.program_postcondition

< MODULE.code

< MODULE.cumulated_effects

< MODULE.transformers

< MODULE.preconditions

< MODULE.summary_total_postcondition

< MODULE.summary_effects

< CALLEES.summary_effects

< MODULE.summary_transformer

The program postcondition is only used for the main module.

6.9.3.4 Summary Total Precondition

The summary total precondition of a module is the total precondition of its
statement limited to information observable by callers, just like a summary
transformer (see Section 6.9.1.8).

A summary total precondition is of type ”transformer”.

summary_total_precondition > MODULE.summary_total_precondition

< PROGRAM.entities

< CALLERS.total_preconditions

6.9.3.5 Summary Total Postcondition

A final postcondition for a module is derived from all its call sites. Of course,
total postconditions must be known for all its callers’ statements. The summary
total postcondition is the convex hull of all call sites total postconditions, trans-
lated into a proper environment which is not necessarily the module’s frame.
Because of invisible global and static variables and aliasing, it is difficult for a
caller to know which variables might be used by the caller to represent a given
memory location. To avoid the problem, the current summary total postcon-
dition is always translated into the caller’s frame. So each module must first

74

translate its summary total postcondition, when receiving it from the resource
manager (pipsdbm) before using it.

A summary total postcondition is of type ”transformer”.

summary_total_postcondition > MODULE.summary_total_postcondition

< PROGRAM.entities

< CALLERS.total_preconditions

< MODULE.callers

6.9.3.6 Final Postcondition

The program postcondition cannot be derived from the source code. It should be
defined explicitly by the user. By default, the predicate is always true. But you
might want some variables to have specific values, e.g. KMAX==1, or signs,KMAX>1
or relationships KMAX>JMAX.

program_postcondition > PROGRAM.program_postcondition

6.9.4 Semantic Analysis Properties

6.9.4.1 Value types

By default, the semantic analysis is restricted to scalar integer variables as they
are key variables to understand scientific code behavior. However it is possible
to analyze scalar variables with other data types. Fortran LOGICAL variables
are represented as 0/1 integers. Character string constants and floating point
constants are represented as undefined values.

The analysis is thus limited to constant propagation for character strings
and floating point values whereas integer, boolean and pointer variables are
processed with a relational analysis.

Character string constants of fixed maximal length could be translated into
integers but the benefit is not yet assessed because they are not much used in
the benchmark and commercial applications we have studied. The risk is to
increase significantly the number of overflows encountered during the analysis.

For the pointer analysis, it’s strongly recommended to activate proper_effects_with_points_to 6.2.1
before performing this analysis.

In interprocedural analysis, or in presence of formal parameter, to performe
the pointer analysis, it’s strongly recommended to set SEMANTICS_ANALYZE_CONSTANT_PATH 6.9.4.1
at TRUE. SEMANTICS_ANALYZE_CONSTANT_PATH 6.9.4.1 can also serve to analyse
the structures?

SEMANTICS_ANALYZE_SCALAR_INTEGER_VARIABLES TRUE

SEMANTICS_ANALYZE_SCALAR_BOOLEAN_VARIABLES FALSE

SEMANTICS_ANALYZE_SCALAR_STRING_VARIABLES FALSE

SEMANTICS_ANALYZE_SCALAR_FLOAT_VARIABLES FALSE

SEMANTICS_ANALYZE_SCALAR_COMPLEX_VARIABLES FALSE

75

SEMANTICS_ANALYZE_SCALAR_POINTER_VARIABLES FALSE

SEMANTICS_ANALYZE_CONSTANT_PATH FALSE

6.9.4.2 Array Declarations and Accesses

For every module, array declaration are assumed to be correct with respect to
the standard: the upper bound must be greater than or equal to the lower bound.
When implicit, the lower bound is one. The star upper bound is neglected.

This property is turned off by default because it might slow down PIPS quite
a lot without adding any useful information because loop bounds are usually
different from array bounds.

SEMANTICS_TRUST_ARRAY_DECLARATIONS FALSE

For every module, array references are assumed to be correct with respect
to the declarations: the subscript expressions must have values lower than or
equal to the upper bound and greater than or equal to the lower bound.

This property is turned off by default because it might slow down PIPS quite
a lot without adding any useful information.

SEMANTICS_TRUST_ARRAY_REFERENCES FALSE

6.9.4.3 Type Information

Type information for integer variables is ignored by default. The behavior of
natural integer is assumed and no wrap-around is assumed to ever happen. The
properties described here could as well be named:

SEMANTICS ASSUME NO INTEGER OVERFLOW

Type range information is difficult to turn into useful information. It implies
some handling of wrap-around behaviors. It is likely to cause lots of overflows
with int and long int variables. It should be used for unsigned char and
unsigned short int only with the current implementation.

This is still an experimental development. By default this property is not
set, and it should only be set by PIPS 12 developpers.

This property is turned off by default because it might slow down PIPS quite
a lot without adding any useful information. It is also turned off because it is
experimental and should only be used by developpers.

SEMANTICS_USE_TYPE_INFORMATION FALSE

Type information can also be used only when computing transformers or
when computing preconditions:

SEMANTICS_USE_TYPE_INFORMATION_IN_TRANSFORMERS FALSE

SEMANTICS_USE_TYPE_INFORMATION_IN_PRECONDITIONS FALSE

12http://www.cri.ensmp.fr/pips

76

http://www.cri.ensmp.fr/pips
http://www.cri.ensmp.fr/pips

It is not clear why you would like to assume overflows when computing
transformers and not when computing preconditions, but the opposite makes
sense.

Note that simple statements such as i++ have no precise convex transformer
because of the wrap-around to 0. Assuming the type declaration unsigned

char i, the transformer maps the new value of i to the interval [0..256].
If standard transformers are used, the variable values defined by the integer

preconditions must be remapped in the type interval λ using a modulo definition.
For instance, Value v is defined as v = λv1 + v2, v and v1 are projected and v2
is renamed v.

Each time a precondition is used in to compute a transformer, it must be
normalized according to its type, even when the condition happens to be found
without precondition, as a test condition or a loop bound.

For instance, in the example below:

void foo(unsigned char i, unsigned char j) {

if(i<j) {

i++, j++;

if(i<j)

// true branch

else

// false branch

}}

you might wrongly assume that the false branch is never reached. But it is not
true if j==255 initially.

In the same way, the sequence:

unsigned char i, j;

i = 257;

j = 3/i;

will not be analyzed properly if the precondition for the division is not fixed
with type information.

As a consequence, transformers should not be computed in context (see
SEMANTICS_COMPUTE_TRANSFORMERS_IN_CONTEXT 6.9.4.6) with the current im-
plementation if type information has an impact on the result. It is necessary to
compute the precondition first and then to refine the transformers with them
(see refine_transformers 6.9.1.7).

To sum up, the basic semantics analysis assumes that no integer overflow
occurs during an execution. If integer overflows are known to occur, it is safer
to set SEMANTICS_USE_TYPE_INFORMATION 6.9.4.3. But this property destroys
information gathered about arithmetic information. To obtain more accurate re-
sults, set property SEMANTICS_USE_TYPE_INFORMATION_IN_PRECONDITIONS ??
to compute transformers without overflows and to remap the preconditions later.
The transformers can then be refined with these first preconditions and more ac-
curate preconditions found. As explained above, this is not safe because all these
developements are experimental and because precondition information given by
test and loop conditions is used without paying attention to type information.

77

6.9.4.4 Integer Division

Integer divisions are defined by an equation linking the quotient q, the dividendd1,
the divisor d2 and the remainder r.

d1 = q × d2 + r

Programming languages like C and Fortran specify that the divident d1 and the
remainder r have the same sign. If d1 is positive, the remainder is constrained
by:

0 ≤ r < |d2|
Else, it is constrained by:

|d2| < r ≤ 0

Hence, if the sign of d1 is unknown, the remainder is less constrained:

|d2| < r < |d2|

Since integer divisions are usually used with positive integer variables used
to index arrays, the accuracy of the analysis can be improved by setting the
following property to true:

SEMANTICS_ASSUME_POSITIVE_REMAINDERS TRUE

Since the result is not always correct, this property should be set to false,
but for historic reasons it is true by default.

6.9.4.5 Flow Sensitivity

Perform “meet” operations for semantics analysis. This property is managed by
pipsmake which often sets it to TRUE. See comments in pipsmake documen-
tation to turn off convex hull operations for a module or more if they last too
long.

SEMANTICS_FLOW_SENSITIVE FALSE

Complex control flow graph may require excessive computation resources.
This may happen when analyzing a parser for instance.

SEMANTICS_ANALYZE_UNSTRUCTURED TRUE

To reduce execution time, this property is complemented with a heuristics
to turn off the analysis of very complex unstructured.

If the control flow graph counts more than SEMANTICS_MAX_CFG_SIZE1 6.9.4.5
vertices, use effects only.

SEMANTICS_MAX_CFG_SIZE2 20

If the control flow graph counts more than SEMANTICS_MAX_CFG_SIZE1 6.9.4.5
but less than SEMANTICS_MAX_CFG_SIZE2 6.9.4.5 vertices, perform the convex
hull of its elementary transformers and take the fixpoint of it. Note that
SEMANTICS_MAX_CFG_SIZE2 6.9.4.5 is assumed to be greater than or equal to
SEMANTICS_MAX_CFG_SIZE1 6.9.4.5.

SEMANTICS_MAX_CFG_SIZE1 20

78

6.9.4.6 Context for statement and expression transformers

Without preconditions, transformers can be precise only for affine expressions.
Approximate transformers can sometimes be derived for other expressions, in-
volving for instance products of variables or divisions.

However, a precondition of an expression can be used to refine the approx-
imation. For instance, some non-linear expressions can become affine because
some of the variables have constant values, and some non-linear expressions can
be better approximated because the variables signs or ranges are known.

To be backward compatible and to be conservative for PIPS execution time,
the default value is false.

Not implemented yet.

SEMANTICS_RECOMPUTE_EXPRESSION_TRANSFORMERS FALSE

Intraprocedural preconditions can be computed at the same time as trans-
formers and used to improve the accuracy of expression and statement trans-
formers. Non-linear expressions can sometimes have linear approximations over
the subset of all possible stores defined by a precondition. In the same way, the
number of convex hulls can be reduced if a test branch is never used or if a loop
is always entered.

SEMANTICS_COMPUTE_TRANSFORMERS_IN_CONTEXT FALSE

The default value is false for reverse compatibility and for speed.

6.9.4.7 Interprocedural Semantics Analysis

To be refined later; basically, use callee’s transformers instead of callee’s effects
when computing transformers bottom-up in the call graph; when going top-
down with preconditions, should we care about unique call site and/or perform
meet operation on call site preconditions ?

SEMANTICS_INTERPROCEDURAL FALSE

This property is used internally and is not user selectable.

6.9.4.8 Fix Point and Transitive Closure Operators

CPU time and memory space are cheap enough to compute loop fix points for
transformers. This property implies SEMANTICS_FLOW_SENSITIVE 6.9.4.5 and is
not user-selectable.

SEMANTICS_FIX_POINT FALSE

The default fix point operator, called transfer, is good for induction variables
but it is not good for all kinds of code. The default fix point operator is based on
the transition function associated to a loop body. A computation of eigenvectors
for eigenvalue 1 is used to detect loop invariants. This fails when no transition
function but only a transition relation is available. Only equations can be found.

The second fix point operator, called pattern, is based on a pattern matching
of elementary equations and inequalities of the loop body transformer. Obvious
invariants are detected. This fix point operator is not better than the previous
one for induction variables but it can detect invariant equations and inequalities.

79

A third fix point operator, called derivative, is based on finite differences.
It was developed to handled DO loops desugared into WHILE loops as well as
standard DO loops. The loop body transformer on variable values is projected
onto their finite differences. Invariants, both equations and inequalities, are
deduced directly from the constraints on the differences and after integration.
This third fix point operator should be able to find at least as many invariants
as the two previous one, but at least some inequalities are missed because of the
technique used. For instance, constraints on a flip-flop variable can be missed.
Unlike Cousot-Halbwachs fix point (see below), it does not use Chernikova steps
and it should not slow down analyses.

This property is user selectable and its default value is derivative. The
default value is the only one which is now seriously maintained.

SEMANTICS_FIX_POINT_OPERATOR "derivative"

The next property is experimental and its default value is 1. It is used to
unroll while loops virtually, i.e. at the semantics equation level, to cope with
periodic behaviors such as flip-flops. It is effective only for standard while loops
and the only possible value other than 1 is 2.

SEMANTICS_K_FIX_POINT 1

The next property SEMANTICS PATTERN MATCHING FIX POINT has been re-
moved and replaced by option pattern of the previous property.

This property was defined to select one of Cousot-Halbwachs’s heuristics and
to compute fix points with inequalities and equalities for loops. These heuristics
could be used to compute fix points for transformers and/or preconditions. This
option implies SEMANTICS_FIX_POINT 6.9.4.8 and SEMANTICS_FLOW_SENSITIVE 6.9.4.5.
It has not been implemented yet in PIPS13 because its accuracy has not yet
been required, but is now badly named because there is no direct link between
inequality and Halbwachs. Its default value is false and it is not user selectable.

SEMANTICS_INEQUALITY_INVARIANT FALSE

Because of convexity, some fix points may be improved by using some of
the information carried by the preconditions. Hence, it may be profitable to
recompute loop fix point transformer when preconditions are being computed.

The default value is false because this option slows down PIPS and does not
seem to add much useful information in general.

SEMANTICS_RECOMPUTE_FIX_POINTS_WITH_PRECONDITIONS FALSE

The next property is used to refine the computation of preconditions inside
nested loops. The loop body is reanalyzed to get one transformer for each
control path and the identity transformer is left aside because it is useless to
compute the loop body precondition. This development is experimental and
turned off by default.

SEMANTICS_USE_TRANSFORMER_LISTS FALSE

The next property is only useful if the previous one is set to true. Instead of
computing the fix point of the convex hull of the transformer list, it computes

13But some fix point functions are part of the C3 linear library.

80

the convex hull of the derivative constraints. Since it is a new feature, it is set
to false by default, but it should become the default option because it should
always be more accurate, at least indirectly because the systems are smaller.
The number of overflows is reduced, as well as the execution time. In practice,
these improvements have not been measured. This development is experimental
and turned off by default.

SEMANTICS_USE_DERIVATIVE_LIST FALSE

The next property is only useful if Property SEMANTICS_USE_TRANSFORMER_LISTS 6.9.4.8
is set to true. Instead of computing the precondition derived from the transitive
closure of a transformer list, semantics also computes the preconditions associ-
ated to different projections of the transformer list and use as loop precondition
the intersection of these preconditions. Although it is a new feature, it is set
to true by default for the validation’s sake. See test case Semantics/maison-
neuve09.c: it improves the accuracy, but not as much as SEMANTICS_USE_DERIVATIVE_LIST 6.9.4.8.
This development is experimental and turned off by default.

SEMANTICS_USE_LIST_PROJECTION TRUE

The string Property SEMANTICS_LIST_FIX_POINT_OPERATOR 6.9.4.8 is used
to select a particular heuristic to compute an approximation of the transitive clo-
sure of a list of transformers. It is only useful if Property SEMANTICS_USE_TRANSFORMER_LISTS 6.9.4.8
is selected. The current default value is “depth two”. An experimental value is
“max depth”.

SEMANTICS_LIST_FIX_POINT_OPERATOR "depth_two"

Preconditions can (used to) preserve initial values of the formal parameters.
This is not often useful in C because programmers usually avoid modifying
scalar parameters, especially integer ones. However, old values create problems
in region computation because preconditions seem to be used instead of tran-
former ranges. Filtering out the initial value does reduce the precision of the
precondition analysis, but this does not impact the transformer analysis. Since
the advantage is really limited to preconditions and for the region’s sake, the
default value is set to true. Turn it to false if you have a doubt about the
preconditions really available.

The loop index is usually dead on loop exit. So keeping information about
its value is useless... most of the times. However, it is preserved by default.

SEMANTICS_KEEP_DO_LOOP_EXIT_CONDITION TRUE

SEMANTICS_FILTER_INITIAL_VALUES TRUE

6.9.4.9 Normalization Level

Normalizing transformer and preconditions systems is a delicate issue which is
not mathematically defined, and as such is highly empirical. It’s a tradeoff be-
tween eliminating redundant information, keeping an internal storage not too far
from the prettyprinting for non-regression testing, exposing useful information
for subsequent analyses,... all this at a reasonable cost.

81

Several levels of normalization are possible. These levels do not corre-
spond to graduations on a normalization scale, but are different normaliza-
tion heuristics. A level of 4 includes a preliminary lexicographic sort of con-
traints, which is very user friendly, but currently implies strings manipula-
tions which are quite costly. It has been recently chosen to perform this nor-
malization only before storing transformers and preconditions to the database
(SEMANTICS NORMALIZATION LEVEL BEFORE STORAGE with a default value of 4).
However, this can still have a serious impact on performances. With any other
value, the normalization level is equel to 2.

SEMANTICS_NORMALIZATION_LEVEL_BEFORE_STORAGE 4

6.9.4.10 Evaluation of sizeof

Property EVAL_SIZEOF 9.4.2 can be set to true to force the static evaluation of
size of. Potentially, the computed transformers and preconditions are only valid
for the target architecture defined in ri-util-local.h.

6.9.4.11 Prettyprint

Preconditions reflect by default all knowledge gathered about the current state
(i.e. store). However, it is possible to restrict the information to variables
actually read or written, directly or indirectly, by the statement following the
precondition.

SEMANTICS_FILTERED_PRECONDITIONS FALSE

6.9.4.12 Debugging

Output semantics results on stdout

SEMANTICS_STDOUT FALSE

Debug level for semantics used to be controlled by a property. A Shell
variable, SEMANTICS_DEBUG_LEVEL, is used instead.

6.9.5 Reachability Analysis: The Path Transformer

A set of operations on array regions are defined in PIPS such as the function
regions intersection. However, this is not sufficient because regions should
be combined with what we call path transformers in order to propagate the
memory stores used in them. Indeed, regions operations must be performed
with respect to the abstraction of the same memory store.

A path transformer permits to compare array regions of statements originally
defined in different memory stores.

The path transformer between two statements computes the possible changes
performed by a piece of code delimited by two statements Sbegin and Send en-
closed within a statement S. A path transformer is represented by a convex
polyhedron over program variables and its computation is based on transform-
ers; thus, it is a system of linear inequalities. The goal of the following phase is
to compute the path transformer between two statements labeled by sb and se.

82

path_transformer > MODULE.path_transformer_file

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.transformers

< MODULE.preconditions

< MODULE.cumulated_effects

The next properties are used by Phase path transformer to label the two
statements Sbegin and Send.

PATH_TRANSFORMER_BEGIN "sb"

PATH_TRANSFORMER_END "se"

The next property is used to allow an empty path or not which is necessary
for the test of dependence. If its value is false, we return an empty transformer
for an empty path. Otherwise, an identity transformer is returned.

IDENTITY_EMPTY_PATH_TRANSFORMER TRUE

6.10 Continuation conditions

Continuation conditions are attached to each statement. They represent the
conditions under which the program will not stop in this statement. Under-
and over-approximations of these conditions are computed.

continuation_conditions > MODULE.must_continuation

> MODULE.may_continuation

> MODULE.must_summary_continuation

> MODULE.may_summary_continuation

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.transformers

< CALLEES.must_summary_continuation

< CALLEES.may_summary_continuation

6.11 Complexities

Complexities are symbolic approximations of the execution times of statements.
They are computed interprocedurally and based on polynomial approximations
of execution times. Non-polynomial execution times are represented by unknown
variables which are not free with respect to the program variables. Thus non-
polynomial expressions are equivalent to polynomial expressions over a larger
set of variables.

Probabilities for tests should also result in unknown variables (still to be
implemented). See [57].

A summary_complexity is the approximation of a module execution times.
It is translated and used at call sites.

83

Complexity estimation could be refined (i.e. the number of unknown vari-
ables reduced) by using transformers to combine elementary complexities using
local states, rather than preconditions to combine elementary complexities rela-
tively to the module initial state. The same options exist for region computation.
The initial version [45] used the initial state for combinations. The new ver-
sion [18] delays evaluation of variable values as long as possible but does not
really use local states.

The first version of the complexity estimator was designed and developed by
Pierre Berthomier. It was restricted to intra-procedural analysis. This first
version was enlarged and validated on real code for SPARC-2 machines by Lei
Zhou [57]. Since, it has been modified slightly by François Irigoin. For simple
programs, complexity estimation are strongly correlated with execution times.
The estimations can be used to see if program transformations are beneficial.

Known bugs: tests and while loops are not correctly handled because a fixed
probably of 0.5 is systematically assumed.

6.11.1 Menu for Complexities

alias complexities ’Complexities’

alias uniform_complexities ’Uniform’

alias fp_complexities ’FLOPs’

alias any_complexities ’Any’

6.11.2 Uniform Complexities

Complexity estimation is based on a set of basic operations and fixed execution
times for these basic operation. The choice of the set is critical but fixed.
Experiments by Lei Zhou showed that it should be enlarged. However, the
basic times, which also are critical, are tabulated. New sets of tables can easily
be developed for new processors.

Uniform complexity tables contain a unit execution time for all basic oper-
ations. They nevertheless give interesting estimations for SPARC SS-10, espe-
cially for -O2/-O3 optimized code.

uniform_complexities > MODULE.complexities

< PROGRAM.entities

< MODULE.code

< MODULE.preconditions

< CALLEES.summary_complexity

6.11.3 Summary Complexity

Local variables are eliminated from the complexity associated to the top state-
ment of a module in order to obtain the modules’ summary complexity.

summary_complexity > MODULE.summary_complexity

< PROGRAM.entities

< MODULE.code

< MODULE.complexities

84

6.11.4 Floating Point Complexities

Tables for floating point complexity estimation are set to 0 for non-floating
point operations, and to 1 for all floating point operations, including intrinsics
like SIN.

fp_complexities > MODULE.complexities

< PROGRAM.entities

< MODULE.code

< MODULE.preconditions

< CALLEES.summary_complexity

This enables the default specification within the properties to be considered.

any_complexities > MODULE.complexities

< PROGRAM.entities

< MODULE.code

< MODULE.preconditions

< CALLEES.summary_complexity

6.11.5 Complexity properties

The following properties control the static estimation of dynamic code execution
time.

6.11.5.1 Debugging

Trace the walk across a module’s internal representation:

COMPLEXITY_TRACE_CALLS FALSE

Trace all intermediate complexities:

COMPLEXITY_INTERMEDIATES FALSE

Print the complete cost table at the beginning of the execution:

COMPLEXITY_PRINT_COST_TABLE FALSE

The cost table(s) contain machine and compiler dependent information about
basic execution times, e.g. time for a load or a store.

6.11.5.2 Fine Tuning

It is possible to specify a list of variables which must remain literally in the
complexity formula, although their numerical values are known (this is OK) or
although they have multiple unknown and unrelated values during any execution
(this leads to an incorrect result).

Formal parameters and imported global variables are left unevaluated.
They have relatively high priority (FI: I do not understand this comment by

Lei).
This list should be empty by default (but is not for unknown historical

reasons):

85

COMPLEXITY_PARAMETERS "IMAX␣LOOP"

Controls the printing of accuracy statistics:

• 0: do not prettyprint any statistics with complexities (to give the user a
false sense of accuracy and/or to avoid cluttering his/her display); this is
the default value;

• 1: prettyprint statistics only for loop/block/test/unstr. statements and
not for basic statements, since they should not cause accuracy problems;

• 2: prettyprint statistics for all statements

COMPLEXITY_PRINT_STATISTICS 0

6.11.5.3 Target Machine and Compiler Selection

This property is used to select a set of basic execution times. These times
depend on the target machine, the compiler and the compilation options used.
It is shown in [57] that fixed basic times can be used to obtain accurate execution
times, if enough basic times are considered, and if the target machine has a
simple RISC processor. For instance, it is not possible to use only one time for
a register load. It is necessary to take into account the nature of the variable,
i.e. formal parameter, dynamic variable, global variable, and the nature of the
access, e.g. the dimension of an accessed array. The cache can be ignored an
replacer by an average hit ratio.

Different set of elementary cost tables are available:

• all_1: each basic operation cost is 1;

• fp_1: only floating point operations are taken into account and have cost
unit 1; all other operations have a null cost.

In the future, we might add a sparc-2 table...
The different elementary table names are defined in complexity-local.h.

They presently are operation, memory, index, transcend and trigo.
The different tables required are to be found in $PIPS_LIBDIR/complexity/xyz,

where xyz is specified by this property:

COMPLEXITY_COST_TABLE "all_1"

6.11.5.4 Evaluation Strategy

For the moment, we have designed two ways to solve the complexity combina-
tion problem. Since symbolic complexity formulae use program variables it is
necessary to specify in which store they are evaluated. If two complexity for-
mulae are computed relatively to two different stores, they cannot be directly
added.

The first approach, which is implemented, uses the module initial store as
universal store for all formulae (but possibly for the complexity of elementary

86

statements). In some way, symbolic variable are evaluated as early as possible as
soon as it is known that they won’t make it in the module summary complexity.

This first method is easy to implement when the preconditions are available
but it has at least two drawbacks:

• if a variable is used in different places with the same unknown value, each
occurrence will be replaced by a different unknown value symbol (the
infamous UU_xx symbols in formulae).

• since variables are replaced by numerical values as soon as possible as
early as possible, the user is shown a numerical execution time instead
of a symbolic formulae which would likely be more useful (see property
COMPLEXITY_PARAMETERS 6.11.5.2). This is especially true with interpro-
cedural constant propagation.

The second approach, which is not implemented, delay variable evaluation
as late as possible. Complexities are computed and given relatively to the
stores used by each statements. Two elementary complexities are combined
together using the earliest store. The two stores are related by a transformer (see
Section 6.9.4). Such an approach is used to compute MUST regions as precisely
as possible (see Section 6.12.9).

A simplified version of the late evaluation was implemented. The initial store
of the procedure is the only reference store used as with the early evaluation,
but variables are not evaluated right away. They only are evaluated when it is
necessary to do so. This not an ideal solution, but it is easy to implement and
reduces considerably the number of unknown values which have to be put in the
formulae to have correct results.

COMPLEXITY_EARLY_EVALUATION FALSE

6.12 Convex Array Regions

Convex array regions are functions mapping a memory store onto a convex set
of array elements. They are used to represent the memory effects of modules
or statements. Hence, they are expressed with respect to the initial store of the
module or to the store immediately preceding the execution of the statement
they are associated with. The latter is now standard in PIPS. Comprehen-
sive information about convex array regions and their associated algorithms is
available in Creusillet’s PhD Dissertation [20].

Apart from the array name and its dimension descriptors (or ϕ variables),
an array region contains three additional informations:

• The type of the region: READ (R) or WRITE (W) to represent the effects
of statements and procedures; IN and OUT to represent the flow of array
elements.

• The approximation of the region: EXACT when the region exactly repre-
sents the requested set of array elements, or MAY or MUST if it is an over-
or under-approximation (MUST ⊆ EXACT ⊆ MAY).

87

Unfortunately, for historical reasons, MUST is still used in the implementa-
tion instead of EXACT, and actual MUST regions are not computed. More-
over, the must regions option in fact computes exact and may regions.

MAY regions are flow-insensitive regions, whereas MUST regions are flow
sensitive. Any array element touched by any execution of a statement is
in the MAY region of this statement. Any array element in the MUST region
of a statement is accessed by any execution of this statement.

• a convex polyhedron containing equalities and inequalities: they link the ϕ
variables that represent the array dimensions, to the values of the program
integer scalar variables.

For a performance purpose, this convex polyhedron is never add for scalar
variables, except for the computation of IN/OUT-Regions for loops whose
his algorithm required it.

For instance, the convex array region:

<A(ϕ1,ϕ2)-W-EXACT-{ϕ1==I, ϕ1==ϕ2}>

where the region parameters ϕ1 and ϕ2 respectively represent the first and
second dimensions of A, corresponds to an assignment of the element A(I,I).

Internally, convex array regions are of type effect and as such can be used
to build use-def chains (see Section 6.5.3). Regions chains are built using proper
regions which are particular READ and WRITE regions. For simple statements
(assignments, calls to intrinsic functions), summarization is avoided to preserve
accuracy. At this inner level of the program control flow graph, the extra amount
of memory necessary to store regions without computing their convex hull should
not be too high compared to the expected gain for dependence analysis. For
tests and loops, proper regions contain the regions associated to the condition
or the range. And for external calls, proper regions are the summary regions of
the callee translated into the caller’s name space, to which are merely appended
the regions of the expressions passed as argument (no summarization for this
step).

Ressource proper regions is equivalent to proper effects (see Section 6.2.1),
and regions to cumlulated effects (see Section 6.2.3). So they share some
features, like LUNS present for regions/cumlulated effects on return/ex-
it/abort statements.

Together with READ/WRITE regions and IN regions are computed their in-
variant versions for loop bodies (MODULE.inv regions and MODULE.inv in regions).
For a given loop body, they are equal to the corresponding regions in which all
variables that may be modified by the loop body (except the current loop index)
are eliminated from the descriptors (convex polyhedron). For other statements,
they are equal to the empty list of regions.

In the following trivial example,

k = 0 ;
for (i =0; i<N; i++)

88

{
// reg ions f o r loop body :
// <a [phi1]−W−EXACT−{PHI1==K,K==I}>
// in va r i an t r eg i ons f o r loop body :
// <a [phi1]−W−EXACT−{PHI1==I}>

k = k+1;
a [k] = k ;

}

notice that the variable k which is modified in the loop body, and which appears
in the loop body region polyhedron, does not appear anymore in the invariant
region polyhedron.

MAY READ and WRITE region analysis was first designed by Rémi Triolet [48]
and then revisited by François Irigoin [49]. Alexis Platonoff [45] imple-
mented the first version of region analysis in PIPS. These regions were computed
with respect to the initial stores of the modules. François Irigoin and, mainly,
Béatrice Creusillet [18, 19, 20], added new functionalities to this first version
as well as functions to compute MUST regions, and IN and OUT regions.

MAY and MUST regions also compute useful variables regions ressource. This
ressource computes the regions used by a variable at the memory state of is
declaration. So it associates for each entity variable of a module, a R/W regions.
It was already compute during the computation if the regions but not memorize.
The store of this ressource was added by Nelson Lossing.

Array regions for C programs are currently under development.

6.12.1 Menu for Convex Array Regions

alias regions ’Array regions’

alias may_regions ’MAY regions’

alias must_regions ’EXACT or MAY regions’

alias useful_variables_regions ’Useful Variables regions’

6.12.2 MAY READ/WRITE Convex Array Regions

This function computes the MAY pointer regions in a module.

may_pointer_regions > MODULE.proper_pointer_regions

> MODULE.pointer_regions

> MODULE.inv_pointer_regions

> MODULE.useful_variables_pointer_regions

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.transformers

< MODULE.preconditions

< CALLEES.summary_pointer_regions

This function computes the MAY regions in a module.

may_regions > MODULE.proper_regions

89

> MODULE.regions

> MODULE.inv_regions

> MODULE.useful_variables_regions

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.transformers

< MODULE.preconditions

< CALLEES.summary_regions

6.12.3 MUST READ/WRITE Convex Array Regions

This function computes the MUST regions in a module.

must_pointer_regions > MODULE.proper_pointer_regions

> MODULE.pointer_regions

> MODULE.inv_pointer_regions

> MODULE.useful_variables_pointer_regions

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.transformers

< MODULE.preconditions

< CALLEES.summary_pointer_regions

This function computes the MUST pointer regions in a module using simple
points to information to disambiguate dereferencing paths.

must_pointer_regions_with_points_to > MODULE.proper_pointer_regions

> MODULE.pointer_regions

> MODULE.inv_pointer_regions

> MODULE.useful_variables_pointer_regions

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.transformers

< MODULE.preconditions

< MODULE.points_to

< CALLEES.summary_pointer_regions

This function computes the MUST regions in a module.

must_regions > MODULE.proper_regions

> MODULE.regions

> MODULE.inv_regions

> MODULE.useful_variables_regions

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.transformers

< MODULE.preconditions

< CALLEES.summary_regions

90

This function computes the MUST regions in a module using information on
pointer targets given by points-to.

must_regions_with_points_to > MODULE.proper_regions

> MODULE.regions

> MODULE.inv_regions

> MODULE.useful_variables_regions

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.points_to

< MODULE.transformers

< MODULE.preconditions

< CALLEES.summary_regions

This function computes the MUST regions in a module using information on
pointer targets given by pointer values.

must_regions_with_pointer_values > MODULE.proper_regions

> MODULE.regions

> MODULE.inv_regions

> MODULE.useful_variables_regions

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.simple_pointer_values

< MODULE.transformers

< MODULE.preconditions

< CALLEES.summary_regions

6.12.4 Summary READ/WRITE Convex Array Regions

Module summary regions provides an approximation of the effects it’s execution
has on its callers variables as well as on global and static variables of its callees.

summary_pointer_regions > MODULE.summary_pointer_regions

< PROGRAM.entities

< MODULE.code

< MODULE.pointer_regions

summary_regions > MODULE.summary_regions

< PROGRAM.entities

< MODULE.code

< MODULE.regions

6.12.5 IN Convex Array Regions

IN convex array regions are flow sensitive regions. They are read regions not
covered (i.e. not previously written) by assignments in the local hierarchi-
cal control-flow graph. There is no way with the current pipsmake-rc and
pipsmake to express the fact that IN (and OUT) regions must be calculated using
must_regions 6.12.3 (a new kind of resources, must_regions 6.12.3, should be

91

added). The user must be knowledgeable enough to select must_regions 6.12.3
first.

in_regions > MODULE.in_regions

> MODULE.cumulated_in_regions

> MODULE.inv_in_regions

< PROGRAM.entities

< MODULE.code

< MODULE.summary_effects

< MODULE.cumulated_effects

< MODULE.transformers

< MODULE.preconditions

< MODULE.regions

< MODULE.inv_regions

< CALLEES.in_summary_regions

6.12.6 IN Summary Convex Array Regions

This pass computes the IN convex array regions of a module. They contain the
array elements and scalars whose values impact the output of the module.

in_summary_regions > MODULE.in_summary_regions

< PROGRAM.entities

< MODULE.code

< MODULE.transformers

< MODULE.preconditions

< MODULE.in_regions

6.12.7 OUT Summary Convex Array Regions

This pass computes the OUT convex array regions of a module. They contain
the array elements and scalars whose values impact the continuation of the
module.

See Section 6.12.8.

out_summary_regions > MODULE.out_summary_regions

< PROGRAM.entities

< CALLERS.out_regions

6.12.8 OUT Convex Array Regions

OUT convex array regions are also flow sensitive regions. They are downward
exposed written regions which are also used (i.e. imported) in the continuation
of the program. They are also called exported regions. Unlike READ, WRITE
and IN regions, they are propagated downward in the call graph and in the
hierarchical control flow graphs of the subroutines.

out_regions > MODULE.out_regions

< PROGRAM.entities

< MODULE.code

< MODULE.transformers

92

< MODULE.preconditions

< MODULE.regions

< MODULE.inv_regions

< MODULE.summary_effects

< MODULE.cumulated_effects

< MODULE.cumulated_in_regions

< MODULE.inv_in_regions

< MODULE.out_summary_regions

6.12.9 Properties for Convex Array Regions

If MUST REGIONS is true, then it computes convex array regions using the algo-
rithm described in report E/181/CRI, called T−1 algorithm. It provides more
accurate regions, and preserve MUST approximations more often. As it is more
costly, its default value is FALSE. EXACT REGIONS is true for the moment
for backward compatibility only.

EXACT_REGIONS TRUE

MUST_REGIONS FALSE

The default option is to compute regions without taking into account de-
clared array bounds. The next property can be turned to TRUE to system-
atically add them in the region descriptors. Both options have their advan-
tages and drawbacks, but the second one implies that the PIPS 14 user is sure
that her/his program is correct with respect to array accesses. In case of
doubt, you might want to run pass array_bound_check_bottom_up 7.1.1 or
array_bound_check_top_down 7.1.2.

REGIONS_WITH_ARRAY_BOUNDS FALSE

Property MEMORY_IN_OUT_EFFECTS_ONLY 6.12.9’s default value is set to TRUE
to avoid computing IN and OUT effects or regions on non-memory effects, even
if MEMORY_EFFECTS_ONLY 6.2.7.5 is set to FALSE.

MEMORY_IN_OUT_EFFECTS_ONLY TRUE

The current implementation of effects, simple effects as well as convex array
regions, relies on a generic engine which is independent of the effect descrip-
tor representation. The current representation for array regions, parameterized
integer convex polyhedra, allows various patterns an provides the ability to ex-
ploit context information at a reasonable expense. However, some very common
patterns such as nine-point stencils used in seismic computations or red-black
patterns cannot be represented. It has been a long lasting temptation to try
other representations [20].

A Complementary sections (see Section 6.15) implementation was formerly
began as a set of new phases by Manjunathaiah Muniyappa, but is not main-
tained anymore.

And Nga Nguyen more recently created two properties to switch between
regions and disjunctions of regions (she has already prepared basic operators).
For the moment, they are always FALSE.

14http://www.cri.ensmp.fr/pips

93

http://www.cri.ensmp.fr/pips
http://www.cri.ensmp.fr/pips

DISJUNCT_REGIONS FALSE

DISJUNCT_IN_OUT_REGIONS FALSE

Statistics may be obtained about the computation of convex array regions.
When the next property (REGIONS OP STATISTICS) is set to TRUE statistics are
provided about operators on regions (union, intersection, projection,. . .). The
second next property turns on the collection of statistics about the interproce-
dural translation.

REGIONS_OP_STATISTICS FALSE

REGIONS_TRANSLATION_STATISTICS FALSE

6.13 Live Memory Access Paths

There are many cases in which it is necessary to know if a variable may be used
in the remainder of the execution of the analyzed application. For instance, a
global variable cannot be privatized, or a global array be scalarized, if we do not
know whether their values are used afterwards, or a copy-out must be gener-
ated, which is not currently implemented in the simplest algorithms. Similarly,
preconditions do not need to propagate information about variables that are no
longer alive.

6.13.1 Live Paths

Traditional liveness analyzes deals with scalar variables. However, with C code,
it is interesting to be able to distinguish between different structure fields for
instance, and it may also be interesting to deal with array regions. So we have
retained for these analyzes an internal representation as effects, thus allowing to
deal with general memory access paths, and to rely on the existing machinery
of effects/regions computations.
Memory access paths can be equivalent to the constant path? ??

For each statement or function, we compute two sets: a Live in set contains
the memory paths which are alive in the store preceding the statement execution,
while a Live out set contains the memory paths alive in the store immediately
following the statement execution. For sequences of instructions, the Live out
set of an instruction is equal to the Live in set of the next instruction. However,
this not true for the last statement of conditional or loop bodies and the first
statements of the next instructions.

live_out_summary_paths > MODULE.live_out_summary_paths

< PROGRAM.entities

< MODULE.code

< CALLERS.live_out_paths

94

live_paths > MODULE.live_in_paths

> MODULE.live_out_paths

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.in_effects

< MODULE.live_out_summary_paths

live_in_summary_paths > MODULE.live_in_summary_paths

< PROGRAM.entities

< MODULE.code

< MODULE.live_in_paths

6.13.2 Live Out Regions

This pass only keeps constraints on live variables of out-regions when it’s pos-
sible. So the polyhedral constraints for a variable will be less constraint. But
we assume that if a variable is not alive, there is no reason to appear on the
constraints of the out-regions.

This pass can be usefull to have regions that wil be use to generate some
code. It has better insure to not revive a “die” variable.

See Section 6.12.8 and 6.13.1.
Note: Only constraints with variable are considered, since regions don’t have

constraints on cell (PHI¡a[0] not possible).

live_out_regions > MODULE.live_out_regions

< PROGRAM.entities

< MODULE.code

< MODULE.out_regions

< MODULE.live_out_paths

< MODULE.live_in_paths

6.13.3 Live In/Out Effect

There is no reason to ave live IN/OUT effects, because variables in IN/OUT
effects must be present in Live IN/OUT. If it’s not the case, it must be a bug
somewhere?

6.14 Alias Analysis

6.14.1 Dynamic Aliases

Dynamic aliases are pairs (formal parameter, actual parameter) of convex array
regions generated at call sites. An “IN alias pair” is generated for each IN
region of a called module and an “OUT alias pair” for each OUT region. For
EXACT regions, the transitive, symmetric and reflexive closure of the dynamic
alias relation results in the creation of equivalence classes of regions (for MAY
regions, the closure is different and does not result in an equivalence relation, but
nonetheless allows us to define alias classes). A set of alias classes is generated

95

for a module, based on the IN and OUT alias pairs of all the modules below
it in the callgraph. The alias classes for the whole workspace are those of the
module which is at the root of the callgraph, if the callgraph has a unique root.
As an intermediate phase between the creation of the IN and OUT alias pairs
and the creation of the alias classes, “alias lists” are created for each module.
An alias list for a module is the transitive closure of the alias pairs (IN or OUT)
for a particular path through the callgraph subtree rooted in this module.

in_alias_pairs > MODULE.in_alias_pairs

< PROGRAM.entities

< MODULE.callers

< MODULE.in_summary_regions

< CALLERS.code

< CALLERS.cumulated_effects

< CALLERS.preconditions

out_alias_pairs > MODULE.out_alias_pairs

< PROGRAM.entities

< MODULE.callers

< MODULE.out_summary_regions

< CALLERS.code

< CALLERS.cumulated_effects

< CALLERS.preconditions

alias_lists > MODULE.alias_lists

< PROGRAM.entities

< MODULE.in_alias_pairs

< MODULE.out_alias_pairs

< CALLEES.alias_lists

alias_classes > MODULE.alias_classes

< PROGRAM.entities

< MODULE.alias_lists

6.14.2 Init Points-to Analysis

This phase generates synthetic points-to relations for formal parameters. It
creates synthetic sinks, i.e. stubs, for formal parameters and provides an initial
set of points-to to the intraprocedural_points_to_analysis 6.14.5.

Currently, it assumes that no sharing exists between the formal parameters
and within the data structures pointed to by the formal parameters. Two prop-
erties should control this behavior, ALIASING_ACROSS_FORMAL_PARAMETERS 6.14.8.1
and ALIASING_ACROSS_TYPES 6.14.8.1. The first one supersedes the property
ALIASING_INSIDE_DATA_STRUCTURE 6.14.8.1.

alias init_points_to_analysis ’Init Points To Analysis’

init_points_to_analysis > MODULE.init_points_to_list

< PROGRAM.entities

< MODULE.code

96

6.14.3 Interprocedural Points to Analysis

This pass is being implemented by AmiraMensi. The interprocedural_points_to_analysis 6.14.3
is implemented in order to compute points-to relations in an interprocedural
way, based on Wilson algorithm. This phase computes both Gen and Kill sets
at the level of the call site.It requires another resource which is computed by
intraprocedural_points_to_analysis 6.14.5.

alias interprocedural_points_to_analysis ’Interprocedural Points To Analysis’

interprocedural_points_to_analysis > MODULE.points_to

> MODULE.points_to_out

> MODULE.points_to_in

! SELECT.proper_effects_with_points_to

! SELECT.cumulated_effects_with_points_to

< PROGRAM.entities

< MODULE.code

< CALLEES.summary_effects

< CALLEES.points_to_out

< CALLEES.points_to_in

6.14.4 Fast Interprocedural Points to Analysis

This pass is being implemented by AmiraMensi. The fast_interprocedural_points_to_analysis 6.14.4
is implemented in order to compute points-to relations in an interprocedural
way, based on Wilson algorithm. This phase computes only Kill sets at the call
site level. It requires another resource which is computed by intraprocedural_points_to_analysis 6.14.5.

alias fast_interprocedural_points_to_analysis ’Fast Interprocedural Points To Analysis’

fast_interprocedural_points_to_analysis > MODULE.points_to

> MODULE.points_to_out

> MODULE.points_to_in

! SELECT.proper_effects_with_points_to

! SELECT.cumulated_effects_with_points_to

< PROGRAM.entities

< MODULE.code

< CALLEES.summary_effects

< CALLEES.points_to_out

< CALLEES.points_to_in

6.14.5 Intraprocedural Points to Analysis

This function is being implemented by AmiraMensi. The intraprocedural_points_to_analysis 6.14.5
is implemented in order to compute points-to relations, based on Emami algo-
rithm. Emami algorithm is a top-down analysis which calcules the points-to
relations by applying specific rules to each assignement pattern identified. This
phase requires another resource which is init_points_to_analysis 6.14.2.

97

Ressources points to in and points to out will be used to compute the trans-
fer function later. They represent points-to relation at the beginning of func-
tions where sources are formal parameters or global variables. Points to out are
points-to relations at the end of function’s body, it contains return value and it’s
sink, formal parameters, gloabl variables and heap allocated variables which can
be visible beyond function’s scope. And using effects to compute calls impact
on points-to analysis.

alias intraprocedural_points_to_analysis ’Intraprocedural Points To Analysis’

intraprocedural_points_to_analysis > MODULE.points_to

> MODULE.points_to_out

> MODULE.points_to_in

! SELECT.proper_effects_with_points_to

! SELECT.cumulated_effects_with_points_to

< PROGRAM.entities

< MODULE.code

< CALLEES.summary_effects

< CALLEES.points_to_out

< CALLEES.points_to_in

The pointer effects are useful, but they are recomputed for each expression
and subexpression by the points-to analysis.

6.14.6 Initial Points-to or Program Points-to

Because no top-down points-to analysis is available, this two passes are use-
less. A top-down points-to analysis would be useful to check that the restrict
assumption about formal parameters is met by the actual parameters. It might
make possible a slighlty more precise points-to information in the functions.
Hopefully, the formal context and the points-to stubs provide enough equiva-
lent information to the passes that use points-to information.

initial_points_to > MODULE.initial_points_to

< PROGRAM.entities

< MODULE.code

< MODULE.points_to_out

All initial points-to are combined to define the program points-to which is
an abstraction of the program initial state.

program_points_to > PROGRAM.program_points_to

< PROGRAM.entities

< ALL.initial_points_to

The program points-to can only be used for the initial state of the main
procedure. Although it appears below for all interprocedural analyses and it
always is computed, it only is used when a main procedure is available.

98

6.14.7 Pointer Values Analyses

Computes the initial pointer values from the global or static declarations of the
module.

initial_simple_pointer_values > MODULE.initial_simple_pointer_values

< PROGRAM.entities

< MODULE.code

Computes the initial pointer values of the program from the global dec-
larations and the static declarations inside the program modules. They are
computed by merging the initial pointer values of all the modules (this may
include those which do not belong to actually realizable paths).

program_simple_pointer_values > PROGRAM.program_simple_pointer_values

< PROGRAM.entities

< ALL.initial_simple_pointer_values

Pointer values analysis is another kind of pointer analysis which tries to
gather Pointer Values both in terms of other pointer values but also of memory
addresses. This phase is under development.

alias simple_pointer_values ’Pointer Values Analysis’

simple_pointer_values > MODULE.simple_pointer_values

> MODULE.in_simple_pointer_values

> MODULE.out_simple_pointer_values

< PROGRAM.entities

< MODULE.code

< PROGRAM.program_simple_pointer_values

< CALLEES.in_simple_pointer_values

< CALLEES.out_simple_pointer_values

6.14.8 Properties for pointer analyses

The following properties are defined to ensure the safe use of intraprocedural_points_to_analysis 6.14.5.

6.14.8.1 Impact of Types

The property ALIASING_ACROSS_TYPES 6.14.8.1 specifies that two pointers of
different effective types can be aliased. The default and safe value is TRUE;
when it is turned to FALSE two pointers of different types are never aliased.

ALIASING_ACROSS_TYPES TRUE

The property ALIASING_ACROSS_FORMAL_PARAMETERS 6.14.8.1 is used to han-
dle the aliasing between formal parameters and global variables of pointer type.
When it is set to TRUE, two formal parameters or a formal one and a global
pointer or two global pointers can be aliased. If it is turned to FALSE, such
pointers are assumed to be unaliased for intraprocedural analysis and generally
for root module(i.e. modules without callers). The default value is FALSE. It is
the only value currently implemented.

ALIASING_ACROSS_FORMAL_PARAMETERS FALSE

99

The nest property specifies that one data structure can recursively contain
two pointers pointing to the same location. If it is turned to FALSE, it is as-
sumed that two different not included memory access paths cannot point to the
same memory locations. The safe value is TRUE, but parallelization is hindered.
Often, the user can guarantee that data structures do not exhibit any sharing.
Optimistically, FALSE is the default value.

ALIASING_INSIDE_DATA_STRUCTURE FALSE

Property ALIASING_ACROSS_IO_STREAMS 6.14.8.1 can be set to FALSE to
specify that two io streams (two variables declared as FILE *) cannot be aliased,
neither the locations to which they point. The safe and default value is TRUE

ALIASING_ACROSS_IO_STREAMS TRUE

6.14.8.2 Heap Modeling

The following string property defines the lattice of maximal elements to use when
precise information is lost. Three values are possible: ”unique”, ”function” and
”area”. The first value is the default value. A unique identifier is defined to
represent any set of unknown locations. The second value defines a separate
identifier for each function and compilation unit. Note that compilation units
require more explanation about this definition and about the conflict detection
scheme. The third value, ”area”, requires a separate identifier for each area
of each function or compilation unit. These abstract lcoation lattice values
are further refined if the property ALIASING_ACROSS_TYPES 6.14.8.1 is set to
FALSE. The abstract location API hides all these local maximal values from its
callers. Note that the dereferencing of any such top abstract location returns
the very top of all abstract locations.

The ABSTRACT_HEAP_LOCATIONS 6.14.8.2 specifies the modeling of the heap.
The possible values are ”unique”, ”insensitive”, ”flow-sensitive” and ”context-
sensitive”. Each value defines a strictly refined analysis with respect to analyses
defined by previous values [This may not be a good idea, since flow and context
sensitivity are orthogonal].

The default value, ”unique”, implies that the heap is a unique array. It is
enough to parallelize simple loops containing pointer-based references such as
”p[i]”.

In the ”insensitive” case and all other cases, one array is allocated in each
function to modelize the heap.

In the ”flow-sensitive” case, the statement numbers of the malloc() call sites
are used to subscribe this array, as well as all indices of the surrounding loops
[Two improvements in one property...]. Only the first half of the property is
implemented.

In the ”context sensitive” case, the interprocedural translation of memory
acces paths based on the abstract heap are prefixed by the same information
regarding the call site: function containing the call site, statement number of
the call site and indices of surrounding loops. This is not implemented.

Note that the naming of options is not fully compatible with the usual no-
tations in pointer analyses. Note also that the insensitive case is redundant

100

with context sensitive case: in the later case, a unique heap associated to mal-
loc() would carry exactly the same amount of information [flow and context
sensitivity are orthogonal].

Finally, note that abstract heap arrays are distinguished according to their
types if the property ALIASING_ACROSS_TYPES 6.14.8.1 is set to FALSE [impact
on abstract heap location API]. Else, the heap array is of type unknown. If
a heap abstract location is dereferenced without any point-to information nor
heap aliasing information, the safe result is the top abstract location.

ABSTRACT_HEAP_LOCATIONS "unique"

Property POINTS_TO_SUCCESSFUL_MALLOC_ASSUMED 6.14.8.2 is used to con-
trol the analysis of a malloc call. The call may return either a unique target in
the heap, or a pair of targets, one in the heap and NULL. The default value is
true for historical reasons and because the result is shorter and correct almost
all the time.

POINTS_TO_SUCCESSFUL_MALLOC_ASSUMED TRUE

6.14.8.3 Type Handling

The property POINTS_TO_STRICT_POINTER_TYPES 6.14.8.3 is used to handle
pointer arithmetic. According to C standard(section 6.5.6, item 8) the following
C code :

int *p, i;

p = \&i;

p++ ;

is correct and p points to the same area, expressed by the points to analysis
as i[*]. The default value is FALSE, meaning that p points to an array element.
When it’s set to TRUE typing becone strict ; meaning that p points to an integer
and the behavior is undefined. So the analysis stops with a pips user error(illegal
pointer arithmetic)

POINTS_TO_STRICT_POINTER_TYPES FALSE

6.14.8.4 Dereferenceing of Null and Undefined Pointers

The property POINTS_TO_UNINITIALIZED_POINTER_DEREFERENCING 6.14.8.4 spec-
ifies what to do when an uninitialized pointer is or may be dereferenced. The
safe value is FALSE. The points-to analysis assumed that no undefined pointer
is ever dereferenced. So if a pointer may be undefined and is dereferenced, the
arc is considered impossible and removed from the points-to information. If not
other arc provides some value for this pointer, the code is assumed dead and
the current points-to set is reduced to the empty set. A warning about dead
code is emitted. However the property can be set to TRUE and the dereferencing
of an undefined pointer is accepted and results in an anywhere location.

POINTS_TO_UNINITIALIZED_POINTER_DEREFERENCING FALSE

101

The property POINTS_TO_NULL_POINTER_DEREFERENCING 6.14.8.4 is very sim-
ilar to the previous one. It specifies what to do when an null pointer is or may
be dereferenced. The safe value is FALSE. The points-to analysis assumed that
no null pointer is ever dereferenced. So if a pointer may be undefined and is
dereferenced, the arc is considered impossible and removed from the points-to
information. If not other arc provides some value for this pointer, the code is
assumed dead and the current points-to set is reduced to the empty set. A warn-
ing about dead code is emitted. However the property can be set to TRUE and
the dereferencing of an undefined pointer is accepted and results in an anywhere
location.

POINTS_TO_NULL_POINTER_DEREFERENCING FALSE

The property POINTS_TO_NULL_POINTER_INITIALIZATION 6.14.8.4 allows
the initialization of pointers that are formal parameters or global variables to
NULL when computing a calling context. The most accurate property value is
TRUE, which makes sure that generated points-to stubs are different from NULL
because two arcs are always generated: an arc towards the new points-to stub
and an arc towards the NULL location. Thus it prevents from dereferencing a
null pointer when dereferencing a points-to stub and it allows the comparison of
two points-to stubs when a condition such as p!=q is interpreted or the compar-
ison of one points-to stub to NULL as in p!=NULL. This property must be set to
TRUE for the points-to analysis to return valid results since the constant path
lattice used implies that NULL is not included in points-to stubes. Also, setting
it to FALSE make any formal recursive data structures infinite since NULL is
never found by the analyzer. Basically, this property should be removed.

POINTS_TO_NULL_POINTER_INITIALIZATION TRUE

6.14.8.5 Limits of Points-to Analyses

The integer property POINTS_TO_OUT_DEGREE_LIMIT 6.14.8.5 specifies the max-
imum number of arcs exiting a given vertex of a poins-to graph. When the
maximum out degree is reached for a given source vertex, all the correspond-
ing sink vertices are fused into one new vertex, the minimal upper bound of
the initial vertices according to the abstract address lattice, and the points-to
graph is updated accordingly. New nodes are created as long as the limit is not
reached. The freeing of a list spine can generate an unbounded out degree (see
for instance Pointers/list05.c).

POINTS_TO_OUT_DEGREE_LIMIT 5

The integer property POINTS_TO_PATH_LIMIT 6.14.8.5 specifies the maxi-
mum number of occurences of an object of a given type in a non-cyclic path
generated by the points-to graph. New nodes are created as long as no such
path exists. When the limit is reached, a cycle is created.

POINTS_TO_PATH_LIMIT 2

The integer property POINTS_TO_SUBSCRIPT_LIMIT 6.14.8.5 specifies the
maximum number of subscript of an object can be generated via pointer arith-
metic. When the limit is reached, an unbounded subscript, *, is used to model
any possible subscript value.

102

POINTS_TO_SUBSCRIPT_LIMIT 2

6.14.9 Menu for Alias Views

alias alias_file ’Alias View’

alias print_in_alias_pairs ’In Alias Pairs’

alias print_out_alias_pairs ’Out Alias Pairs’

alias print_alias_lists ’Alias Lists’

alias print_alias_classes ’Alias Classes’

Display the dynamic alias pairs (formal region, actual region) for the IN
regions of the module.

print_in_alias_pairs > MODULE.alias_file

< PROGRAM.entities

< MODULE.cumulated_effects

< MODULE.in_alias_pairs

Display the dynamic alias pairs (formal region, actual region) for the OUT
regions of the module.

print_out_alias_pairs > MODULE.alias_file

< PROGRAM.entities

< MODULE.cumulated_effects

< MODULE.out_alias_pairs

Display the transitive closure of the dynamic aliases for the module.

print_alias_lists > MODULE.alias_file

< PROGRAM.entities

< MODULE.cumulated_effects

< MODULE.alias_lists

Display the dynamic alias equivalence classes for this module and those below
it in the callgraph.

print_alias_classes > MODULE.alias_file

< PROGRAM.entities

< MODULE.cumulated_effects

< MODULE.alias_classes

6.15 Complementary Sections

alias compsec ’Complementary Sections’

A new representation of array regions added in PIPS by Manjunathaiah
Muniyappa. This anlysis is not maintained anymore.

103

6.15.1 READ/WRITE Complementary Sections

This function computes the complementary sections in a module.

complementary_sections > MODULE.compsec

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.transformers

< MODULE.preconditions

< CALLEES.summary_compsec

6.15.2 Summary READ/WRITE Complementary Sections

summary_complementary_sections > MODULE.summary_compsec

< PROGRAM.entities

< MODULE.code

< MODULE.compsec

104

Chapter 7

Dynamic Analyses
(Instrumentation)

Dynamic analyses are performed at run-time. At compile-time, the property
than can be proved or disproved are exploited, but in doubt a run-time is added
to the source code. The current dynamic analyses implemented in PIPSare array
bound checking, Fortran alias and used-before-set analyses.

7.1 Array Bound Checking

Array bound checking refers to determining whether all array references are
within their declared range in all of their uses in a program. These array bound
checks may be analysed intraprocedurally or interprocedurally, depending on
the need for accuracy.

There are two versions of intraprocedural array bounds checking: array
bound check bottom up, array bound check top down. The first approach relies
on checking every array access and on the elimination of redundant tests by
advanced dead code elimination based on preconditions. The second approach
is based on exact convex array regions. They are used to prove that all accessed
in a compound statement are correct.

These two dynamic analyses are implemented for Fortran. They are de-
scribed in Nga Nguyen’s PhD (see [42]) and in [43]. They may work for C code,
but this has not been validated.

7.1.1 Elimination of Redundant Tests: Bottom-Up Ap-
proach

This transformation takes as input the current module, adds array range checks
(lower and upper bound checks) to every statement that has one or more array
accesses. The output is the module with those added tests.

If one test is trivial or exists already for the same statement, it is no need
to be generated in order to reduce the number of tests. As Fortran language
permits an assumed-size array declarator with the unbounded upper bound of
the last dimension, no range check is generated for this case also.

105

Associated with each test is a bound violation error message and in case of
real access violation, a STOP statement will be put before the current statement.

This phase should always be followed by the partial_redundancy_elimination 9.2.2
for logical expression in order to reduce the number of bound checks.

alias array_bound_check_bottom_up ’Elimination of Redundant Tests’

array_bound_check_bottom_up > MODULE.code

< PROGRAM.entities

< MODULE.code

7.1.2 Insertion of Unavoidable Tests

This second implementation is based on the array region analyses phase which
benefits some interesting proven properties:

1. If a MAY region correspond to one node in the control flow graph that rep-
resents a block of code of program is included in the declared dimensions
of the array, no bound check is needed for this block of code.

2. If a MUST region correspond to one node in the control flow graph that
represents a block of code of program contains elements which are outside
the declared dimensions of the array, there is certainly bound violation in
this block of code. An error can be detected just in compilation time.

If none of these two properties are satisfied, we consider the approximation
of region. In case of MUST region, if the exact bound checks can be generated,
they will be inserted before the block of code. If not, like in case of MAY region,
we continue to go down to the children nodes in the control flow graph.

The main advantage of this algorithm is that it permits to detect the sure
bound violations or to tell that there is certainly no bound violation as soon
as possible, thanks to the context given by preconditions and the top-down
analyses.

alias array_bound_check_top_down ’Insertion of Unavoidable Tests’

array_bound_check_top_down > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.regions

7.1.3 Interprocedural Array Bound Checking

This phase checks for out of bound errors when passing arrays or array elements
as arguments in procedure call. It ensures that there is no bound violation in
every array access in the callee procedure, with respect to the array declarations
in the caller procedure.

alias array_bound_check_interprocedural ’Interprocedural Array Bound Checking’

array_bound_check_interprocedural > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.preconditions

106

7.1.4 Array Bound Checking Instrumentation

We provide here a tool to calculate the number of dynamic bound checks from
both initial and PIPS generated code.

These transformations are implemented by Thi Viet NgaNguyen (see [42]).

alias array_bound_check_instrumentation ’Array Bound Checking Instrumentation’

array_bound_check_instrumentation > MODULE.code

< PROGRAM.entities

< MODULE.code

Array bounds checking refers to determining whether all array reference are
within their declared range in all of its uses in a program. Here are array bounds
checking options for code instrumentation, in order to compute the number of
bound checks added. We can use only one property for these two case, but the
meaning is not clear. To be changed ?

INITIAL_CODE_ARRAY_BOUND_CHECK_INSTRUMENTATION TRUE

PIPS_CODE_ARRAY_BOUND_CHECK_INSTRUMENTATION FALSE

In practice, bound violations may often occur with arrays in a common block.
The standard is violated, but programmers think that they are not dangerous
because the allocated size of the common is not reached. The following property
deals with this kind of bad programming practice. If the array is a common
variable, it checks if the reference goes beyond the size of the common block or
not.

ARRAY_BOUND_CHECKING_WITH_ALLOCATION_SIZE FALSE

The following property tells the verification phases (array bound checking,
alias checking or uninitialized variables checking) to instrument codes with the
STOP or the PRINT message. Logically, if a standard violation is detected,
the program will stop immediately. Furthermore, the STOP message gives the
partial redundancy elimination phase more information to remove redundant
tests occurred after this STOP. However, for the debugging purposes, one may
need to display all possible violations such as out-of-bound or used-before-set
errors, but not to stop the program. In this case, a PRINT message is chosen.
By default, we use the STOP message.

PROGRAM_VERIFICATION_WITH_PRINT_MESSAGE FALSE

7.2 Alias Verification

7.2.1 Alias Propagation

Aliasing occurs when two or more variables refer to the same storage location
at the same program point. Alias analysis is critical for performing most opti-
mizations correctly because we must know for certain that we have to take into
account all the ways a location, or the value of a variable, may (or must) be
used or changed. Compile-time alias information is also important for program
verification, debugging and understanding.

107

In Fortran 77, parameters are passed by address in such a way that, as long
as the actual argument is associated with a named storage location, the called
subprogram can change the value of the actual argument by assigning a value
to the corresponding formal parameter. So new aliases can be created between
formal parameters if the same actual argument is passed to two or more formal
parameters, or between formal parameters and global parameters if an actual
argument is an object in common storage which is also visible in the called
subprogram or other subprograms in the call chain below it.

Both intraprocedural and interprocedural alias determinations are important
for program analysis. Intraprocedural aliases occur due to pointers in languages
like LISP, C, C++ or Fortran 90, union construct in C or EQUIVALENCE in
Fortran. Interprocedural aliases are generally created by parameter passing and
by access to global variables, which propagates intraprocedural aliases across
procedures and introduces new aliases.

The basic idea for computing interprocedural aliases is to follow all the possi-
ble chains of argument-parameters and nonlocal variable-parameter bindings at
all call sites. We introduce a naming memory locations technique which guar-
antees the correctness and enhances the precision of data-flow analysis. The
technique associates sections, offsets of actual parameters to formal parameters
following a certain call path. Precise alias information are computed for both
scalar and array variables. The analysis is called alias propagation.

This analysis is implemented by Thi Viet Nga Nguyen (see [42]).

alias_propagation > MODULE.alias_associations

< PROGRAM.entities

< MODULE.code

< CALLERS.alias_associations

< CALLERS.code

7.2.2 Alias Checking

With the call-by-reference mechanism in Fortran 77, new aliases can be created
between formal parameters if the same actual argument is passed to two or
more formal parameters, or between formal parameters and global parameters
if an actual argument is an object in common storage which is also visible in
the called subprogram or other subprograms in the call chain below it.

Restrictions on association of entities in Fortran 77 (Section 15.9.3.6 [7]) say
that neither aliased formal parameters nor the variable in the common block
may become defined during execution of the called subprogram or the others
subprograms in the call chain.

This phase uses information from the alias_propagation 7.2.1 analysis
and computes the definition informations of variables in a program, and then to
verify statically if the program violates the standard restriction on alias or not.
If these informations are not known at compile-time, we instrument the code
with tests that check the violation dynamically during execution of program.

This verification is implemented by Thi Viet Nga Nguyen (see [42]).

alias alias_check ’Alias Check’

108

alias_check > MODULE.code

< PROGRAM.entities

< MODULE.alias_associations

< MODULE.cumulated_effects

< ALL.code

This is a property to control whether the alias propagation and alias checking
phases use information from MAIN program or not. If the current module is
never called by the main program, we do no alias propagation and alias checking
for this module if the property is on. However, we can do nothing with modules
that have no callers at all, because this is a top-down approach.

ALIAS_CHECKING_USING_MAIN_PROGRAM FALSE

7.3 Used Before Set

This analysis checks if the program uses a variable or an array element which has
not been assigned a value. In this case, anything may happen: the program may
appear to run normally, or may crash, or may behave unpredictably. We use
IN regions that give a set of read variables not previously written. Depending
on the nature of the variable: local, formal or global, we have different cases.
In principle, it works as follows: if we have a MUST IN region at the module
statement, the corresponding variable must be used before being defined, a
STOP is inserted. Else, we insert an initialization function and go down, insert
a verification function before each MUST IN at each sub-statements.

This is a top-down analysis that process a procedure before all its callees.
Information given by callers is used to verify if we have to check for the formal
parameters in the current module or not. In addition, we produce information
in the resource MODULE.ubs to tell if the formal parameters of the called
procedures have to be checked or not.

This verification is implemented by Thi Viet Nga Nguyen (see [42]).

alias used_before_set ’Used Before Set’

used_before_set > MODULE.ubs

< PROGRAM.entities

< MODULE.code

< MODULE.in_regions

< CALLERS.ubs

109

Chapter 8

Parallelization, Distribution
and Code Generation

8.1 Code Parallelization

PIPS basic parallelization function, rice_all_dependence 8.1.3, produces a
new version of the Module code with DOALL loops exhibited using Allen &
Kennedy’s algorithm. The DOALL syntactic construct is non-standard but
easy to understand and usual in text book like [54]. As parallel prettyprinter
option, it is possible to use Fortran 90 array syntax (see Section 10.4). For C,
the loops can be output as for-loop decorated with OpenMP pragma.

Remember that Allen & Kennedy’s algorithm can only be applied on
loops with simple bodies, i.e. sequences of assignments, because it performs
loop distribution and loop regeneration without taking control dependencies
into account. If the loop body contains tests and branches, the coarse grain
parallelization algorithm should be used (see 8.1.6).

Loop index variables are privatized whenever possible, using a simple algo-
rithm. Dependence arcs related to the index variable and stemming from the
loop body must end up inside the loop body. Else, the loop index is not priva-
tized because its final value is likely to be needed after the loop end and because
no copy-out scheme is supported.

A better privatization algorithm for all scalar variable may be used as a
preliminary code transformation. An array privatizer is also available (see Sec-
tion 9.7.11). A non-standard PRIVATE declaration is used to specify which vari-
ables should be allocated on stack for each loop iteration. An HPF or OpenMP
format can also be selected.

Objects of type parallelized_code differs from objects of type code for his-
toric reasons, to simplify the user interface and because most algorithms cannot
be applied on DOALL loops. This used to be true for pre-condition computation,
dependence testing and so on... It is possible neither to re-analyze parallel code,
nor to re-parse it (although it would be interesting to compute the complexity
of a parallel code) right now but it should evolves. See § 8.1.8.

110

8.1.1 Parallelization properties

There are few properties that control the parallelization behaviour.

8.1.1.1 Properties controlling Rice parallelization

TRUE to make all possible parallel loops, FALSE to generate real (vector, in-
nermost parallel?) code:

GENERATE_NESTED_PARALLEL_LOOPS TRUE

Show statistics on the number of loops parallelized by pips:

PARALLELIZATION_STATISTICS FALSE

To select whether parallelization and loop distribution is done again for
already parallel loops:

PARALLELIZE_AGAIN_PARALLEL_CODE FALSE

The motivation is we may want to parallelize with a coarse grain method first,
and finish with a fine grain method here to try to parallelize what has not been
parallelized. When applying à la Rice parallelizing to parallelize some (still)
sequential code, we may not want loop distribution on already parallel code to
preserve cache resources, etc.

Thread-safe libraries are protected by critical sections. Their functions can
be called safely from different execution threads. For instance, a loop whose
body contains calls to malloc can be parallelized. The underlying state changes
do no hinder parallelization, at least if the code is not sensitive to pointer values.

PARALLELIZATION_IGNORE_THREAD_SAFE_VARIABLES FALSE

Since this property is used to mask arcs in the dependence graph, it must be
exploited by each parallelization phase independently. It is not used to derived
a simplified version of the use-def chains or of the dependence graph to avoid
wrong result with use-def elimination, which is based on the same graph.

8.1.2 Menu for Parallelization Algorithm Selection

Entries in menu for the resource parallelized_code and for the different par-
allelization algorithms with may be activated or selected. Note that the nest
parallelization algorithm is not debugged.

alias parallelized_code ’Parallelization’

alias rice_all_dependence ’All Dependences’

alias rice_data_dependence ’True Dependences Only’

alias rice_cray ’CRAY Microtasking’

alias nest_parallelization ’Loop Nest Parallelization’

alias coarse_grain_parallelization ’Coarse Grain Parallelization’

alias internalize_parallel_code ’Consider a parallel code as a sequential one’

111

8.1.3 Allen & Kennedy’s Parallelization Algorithm

Use Allen & Kennedy’s algorithm and consider all dependences.

rice_all_dependence > MODULE.parallelized_code

< PROGRAM.entities

< MODULE.code MODULE.dg

8.1.4 Def-Use Based Parallelization Algorithm

Several other parallelization functions for shared-memory target machines are
available. Function rice_data_dependence 8.1.4 only takes into account data
flow dependences, a.k.a true dependences. It is of limited interest because tran-
sitive dependences are computed. It is not equivalent at all to performing ar-
ray and scalar expansion based on direct dependence computation (Brandes,
Feautrier, Pugh). It is not safe when privatization is performed before par-
allelization.

This phase is named after the historical classification of data dependencies in
output dependence, anti-dependence and true or data dependence. It should not
be used for standard parallelization, but only for experimental parallelization
by knowledgeable users, aware that the output code may be illegal.

rice_data_dependence > MODULE.parallelized_code

< PROGRAM.entities

< MODULE.code MODULE.dg

8.1.5 Parallelization and Vectorization for Cray Multipro-
cessors

Function rice_cray 8.1.5 targets Cray vector multiprocessors. It selects one
outermost parallel loop to use multiple processors and one innermost loop for
the vector units. It uses Cray microtasking directives. Note that a prettyprinter
option must also be selected independently (see Section 10.4).

rice_cray > MODULE.parallelized_code

< PROGRAM.entities

< MODULE.code MODULE.dg

8.1.6 Coarse Grain Parallelization

Function coarse_grain_parallelization 8.1.6 implements a loop paralleliza-
tion algorithm based on convex array regions. It considers only one loop at
a time, its body being abstracted by its invariant read and write regions. No
loop distribution is performed, but any kind of loop body is acceptable whereas
Allen & Kennedy algorithm only copes with very simple loop bodies.

For nasty reasons about effects that are statement addresses to effects map-
ping, this pass changes the code instead of producing a parallelized_code

resource. It is not a big deal since often we want to modify the code again and
we should use internalize_parallel_code 8.1.8 just after if its behavior were
modified.

112

coarse_grain_parallelization > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.preconditions

< MODULE.inv_regions

Function coarse_grain_parallelization_with_reduction 8.1.6 extend
the standard coarse_grain_parallelization 8.1.6 by using reduction detec-
tion informations.

coarse_grain_parallelization_with_reduction > MODULE.reduction_parallel_loops

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.cumulated_reductions

< MODULE.proper_reductions

< MODULE.inv_regions

8.1.7 Global Loop Nest Parallelization

Function nest_parallelization 8.1.7 is an attempt at combining loop trans-
formations and parallelization for perfectly nested loops. Different parameters
are computed like loop ranges and contiguous directions for references. Loops
with small ranges are fully unrolled. Loops with large ranges are strip-mined
to obtain vector and parallel loops. Loops with medium ranges simply are
parallelized. Loops with unknown range also are simply parallelized.

For each loop direction, the amount of spatial and temporal localities is
estimated. The loop with maximal locality is chosen as innermost loop.

This algorithm still is in the development stage. It can be tried to check
that loops are interchanged when locality can be improved. An alternative for Internship!
static control section, is to use the interface with PoCC (see Section 10.11).

nest_parallelization > MODULE.parallelized_code

< PROGRAM.entities

< MODULE.code MODULE.dg

8.1.8 Coerce Parallel Code into Sequential Code

To simplify the user interface and to display with one click a parallelized pro-
gram, programs in PIPS are parallelized code instead of standard code. As PV:not clear
a consequence, parallelized programs cannot be further analyzed and trans-
formed because sequential code and parallelized code do not have the same
resource type. Most pipsmake rules apply to code but not to parallelized code.
Unfortunately, improving the parallelized code with some other transformations
such as dead-code elimination is also useful. Thus this pseudo-transformation is
added to coerce a parallel code into a classical (sequential) one. Parallelization
is made an internal code transformation in PIPS with this rule.

Although this is not the effective process, parallel loops are tagged as parallel
and loop local variables may be added in a code resource because of a previous
privatization phase.

113

If you display the “generated” code, it may not be displayed as a parallel
one if the PRETTYPRINT_SEQUENTIAL_STYLE 10.2.22.3.2 is set to a parallel output
style (such as omp). Anyway, the information is available in code.

Note this transformation may no be usable with some special parallelizations
in PIPS such as WP65 or HPFC that generate other resource types that may
be quite different.

internalize_parallel_code > MODULE.code

< MODULE.parallelized_code

8.1.9 Detect Computation Intensive Loops

Generate a pragma on each loop that seems to be computation intensive ac-
cording to a simple cost model.

The computation intensity is derived from the complexity and the memory
footprint. It assumes the cost model:

execution time = startup overhead+
memory footprint

bandwidth
+

complexity

frequency

A loop is marked with pragma COMPUTATION_INTENSITY_PRAGMA 8.1.9 if the
communication costs are lower than the execution cost as given by uniform_complexities 6.11.2.

computation_intensity > MODULE.code

< MODULE.code

< MODULE.regions

< MODULE.complexities

This correspond to the transfer startup overhead. Time unit is the same as
in complexities.

COMPUTATION_INTENSITY_STARTUP_OVERHEAD 10

This corresponds to the memory bandwidth in octet per time unit.

COMPUTATION_INTENSITY_BANDWIDTH 100

And This is the processor frequency, in operation per time unit.

COMPUTATION_INTENSITY_FREQUENCY 1000

This is the generated pragma.

COMPUTATION_INTENSITY_PRAGMA "pips␣intensive␣loop"

Those values have limited meaning here, only their ratio have some. Having
COMPUTATION_INTENSITY_FREQUENCY 8.1.9 and COMPUTATION_INTENSITY_BANDWIDTH 8.1.9
of the same magnitude clearly limits the number of generated pragmas. . .

8.1.10 Limit parallelism using complexity

Parallel loops which are considered as not complex enough are replaced by se-
quential ones using a simple cost model based on complexity (see uniform_complexities 6.11.2).

limit_parallelism_using_complexity > MODULE.code

< MODULE.code

< MODULE.complexities

114

8.1.11 Limit Parallelism in Parallel Loop Nests

This phase restricts the parallelism of parallel do-loop nests by limiting the
number of top-level parallel do-loops to be below a given limit. The too many
innermost parallel loops are replaced by sequential loops, if any. This is use-
ful to keep enough coarse-grain parallelism and respecting some hardware or
optimization constraints. For example on GPU, in CUDA there is a 2D lim-
itation on grids of thread blocks, in OpenCL it is limited to 3D. Of course,
since the phase works onto parallel loop nest, it might be interesting to use a
parallelizing phase such as internalize parallel code (see § 8.1.8) or coarse
grain parallelization before applying limit nested parallelism.

limit_nested_parallelism > MODULE.code

< MODULE.code

PIPS relies on the property NESTED_PARALLELISM_THRESHOLD 8.1.11 to de-
termine the desired level of nested parallelism.

NESTED_PARALLELISM_THRESHOLD 0

8.2 SIMDizer for SIMD Multimedia Instruction
Set

The SAC project aims at generating efficient code for processors with SIMD
extension instruction set such as VMX, SSE4, etc. which are also refered to as
Superword Level Parallelism (SLP). For more information, see https://info.
enstb.org/projets/sac, or better, see Serge Guelton’s PhD dissertation.

Some phases use ACCEL_LOAD 8.2 and ACCEL_STORE 8.2 to generate DMA
calls and ACCEL_WORK 8.2.

ACCEL_LOAD "SIMD_LOAD"

ACCEL_STORE "SIMD_STORE"

ACCEL_WORK "SIMD_"

8.2.1 SIMD Atomizer

Here is yet another atomizer, based on new atomizer (see Section 9.4.1.2), used
to reduce complex statements to three-address code close to assembly code.
There are only some minor differences with respect to new atomizer, except
that it does not break down simple expressions, that is, expressions that are the
sum of a reference and a constant such as tt i+1. This is needed to generate
code that could potentially be efficient, whereas the original atomizer would
most of the time generate inefficient code.

alias simd_atomizer ’SIMD Atomizer’

simd_atomizer > MODULE.code

< PROGRAM.entities

< MODULE.code

115

https://info.enstb.org/projets/sac
https://info.enstb.org/projets/sac

Use the SIMD_ATOMIZER_ATOMIZE_REFERENCE 8.2.1 property to make the
SIMD Atomizer go wild: unlike other atomizer, it will break the content of a
reference. SIMD_ATOMIZER_ATOMIZE_LHS 8.2.1 can be used to tell the atomizer
to atomize both lhs and rhs.

SIMD_ATOMIZER_ATOMIZE_REFERENCE FALSE

SIMD_ATOMIZER_ATOMIZE_LHS FALSE

The SIMD_OVERRIDE_CONSTANT_TYPE_INFERENCE 8.2.1 property is used by
the SAC library to know if it must override C constant type inference. In C, an
integer constant always as the minimum size needed to hold its value, starting
from an int. In sac we may want to have it converted to a smaller size, in
situation like char b;/∗...∗/;char a = 2 + b;. Otherwise the result of 2+b is
considered as an int. if SIMD_OVERRIDE_CONSTANT_TYPE_INFERENCE 8.2.1 is set
to TRUE, the result of 2+b will be a char.

SIMD_OVERRIDE_CONSTANT_TYPE_INFERENCE FALSE

8.2.2 Loop Unrollling for SIMD Code Generation

Tries to unroll the code for making the simdizing process more efficient. It thus
tries to compute the optimal unroll factor, allowing to pack the most instructions
together. Sensible to SIMDIZER_AUTO_UNROLL_MINIMIZE_UNROLL 8.2.11.1 and
SIMDIZER_AUTO_UNROLL_SIMPLE_CALCULATION 8.2.11.1.

alias simdizer_auto_unroll ’SIMD-Auto Unroll’

simdizer_auto_unroll > MODULE.code

< PROGRAM.simd_treematch

< PROGRAM.simd_operator_mappings

< PROGRAM.entities

< MODULE.code

Similiar to simdizer_auto_unroll 8.2.2 but at the loop level.
Sensible to LOOP_LABEL 9.1.1.

loop_auto_unroll > MODULE.code

< PROGRAM.entities

< MODULE.code

8.2.3 Tiling for SIMD Code Generation

Tries to tile the code to make the simdizing process more efficient.
Sensible to LOOP_LABEL 9.1.1 to select the loop nest to tile.

simdizer_auto_tile > MODULE.code

< PROGRAM.entities

< MODULE.cumulated_effects

< MODULE.code

116

8.2.4 Preprocessing of Reductions for SIMD Code Gen-
eration

This phase tries to pre-process reductions, so that they can be vectorized ef-
ficiently by the simdizer 8.2.10 phase. When multiple reduction statements
operating on the same variable with the same operation are detected inside a
loop body, each “instance” of the reduction is renamed, and some code is added
before and after the loop to initialize the new variables and compute the final
result.

alias simd_remove_reductions ’SIMD Remove Reductions’

simd_remove_reductions > MODULE.code

> MODULE.callees

! MODULE.simdizer_init

< PROGRAM.entities

< MODULE.cumulated_reductions

< MODULE.code

< MODULE.dg

SIMD_REMOVE_REDUCTIONS_PREFIX "RED"

SIMD_REMOVE_REDUCTIONS_PRELUDE ""

SIMD_REMOVE_REDUCTIONS_POSTLUDE ""

8.2.5 Redundant Load-Store Elimination

Remove useless load store calls (and more).

redundant_load_store_elimination > MODULE.code

> MODULE.callees

< PROGRAM.entities

< MODULE.code

< MODULE.out_regions

< MODULE.chains

If REDUNDANT_LOAD_STORE_ELIMINATION_CONSERVATIVE 8.2.5 is set to false,
redundant_load_store_elimination 8.2.5 will remove any statement not im-
plied in the computation of out regions, otherwise it will not remove statement
that modifies aprameters reference.

REDUNDANT_LOAD_STORE_ELIMINATION_CONSERVATIVE TRUE

117

8.2.6 Undo Some Atomizer Transformations (?)

...

alias deatomizer ’Deatomizer’

deatomizer > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.dg

8.2.7 If Conversion

This phase is the first phase of the if-conversion algorithm. The complete
if conversion algorithm is performed by applying the three following phase:
if_conversion_init 8.2.7, if_conversion 8.2.7 and if_conversion_compact 8.2.7.

Use IF_CONVERSION_INIT_THRESHOLD 8.2.7 to control whether if conversion
will occur or not: beyhond this number of call, no conversion is done.

IF_CONVERSION_INIT_THRESHOLD 40

alias if_conversion_init ’If-conversion init’

if_conversion_init > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.summary_complexity

This phase is the second phase of the if-conversion algorithm. The com-
plete if conversion algorithm is performed by applying the three following phase:
if_conversion_init 8.2.7, if_conversion 8.2.7 and if_conversion_compact 8.2.7.

IF_CONVERSION_PHI "__C -conditional__"

alias if_conversion ’If-conversion’

if_conversion > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

This phase is the third phase of the if-conversion algorithm. The com-
plete if conversion algorithm is performed by applying the three following phase:
if_conversion_init 8.2.7, if_conversion 8.2.7 and if_conversion_compact 8.2.7.

alias if_conversion_compact ’If-conversion compact’

118

if_conversion_compact > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.dg

Converts max in loop bounds into tests. Also sets variable so that simplify_control 9.3.1
works afterwards.

8.2.8 Loop Unswitching

This phase apply loop distribution on a loop-invariant test. So it transforms a
loop with an if/then/else inside into an if/then/else with the loop duplicated
into the “then” and “else” branches.

loop_nest_unswitching > MODULE.code

< PROGRAM.entities

< MODULE.code

8.2.9 Scalar Renaming

The Scalar Renaming pass tries to minimize dependencies in the code by re-
naming scalars when legal.

scalar_renaming > MODULE.code

< PROGRAM.entities

< MODULE.dg

< MODULE.proper_effects

8.2.10 Tree Matching for SIMD Code Generation

This function initialize a treematch used by simdizer 8.2.10 for simd-oriented
pattern matching

simd_treematcher > PROGRAM.simd_treematch

This function initialize operator matchings used by simdizer 8.2.10 for simd-
oriented pattern matching

simd_operator_mappings > PROGRAM.simd_operator_mappings

simdizer_init > MODULE.code

< PROGRAM.entities

< MODULE.code

Function simdizer 8.2.10 is an attempt at generating SIMD code for SIMD
multimedia instruction set such as MMX, SSE2, VIS,... This transformation
performs the core vectorization, transforming sequences of similar statements
into vector operations.

119

alias simdizer ’Generate SIMD code’

simdizer > MODULE.code

> MODULE.callees

> PROGRAM.entities

! MODULE.simdizer_init

< PROGRAM.simd_treematch

< PROGRAM.simd_operator_mappings

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.dg

When set to true, following property tells the simdizer to try to padd arrays
when it seems to be profitable

SIMDIZER_ALLOW_PADDING FALSE

Skip generation of load and stores, using generic functions instead.

SIMDIZER_GENERATE_DATA_TRANSFERS TRUE

This phase is to be called after simdization of affectation operator. It per-
forms type substitution from char/short array to in array using the packing
from the simdization phase For example, four consecutive load from a char ar-
ray could be a single load from an int array. This prove to be useful for c to
vhdl compilers such as c2h.

alias simd_memory_packing ’Generate Optimized Load Store’

simd_memory_packing > MODULE.code

< PROGRAM.entities

< MODULE.code

8.2.11 SIMD properties

This property is used to set the target register size, expressed in bits, for places
where this is needed (for instance, auto-unroll with simple algorithm).

SAC_SIMD_REGISTER_WIDTH 64

8.2.11.1 Auto-Unroll

This property is used to control how the auto unroll phase computes the unroll
factor. By default, the minimum unroll factor is used. It is computed by using
the minimum of the optimal factor for each statement. If the property is set to
FALSE, then the maximum unroll factor is used instead.

SIMDIZER_AUTO_UNROLL_MINIMIZE_UNROLL TRUE

120

This property controls how the “optimal” unroll factor is computed. Two
algorithms can be used. By default, a simple algorithm is used, which simply
compares the actual size of the variables used to the size of the registers to find
out the best unroll factor. If the property is set to FALSE, a more complex
algorithm is used, which takes into account the actual SIMD instructions.

SIMDIZER_AUTO_UNROLL_SIMPLE_CALCULATION TRUE

8.2.11.2 Memory Organisation

This property is used by the sac library to know which elements of multi-
dimensional array are consecutive in memory. Let us consider the three following
references a(i , j ,k), a(i , j ,k+1) and a(i+1,j,k). Then, if SIMD_FORTRAN_MEM_ORGANISATION 8.2.11.2
is set to TRUE, it means that a(i , j ,k) and a(i+1,j,k) are consecutive in memory
but a(i , j ,k) and a(i , j ,k+1) are not. However, if SIMD_FORTRAN_MEM_ORGANISATION 8.2.11.2
is set to FALSE, a(i , j ,k) and a(i , j ,k+1) are consecutive in memory but a(i , j ,k)
and a(i+1,j,k) are not.

SIMD_FORTRAN_MEM_ORGANISATION TRUE

8.2.11.3 Pattern file

This property is used by the sac library to know the path of the pattern definition
file. If the file is not found, the execution fails.

SIMD_PATTERN_FILE "patterns.def"

8.3 Code Distribution

Different automatic code distribution techniques are implemented in PIPS for
distributed-memory machines. The first one is based on the emulation of a
shared-memory. The second one is based on HPF. A third one target archi-
tectures with hardware coprocessors. Another one is currently developed at IT
Sud Paris that generate MPI code from OpenMP one.

8.3.1 Shared-Memory Emulation

WP65 1 [30, 31, 32] produces a new version of a module transformed to be
executed on a distributed memory machine. Each module is transformed into
two modules. One module, wp65 compute file, performs the computations,
while the other one, wp65 bank file, emulates a shared memory.

This rule does not have data structure outputs, as the two new program
generated have computed names. This does not fit the pipsmake framework
too well, but is OK as long as nobody wishes to apply PIPS on the generated
code, e.g. to propagate constant or eliminate dead code.

Note that use-use dependencies are used to allocate temporary arrays in
local memory (i.e. in the software cache).

1http://www.cri.ensmp.fr/pips/wp65.html

121

http://www.cri.ensmp.fr/pips/wp65.html
http://www.cri.ensmp.fr/pips/wp65.html

This compilation scheme was designed by Corinne Ancourt and François
Irigoin. It uses theoretical results in [6]. Its input is a very small subset of
Fortran program (e.g. procedure calls are not supported). It was implemented
by the designers, with help from Lei Zhou.

alias wp65_compute_file ’Distributed View’

alias wp65_bank_file ’Bank Distributed View’

wp65 > MODULE.wp65_compute_file

> MODULE.wp65_bank_file

! MODULE.privatize_module

< PROGRAM.entities

< MODULE.code

< MODULE.dg

< MODULE.cumulated_effects

< MODULE.chains

< MODULE.proper_effects

Name of the file for the target model:

WP65_MODEL_FILE "model.rc"

8.3.2 HPF Compiler

The HPF compiler2 is a project by itself, developed by Fabien Coelho in the
PIPS framework.

A whole set of rules is used by the PIPS HPF compiler3, HPFC 4. By the
way, the whole compiler is just a big hack according to Fabien Coelho.

8.3.2.1 HPFC Filter

The first rule is used to apply a shell to put HPF-directives in an f77 parsable
form. Some shell script based on sed is used. The hpfc_parser 4.2.2 must
be called to analyze the right file. This is triggered automatically by the bang
selection in the hpfc_close 8.3.2.5 phase.

hpfc_filter > MODULE.hpfc_filtered_file

< MODULE.source_file

8.3.2.2 HPFC Initialization

The second HPFC rule is used to initialize the hpfc status and other data
structures global to the compiler. The HPF compiler status is bootstrapped.
The compiler status stores (or should store) all relevant information about the
HPF part of the program (data distribution, IO functions and so on).

hpfc_init > PROGRAM.entities

> PROGRAM.hpfc_status

< PROGRAM.entities

2http://www.cri.ensmp.fr/pips/hpfc.html
3http://www.cri.ensmp.fr/pips/hpfc.html
4http://www.cri.ensmp.fr/pips/hpfc.html

122

http://www.cri.ensmp.fr/pips/hpfc.html
http://www.cri.ensmp.fr/pips/hpfc.html
http://www.cri.ensmp.fr/pips/hpfc.html
http://www.cri.ensmp.fr/pips/hpfc.html
http://www.cri.ensmp.fr/pips/hpfc.html
http://www.cri.ensmp.fr/pips/hpfc.html

8.3.2.3 HPF Directive removal

This phase removes the directives (some special calls) from the code. The remap-
pings (implicit or explicit) are also managed at this level, through copies between
differently shaped arrays.

To manage calls with distributed arguments, I need to apply the directive
extraction bottom-up, so that the callers will know about the callees through the
hpfc status. In order to do that, I first thought of an intermediate resource,
but there was obscure problem with my fake calls. Thus the dependence static
then dynamic directive analyses is enforced at the bang sequence request level
in the hpfc_close 8.3.2.5 phase.

The hpfc_static_directives 8.3.2.3 phase analyses static mapping di-
rectives for the specified module. The hpfc_dynamic_directives 8.3.2.3
phase does manages realigns and function calls with prescriptive argument map-
pings. In order to do so it needs its callees’ required mappings, hence the
need to analyze beforehand static directives. The code is cleaned from the
hpfc_filter 8.3.2.1 artifacts after this phase, and all the proper information
about the HPF stuff included in the routines is stored in hpfc status.

hpfc_static_directives > MODULE.code

> PROGRAM.hpfc_status

< PROGRAM.entities

< PROGRAM.hpfc_status

< MODULE.code

hpfc_dynamic_directives > MODULE.code

> PROGRAM.hpfc_status

< PROGRAM.entities

< PROGRAM.hpfc_status

< MODULE.code

< MODULE.proper_effects

8.3.2.4 HPFC actual compilation

This rule launches the actual compilation. Four files are generated:

1. the host code that mainly deals with I/Os,

2. the SPMD node code,

3. and some initialization stuff for the runtime (2 files).

Between this phase and the previous one, many PIPS standard analyses
are performed, especially the regions and preconditions. Then this phase will
perform the actual translation of the program into a host and SPMD node code.

hpfc_compile > MODULE.hpfc_host

> MODULE.hpfc_node

> MODULE.hpfc_parameters

> MODULE.hpfc_rtinit

> PROGRAM.hpfc_status

< PROGRAM.entities

123

< PROGRAM.hpfc_status

< MODULE.regions

< MODULE.summary_regions

< MODULE.preconditions

< MODULE.code

< MODULE.cumulated_references

< CALLEES.hpfc_host

8.3.2.5 HPFC completion

This rule deals with the compiler closing. It must deal with commons. The hpfc
parser selection is put here.

hpfc_close > PROGRAM.hpfc_commons

! SELECT.hpfc_parser

! SELECT.must_regions

! ALL.hpfc_static_directives

! ALL.hpfc_dynamic_directives

< PROGRAM.entities

< PROGRAM.hpfc_status

< MAIN.hpfc_host

8.3.2.6 HPFC install

This rule performs the installation of HPFC generated files in a separate di-
rectory. This rule is added to make hpfc usable from wpips and epips. I got
problems with the make and run rules, because it was trying to recompute
everything from scratch. To be investigated later on.

hpfc_install > PROGRAM.hpfc_installation

< PROGRAM.hpfc_commons

hpfc_make

hpfc_run

8.3.2.7 HPFC High Performance Fortran Compiler properties

Debugging levels considered by HPFC: HPFC_{,DIRECTIVES,IO,REMAPPING}_DEBUG_LEVEL.
These booleans control whether some computations are directly generated

in the output code, or computed through calls to dedicated runtime functions.
The default is the direct expansion.

HPFC_EXPAND_COMPUTE_LOCAL_INDEX TRUE

HPFC_EXPAND_COMPUTE_COMPUTER TRUE

HPFC_EXPAND_COMPUTE_OWNER TRUE

HPFC_EXPAND_CMPLID TRUE

124

HPFC_NO_WARNING FALSE

Hacks control. . .

HPFC_FILTER_CALLEES FALSE

GLOBAL_EFFECTS_TRANSLATION TRUE

These booleans control the I/O generation.

HPFC_SYNCHRONIZE_IO FALSE

HPFC_IGNORE_MAY_IN_IO FALSE

Whether to use lazy or non-lazy communications

HPFC_LAZY_MESSAGES TRUE

Whether to ignore FCD (Fabien Coelho Directives. . .) or not. These direc-
tives are used to instrument the code for testing purposes.

HPFC_IGNORE_FCD_SYNCHRO FALSE

HPFC_IGNORE_FCD_TIME FALSE

HPFC_IGNORE_FCD_SET FALSE

Whether to measure and display the compilation times for remappings, and
whether to generate outward redundant code for remappings. Also whether to
generate code that keeps track dynamically of live mappings. Also whether not
to send data to a twin (a processor that holds the very same data for a given
array).

HPFC_TIME_REMAPPINGS FALSE

HPFC_REDUNDANT_SYSTEMS_FOR_REMAPS FALSE

HPFC_OPTIMIZE_REMAPPINGS TRUE

HPFC_DYNAMIC_LIVENESS TRUE

HPFC_GUARDED_TWINS TRUE

Whether to use the local buffer management. 1 MB of buffer is allocated.

HPFC_BUFFER_SIZE 1000000

HPFC_USE_BUFFERS TRUE

Whether to use in and out convex array regions for input/output compiling

HPFC_IGNORE_IN_OUT_REGIONS TRUE

125

Whether to extract more equalities from a system, if possible.

HPFC_EXTRACT_EQUALITIES TRUE

Whether to try to extract the underlying lattice when generating code for
systems with equalities.

HPFC_EXTRACT_LATTICE TRUE

8.3.3 STEP: MPI code generation from OpenMP pro-
grams

RK: IT Sud-
Paris : insert
your docu-
mentation
here; FI: or
a pointer
towards you
documenta-
tion

8.3.3.1 STEP Directives

The step_parser 8.3.3.1 phase identifies the OpenMP constructs. The directive
semantics are stored in the MODULE.step directives ressource.

step_parser > MODULE.step_directives

> MODULE.code

< MODULE.code

8.3.3.2 STEP Analysis

The step_analyse_init 8.3.3.2 phase init the PROGRAM.step comm ressources

step_analyse_init > PROGRAM.step_comm

The step_analyse 8.3.3.2 phase triggers the convex array regions analy-
ses to compute SEND and RECV regions leading to MPI messages and checks
whether a given SEND region corresponding to a directive construct is con-
sumed by a RECV region corresponding to a directive construct. In this case,
communications can be optimized.

step_analyse > PROGRAM.step_comm

> MODULE.step_send_regions

> MODULE.step_recv_regions

< PROGRAM.entities

< PROGRAM.step_comm

< MODULE.step_directives

< MODULE.code

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

< MODULE.regions

< MODULE.in_regions

< MODULE.out_regions

< MODULE.chains

< CALLEES.code

< CALLEES.step_send_regions

< CALLEES.step_recv_regions

126

8.3.3.3 STEP code generation

Based on the OpenMP construct and analyses, new modules are generated to
translate the original code with OpenMP directives. The default code transfor-
mation for OpenMP construct is driven by the STEP_DEFAULT_TRANSFORMATION 8.3.3.3
property. The different value allowed are :

• "HYBRID" : for OpenMP and MPI parallel code

• "MPI" : for MPI parallel code

• "OMP" : for OpenMP parallel code

STEP_DEFAULT_TRANSFORMATION "HYBRID"

The step_compile 8.3.3.3 phase generates source code for OpenMP con-
structs depending of the transformation desired. Each OpenMP construct could
have a specific transformation define by STEP clauses (without specific clauses,
the STEP_DEFAULT_TRANSFORMATION 8.3.3.3 is used). The specific STEP clauses
allowed are :

• "!\$step hybrid" : for OpenMP and MPI parallel code

• "!\$step no_mpi" : for OpenMP parallel code

• "!\$step mpi" : for MPI parallel code

• "!\$step ignore" : for sequential code

step_compile > MODULE.step_file

< PROGRAM.entities

< PROGRAM.step_comm

< MODULE.step_directives

< MODULE.code

The step_install 8.3.3.3 phase copy the generated source files in the di-
rectory specified by the STEP_INSTALL_PATH 8.3.3.3 property.

step_install

< ALL.step_file

STEP_INSTALL_PATH ""

8.3.4 PHRASE: high-level language transformation for par-
tial evaluation in reconfigurable logic

The PHRASE project is an attempt to automatically (or semi-automatically)
transform high-level language programs into code with partial execution on some
accelerators such as reconfigurable logic (such as FPGAs) or data-paths.

This phases allow to split the code into portions of code delimited by PHRASE-
pragma (written by the programmer) and a control program managing them.
Those portions of code are intended, after transformations, to be executed in
reconfigurable logic. In the PHRASE project, the reconfigurable logic is syn-
thesized with the Madeo tool that take SmallTalk code as input. This is why
we have a SmallTalk pretty-printer (see section 10.10).

127

8.3.4.1 Phrase Distributor Initialisation

This phase is a preparation phase for the Phrase Distributor phrase_distributor 8.3.4.2:
the portions of code to externalize are identified and isolated here. Comments
are modified by this phase.

alias phrase_distributor_init ’PHRASE Distributor initialization’

phrase_distributor_init > MODULE.code

< PROGRAM.entities

< MODULE.code

This phase is automatically called by the following phrase_distributor 8.3.4.2.

8.3.4.2 Phrase Distributor

The job of distribution is done here. This phase should be applied after the ini-
tialization (Phrase Distributor Initialisation phrase_distributor_init 8.3.4.1),
so this one is automatically applied first.

alias phrase_distributor ’PHRASE Distributor’

phrase_distributor > MODULE.code

> MODULE.callees

! MODULE.phrase_distributor_init

< PROGRAM.entities

< MODULE.code

< MODULE.in_regions

< MODULE.out_regions

< MODULE.dg

8.3.4.3 Phrase Distributor Control Code

This phase add control code for PHRASE distribution. All calls to external-
ized code portions are transformed into START and WAIT calls. Parameters
communication (send and receive) are also handled here

alias phrase_distributor_control_code ’PHRASE Distributor Control Code’

phrase_distributor_control_code > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.in_regions

< MODULE.out_regions

< MODULE.dg

8.3.5 Safescale

The Safescale project is an attempt to automatically (or semi-automatically)
transform sequential code written in C language for the Kaapi runtime.

128

8.3.5.1 Distribution init

This phase is intended for the analysis of a module given with the aim of finding
blocks of code delimited by specific pragmas from it.

alias safescale_distributor_init ’Safescale distributor init’

safescale_distributor_init > MODULE.code

< PROGRAM.entities

< MODULE.code

8.3.5.2 Statement Externalization

This phase is intended for the externalization of a block of code.

alias safescale_distributor ’Safescale distributor’

safescale_distributor > MODULE.code

> MODULE.callees

! MODULE.safescale_distributor_init

< PROGRAM.entities

< MODULE.code

< MODULE.regions

< MODULE.in_regions

< MODULE.out_regions

8.3.6 CoMap: Code Generation for Accelerators with DMA

8.3.6.1 Phrase Remove Dependences

alias phrase_remove_dependences ’Phrase Remove Dependences’

phrase_remove_dependences > MODULE.code

> MODULE.callees

! MODULE.phrase_distributor_init

< PROGRAM.entities

< MODULE.code

< MODULE.in_regions

< MODULE.out_regions

< MODULE.dg

8.3.6.2 Phrase comEngine Distributor

This phase should be applied after the initialization (Phrase Distributor Initial-
isation or phrase_distributor_init 8.3.4.1). The job of comEngine distribu-
tion is done here.

alias phrase_comEngine_distributor ’PHRASE comEngine Distributor’

phrase_comEngine_distributor > MODULE.code

> MODULE.callees

! MODULE.phrase_distributor_init

129

< PROGRAM.entities

< MODULE.code

< MODULE.in_regions

< MODULE.out_regions

< MODULE.dg

< MODULE.summary_complexity

8.3.6.3 PHRASE ComEngine properties

This property is set to TRUE if we want to synthesize only one process on the
HRE.

COMENGINE_CONTROL_IN_HRE TRUE

This property holds the fifo size of the ComEngine.

COMENGINE_SIZE_OF_FIFO 128

8.3.7 Parallelization for Terapix architecture

8.3.7.1 Isolate Statement

Isolate the statement given in ISOLATE_STATEMENT_LABEL 8.3.7.1 in a separated
memory. Data transfer are generated using the same DMA as kernel_load_store 8.3.7.5.

The algorithm is based on Read and write regions (no in / out yet) to
compute the data that must be copied and allocated. Rectangular hull of regions
are used to match allocator and data transfers prototypes. If an analysis fails,
definition regions are use instead. If a sizeof is involved, EVAL_SIZEOF 9.4.2
must be set to true.

isolate_statement > MODULE.code

> MODULE.callees

< MODULE.code

< MODULE.regions

< PROGRAM.entities

ISOLATE_STATEMENT_LABEL ""

As a side effect of isolate statement pass, some new variables are declared
into the function. A prefix can be used for the names of those variables using the
property ISOLATE STATEMENT VAR PREFIX. It is also possible to insert a suffix
using the property ISOLATE STATEMENT VAR SUFFIX. The suffix will be inserted
between the original variable name and the instance number of the copy.

ISOLATE_STATEMENT_VAR_PREFIX ""

ISOLATE_STATEMENT_VAR_SUFFIX ""

By default we cannot isolate a statement with some complex effects on the
non local memory. But if we know we can (for example), we can override this
behaviour by setting the following property:

ISOLATE_STATEMENT_EVEN_NON_LOCAL FALSE

130

8.3.7.2 GPU XML Output

Dump XML for a function, intended to be used for SPEAR. Track back the
parameters that are used for the iteration space.

gpu_xml_dump > MODULE.gpu_xml_file

< PROGRAM.entities

< MODULE.code

8.3.7.3 Delay Communications

Optimize the load/store dma by delaying the stores and performing the stores
as soon as possible. Interprocedural version.

It uses ACCEL_LOAD 8.2 and ACCEL_STORE 8.2 to distinguish loads and stores
from other calls.

The communication elimination makes the assumption that a load/store pair
can always be removed.

delay_communications_inter > MODULE.code

> MODULE.callees

! CALLEES.delay_communications_inter

! MODULE.delay_load_communications_inter

! MODULE.delay_store_communications_inter

< PROGRAM.entities

< MODULE.code

< MODULE.regions

< MODULE.dg

delay_load_communications_inter > MODULE.code

> MODULE.callees

> CALLERS.code

> CALLERS.callees

< PROGRAM.entities

< MODULE.code

< CALLERS.code

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.dg

delay_store_communications_inter > MODULE.code

> MODULE.callees

> CALLERS.code

> CALLERS.callees

< PROGRAM.entities

< MODULE.code

< CALLERS.code

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.dg

Optimize the load/store dma by delaying the stores and performing the
stores as soon as possible. Intra Procedural version.

131

It uses ACCEL_LOAD 8.2 and ACCEL_STORE 8.2 to distinguish loads and stores
from other calls.

The communication elimination makes the assumption that a load/store pair
can always be removed.

delay_communications_intra > MODULE.code

> MODULE.callees

! MODULE.delay_load_communications_intra

! MODULE.delay_store_communications_intra

< PROGRAM.entities

< MODULE.code

< MODULE.regions

< MODULE.dg

delay_load_communications_intra > MODULE.code

> MODULE.callees

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.dg

delay_store_communications_intra > MODULE.code

> MODULE.callees

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.dg

8.3.7.4 Hardware Constraints Solver

if SOLVE_HARDWARE_CONSTRAINTS_TYPE 8.3.7.4 is set to VOLUME, Given a
loop label, a maximum memory footprint and an unknown entity, try to find the
best value for SOLVE_HARDWARE_CONSTRAINTS_UNKNOWN 8.3.7.4 to make memory
footprint of SOLVE_HARDWARE_CONSTRAINTS_LABEL 8.3.7.4 reach but not exceed
SOLVE_HARDWARE_CONSTRAINTS_LIMIT 8.3.7.4. If it is set to NB PROC, it
tries to find the best value for SOLVE_HARDWARE_CONSTRAINTS_UNKNOWN 8.3.7.4
to make the maximum range of first dimension of all regions accessed by SOLVE_HARDWARE_CONSTRAINTS_LABEL 8.3.7.4
equals to SOLVE_HARDWARE_CONSTRAINTS_LIMIT 8.3.7.4.

solve_hardware_constraints > MODULE.code

< MODULE.code

< MODULE.regions

< PROGRAM.entities

SOLVE_HARDWARE_CONSTRAINTS_LABEL ""

SOLVE_HARDWARE_CONSTRAINTS_LIMIT 0

132

SOLVE_HARDWARE_CONSTRAINTS_UNKNOWN ""

SOLVE_HARDWARE_CONSTRAINTS_TYPE ""

8.3.7.5 kernelize

Bootstraps the kernel ressource

bootstrap_kernels > PROGRAM.kernels

Add a kernel to the list of kernels known to pips

flag_kernel > PROGRAM.kernels

< PROGRAM.kernels

Generate unoptimized load / store information for each call to the module.

kernel_load_store > CALLERS.code

> CALLERS.callees

> PROGRAM.kernels

< PROGRAM.kernels

< CALLERS.code

< CALLERS.regions

< CALLERS.preconditions

The legacy kernel_load_store 8.3.7.5 approach is limited because it gen-
erates the DMA around a call, and isolate_statement 8.3.7.1 engine does not
perform well in interprocedural.

The following properties are used to specify the names of runtime functions.
Since they are used in Par4All, their default names begin with P4A_. To have
an idea about their prototype, have a look to the Par4All accelerator runtime
or in validation/AcceleratorUtils/include/par4all.c.

Enable/disable the scalar handling by kernel load store.

KERNEL_LOAD_STORE_SCALAR FALSE

The ISOLATE_STATEMENT_EVEN_NON_LOCAL 8.3.7.1 property can be used to
force the generation even with non local memory access. But beware it would
not solve all the issues...

The following properties can be used to customized the allocate/load/store
functions:

KERNEL_LOAD_STORE_ALLOCATE_FUNCTION "P4A_accel_malloc"

KERNEL_LOAD_STORE_DEALLOCATE_FUNCTION "P4A_accel_free"

The following properties are used to name the dma functions to use for
scalars:

KERNEL_LOAD_STORE_LOAD_FUNCTION "P4A_copy_to_accel"

KERNEL_LOAD_STORE_STORE_FUNCTION "P4A_copy_from_accel"

133

and for 1-dimension arrays:

KERNEL_LOAD_STORE_LOAD_FUNCTION_1D "P4A_copy_to_accel_1d"

KERNEL_LOAD_STORE_STORE_FUNCTION_1D "P4A_copy_from_accel_1d"

and in 2 dimensions:

KERNEL_LOAD_STORE_LOAD_FUNCTION_2D "P4A_copy_to_accel_2d"

KERNEL_LOAD_STORE_STORE_FUNCTION_2D "P4A_copy_from_accel_2d"

and in 3 dimensions:

KERNEL_LOAD_STORE_LOAD_FUNCTION_3D "P4A_copy_to_accel_3d"

KERNEL_LOAD_STORE_STORE_FUNCTION_3D "P4A_copy_from_accel_3d"

and in 4 dimensions:

KERNEL_LOAD_STORE_LOAD_FUNCTION_4D "P4A_copy_to_accel_4d"

KERNEL_LOAD_STORE_STORE_FUNCTION_4D "P4A_copy_from_accel_4d"

and in 5 dimensions:

KERNEL_LOAD_STORE_LOAD_FUNCTION_5D "P4A_copy_to_accel_5d"

KERNEL_LOAD_STORE_STORE_FUNCTION_5D "P4A_copy_from_accel_5d"

and in 6 dimensions:

KERNEL_LOAD_STORE_LOAD_FUNCTION_6D "P4A_copy_to_accel_6d"

KERNEL_LOAD_STORE_STORE_FUNCTION_6D "P4A_copy_from_accel_6d"

As a side effect of kernel load store pass, some new variables are declared
into the function. A prefix can be used for the names of those variables using the
property KERNEL_LOAD_STORE_VAR_PREFIX 8.3.7.5. It is also possible to insert
a suffix using the property KERNEL_LOAD_STORE_VAR_PREFIX 8.3.7.5. The suffix
will be inserted between the original variable name and the instance number of
the copy.

KERNEL_LOAD_STORE_VAR_PREFIX "p4a_var_"

KERNEL_LOAD_STORE_VAR_SUFFIX ""

Split a parallel loop with a local index into three parts: a host side part,
a kernel part and an intermediate part. The intermediate part simulates the
parallel code to the kernel from the host

134

kernelize > MODULE.code

> MODULE.callees

> PROGRAM.kernels

! MODULE.privatize_module

! MODULE.coarse_grain_parallelization

< PROGRAM.entities

< MODULE.code

< PROGRAM.kernels

The property KERNELIZE_NBNODES 8.3.7.5 is used to set the number of nodes
for this kernel. KERNELIZE_KERNEL_NAME 8.3.7.5 is used to set the name of
generated kernel. KERNELIZE_HOST_CALL_NAME 8.3.7.5 is used to set the name
of generated call to kernel (host side).

KERNELIZE_NBNODES 128

KERNELIZE_KERNEL_NAME ""

KERNELIZE_HOST_CALL_NAME ""

OUTLINE_LOOP_STATEMENT FALSE

Gather all constants from a module and put them in a single array. Relevant
for Terapix code generation, and maybe for other accelerators as well

group_constants > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.regions

You may want to group constants only for a particular statement, in that
case use GROUP_CONSTANTS_STATEMENT_LABEL 8.3.7.5

GROUP_CONSTANTS_STATEMENT_LABEL ""

The way variables are grouped is control by GROUP_CONSTANTS_LAYOUT 8.3.7.5,
the only relevant value as of now is "terapix".

GROUP_CONSTANTS_LAYOUT ""

The name of the variable holding constants can be set using GROUP_CONSTANTS_HOLDER 8.3.7.5.

GROUP_CONSTANTS_HOLDER "caillou"

You may want to skip loop bounds from the grouping

GROUP_CONSTANTS_SKIP_LOOP_RANGE FALSE

You may want to skip litterals too.

GROUP_CONSTANTS_LITERAL TRUE

Perform various checks on a Terapix microcode to make sure it can be syn-
thesized. GROUP_CONSTANTS_HOLDER 8.3.7.5 is used to differentiate mask and
image.

135

normalize_microcode > MODULE.code

> CALLERS.code

> COMPILATION_UNIT.code

< PROGRAM.entities

< MODULE.code

< MODULE.callers

< MODULE.cumulated_effects

normalize array access in a loop nest for terapixification.
This pass is meaningless for any other target :(.

terapix_warmup > MODULE.code

< PROGRAM.entities

< MODULE.code

converts divide operator into multiply operator using formula a/cste = a ∗
(1/b) ≃ a ∗ (128/cste)/128

terapix_remove_divide > MODULE.code

< PROGRAM.entities

< MODULE.code

Use this property for accuracy of divide to multiply conversion.

TERAPIX_REMOVE_DIVIDE_ACCURACY 4

8.3.7.6 Communication Generation

This phase computes the mapping of data on the accelarators. It records the
set of data that have to be copied on the GPU before each statement in the
module, and the set of data that have to be copied back from the GPU after
the execution of each statement.

Then according to this information, the copy-in and copy-out transfers are
generated using same set of properties as kernel_load_store 8.3.7.5.

This work has been described in [4][3]. However, the implementation is more
complex than the published equations because of PIPS’ HCFG and because of
a heuristic to generate transfers as high as possible in the HCFG.

alias kernel_data_mapping "Kernel data mapping"

kernel_data_mapping > MODULE.kernel_copy_in

> MODULE.kernel_copy_out

< PROGRAM.entities

< PROGRAM.kernels

< MODULE.code

< MODULE.summary_effects

< MODULE.cumulated_effects

< MODULE.transformers

< MODULE.preconditions

< MODULE.regions

< MODULE.in_regions

< MODULE.out_regions

136

< MODULE.callees

< MODULE.callers

< CALLEES.kernel_copy_out

< CALLEES.kernel_copy_in

This phase wrap argument at call site with an access function. The wrapper
name is controlled with WRAP_KERNEL_ARGUMENT_FUNCTION_NAME 8.3.7.6. Cur-
rently the purpose of this is to insert call to a runtime to resolve addresses in
accelerator memory corresponding to addresses in host memory.

WRAP_KERNEL_ARGUMENT_FUNCTION_NAME "P4A_runtime_host_ptr_to_accel_ptr"

alias wrap_kernel_argument "wrap_kernel_argument"

wrap_kernel_argument > CALLERS.code

> CALLERS.callees

< PROGRAM.entities

< CALLERS.code

< CALLERS.callees

< MODULE.callers

8.3.8 Code Distribution on GPU

This phase generate GPU kernels from perfect parallel loop nests. GPU_IFY_ANNOTATE_LOOP_NESTS 8.3.8
property triggers automatically the annotation of the loop nest (see gpu_loop_nest_annotate 8.3.8).

GPU_IFY_ANNOTATE_LOOP_NESTS FALSE

alias gpu_ify ’Distribute // loop nests on GPU’

gpu_ify > MODULE.code

> MODULE.callees

> PROGRAM.entities

< MODULE.privatized

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

For example from

for (i = 1 ; i <= 499 ; i += 1)
for (j = 1 ; j <= 499 ; j += 1)

save [i] [j] = 0 .25∗ (space [i −1] [j]+ space [i +1] [j]+ space [i] [j −1]+space [i] [j +1]) ;

it generates something like

p4a ke rn e l l aunche r 0 (save , space) ;

[. . .]
void p4a ke rne l l aunche r 0 (f l o a t t save [5 0 1] [5 0 1] , f l o a t t space [5 0 1] [5 0 1])
{

int i ;
int j ;

137

for (i = 1 ; i <= 499 ; i += 1)
for (j = 1 ; j <= 499 ; j += 1)

p4a kerne l wrapper 0 (save , space , i , j) ;
}

void p4a kerne l wrapper 0 (f l o a t t save [5 0 1] [5 0 1] , f l o a t t space [5 0 1] [5 0 1] , int i , int j)
{

i = P4A pv 0 (i) ;
j = P4A pv 1 (j) ;
p4a ke rne l 0 (save , space , i , j) ;

}
void p4a ke rne l 0 (f l o a t t save [5 0 1] [5 0 1] , f l o a t t space [5 0 1] [5 0 1] , int

i , int j) {
save [i] [j] = 0 .25∗ (space [i −1] [j]+ space [i +1] [j]+ space [i] [j −1]+space [i] [j +1]) ;

}

The launcher, wrapper and kernel prefix names to be used during the gen-
eration:

GPU_LAUNCHER_PREFIX "p4a_launcher"

GPU_WRAPPER_PREFIX "p4a_wrapper"

GPU_KERNEL_PREFIX "p4a_kernel"

This boolean property control wherever the outliner use the original function
name as a suffix instead of only numerical suffix.

GPU_OUTLINE_SUFFIX_WITH_OWNER_NAME TRUE

For Fortran output you may need to have these prefix name in uppercase.
Indeed, each level of outlining can be enabled or disabled according to the

following properties:

GPU_USE_LAUNCHER TRUE

GPU_USE_WRAPPER TRUE

GPU_USE_KERNEL TRUE

Each generated function can go in its own source file according to the fol-
lowing properties:

GPU_USE_KERNEL_INDEPENDENT_COMPILATION_UNIT FALSE

GPU_USE_LAUNCHER_INDEPENDENT_COMPILATION_UNIT FALSE

GPU_USE_WRAPPER_INDEPENDENT_COMPILATION_UNIT FALSE

138

By default they are set to FALSE for languages like CUDA that allow kernel and
host codes mixed in a same file but for OpenCL it is not the case.

When the original code is in Fortran it might be useful to wrap the kernel
launcher in an independent C file. The GPU_USE_FORTRAN_WRAPPER 8.3.8 can
be used for that purpose. The name of the function wrapper can be configured
using the property GPU_FORTRAN_WRAPPER_PREFIX 8.3.8. As specified before it
is safe to use prefix name in uppercase.

GPU_USE_FORTRAN_WRAPPER FALSE

GPU_FORTRAN_WRAPPER_PREFIX "P4A_FORTRAN_WRAPPER"

The phase generates a wrapper function to get the iteration coordinate from
intrinsics functions instead of the initial loop indices. Using this kind of wrapper
is the normal behaviour but for simulation of an accelerator code, not using a
wrapper is useful.

The intrinsics function names to get an ith coordinate in the iteration space
are defined by this GNU à la printf format:

GPU_COORDINATE_INTRINSICS_FORMAT "P4A_vp_%d"

where %d is used to get the dimension number. Here vp stands for virtual
processor dimension and is a reminiscence from PompC and HyperC...

Please, do not use this feature for buffer-overflow attack...
Annotates loop nests with comments and guards for further generation of

CUDA calls.

alias gpu_loop_nest_annotate ’Decorate loop nests with iteration spaces and add iteration clamping’

gpu_loop_nest_annotate > MODULE.code

< PROGRAM.entities

< MODULE.code

To annotate only outer parallel loop nests, set the following variable to true:

GPU_LOOP_NEST_ANNOTATE_PARALLEL TRUE

Clear annotation previously added by gpu_loop_nest_annotate 8.3.8.

alias gpu_clear_annotations_on_loop_nest ’Clear annotation previously added by gpu_loop_nest_annotate’

gpu_clear_annotations_on_loop_nest > MODULE.code

< PROGRAM.entities

< MODULE.code

Parallelize annotated loop nests based on the sentinel comments.

gpu_parallelize_annotated_loop_nest > MODULE.code

< PROGRAM.entities

< MODULE.code

139

This phase promote a whole function body into a parallel loop with one
thread.

one_thread_parallelize > MODULE.code

> PROGRAM.entities

< PROGRAM.entities

< MODULE.code

This phase promote sequential code in GPU kernels to avoid memory trans-
fers.

gpu_promote_sequential > MODULE.code

> PROGRAM.entities

< PROGRAM.entities

< MODULE.code

OpenCL 1.X requires function parameters to be qualified as either local or
global, and this information must be propagated in local declarations within
functions.

gpu_qualify_pointers > MODULE.code

> PROGRAM.entities

< PROGRAM.entities

< MODULE.code

< MODULE.callees

Note: this pass does mostly changes entities (parameter types, variable
types). Only casts in the code may be affected.

Whether to add qualifiers to pointer casts:

GPU_QUALIFY_POINTERS_DO_CASTS TRUE

8.3.9 Task code generation for StarPU runtime

This pass outlines code parts so that every single piece of computation is located
in a function that makes no use of global or static variable. Heuristic is trivial
for now, this is an experimental work. TASKIFY_TASK_PREFIX ??.

taskify > MODULE.code

> MODULE.callees

> PROGRAM.entities

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.privatized

< MODULE.regions

TASKIFY_TASK_PREFIX "P4A_task"

This pass generates pragmas for the StarPU GCC plugin. This is still ex-
perimental, so is the GCC plugin.

140

generate_starpu_pragma > MODULE.code

> MODULE.callees

> PROGRAM.entities

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.privatized

< MODULE.regions

8.3.10 SCALOPES: task code generation for the SCMP
architecture with SESAM HAL

The SCMP architecture, an asymmetric multiprocessor system-on-chip for dy-
namic applications, is described in [52]. SESAM is a simulation tool built up
to help the design of such architectures. It relies on a specific programming
model based on the explicit separation of the control and computation tasks,
and its HAL provides high level memory allocation, shared memory access and
synchronization functions.

The goal of the project was to generate applications for this architecture
from sequential C code. Two different approaches were implemented. The first
tries to identify tasks but is more specific. The second one is more general
but tasks must have been previously identified with labels; this is currently
performed manually.

8.3.10.1 First approach

The goal of the following phase is to generate SCMP tasks from C functions.
The tasks are linked and scheduled using the SCMP Hardware Adaptation Layer
(HAL). Pass sesamify 8.3.10.1 takes as input a module and analyzes all its
callees. For instance, the ’main’ module can be submitted to sesamify after the
gpu_ify 8.3.8 or scalopragma 8.3.10.1 pass have been applied. Each analyzed
module is transformed into a SCMP task if its name begins with P4A scmp task.
To generate the final files for the SCMP simulator, the pass output must be
transformed by a specific python parser.

This pass outlines code parts based on pragma. It can outline blocs or loops
with a #pragma scmp task flag. It is based on the outline pass.

scalopragma > MODULE.code

> MODULE.callees

> PROGRAM.entities

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

The goal of Bufferization is to generate a dataflow communication through
buffers between modules. The communication is done by special function call
generated by kernel_load_store 8.3.7.5. To keep flows consistent outside the
module scalopify 8.3.10.1 surrounds variable call with a special function too.
A C file with stubs is needed.

Note that you must also set KERNEL_LOAD_STORE_DEALLOCATE_FUNCTION 8.3.7.5
to ”” in order to have it generate relevant code.

141

The goal of this pass is to keep consistent flows outside the tasks.

scalopify > MODULE.code

> MODULE.callees

> PROGRAM.entities

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

sesamify > MODULE.code

> MODULE.callees

> PROGRAM.entities

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

8.3.10.2 General Solution

This code generation flow first relies on phase isolate_statement 8.3.7.1 to iso-
late the memory spaces of tasks identified by labels beginning by SCALOPES_KERNEL_TASK_PREFIX 8.3.10.2.
Then phase sesam_buffers_processing 8.3.10.2 generates a header file de-
scribing how kernel and server tasks use the SESAM shared buffers. A post-
processing phase is necessary to actually generate all the tasks of the distributed
application. This is implemented in Par4All.

This solution is extensively described in [17]. A less technical presentation
can be found in [53].

Phase sesam buffers processing is to be run after isolate statement

has been applied to all tasks statements. It then produces a header file to be
included by the future SESAM application individual tasks. This header file
describes how kernel and server tasks use the SESAM buffers.

sesam_buffers_processing > MODULE.sesam_buffers_file

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

The next two properties are used by phase sesam buffers processing to
detect kernel tasks statements in the input module and to generate server tasks
names in the output header file.

SCALOPES_KERNEL_TASK_PREFIX "P4A_sesam_task_"

SCALOPES_SERVER_TASK_PREFIX "P4A_sesam_server_"

142

8.4 Automatic Resource-Constrained Static Task
Parallelization

8.4.1 Sequence Dependence DAG (SDG)

A Sequence Dependence DAG G is a data dependence DAG where task vertices
τ are labeled with statements, while control dependences are encoded in the
abstract syntax trees of statements. Any statement S can label a DAG vertex,
i.e. each vertex τ contains a statement S, which corresponds to the code it runs
when scheduled. An SDG is not built only on simple instructions, represented
as call statements; compound statements such as test statements (both true and
false branches) and loop nests may constitute indivisible vertices of the SDG

Phase sequence dependence graph generates the Sequence Dependence Graph
(SDG) in the dg ressource and in a dot file.

sequence_dependence_graph > MODULE.sdg

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.dg

< MODULE.regions

< MODULE.in_regions

< MODULE.out_regions

< MODULE.transformers

< MODULE.preconditions

< MODULE.cumulated_effects

8.4.2 BDSC-Based Hierarchical Task Parallelization (HBDSC)

The goal of the following phase is to generate the scheduled task graph us-
ing BDSC: A Ressource-Constrained Scheduling Algorithm for Shared and Dis-
tributed Memory Systems, in order to automate the task-based parallelization
of sequential applications.

Phase bdsc kdg parallelization applies BDSC and generates the sched-
uled Clustered Dependence Graph (KDG) in the dg ressource and in a dot file.

hbdsc_parallelization > MODULE.sdg

< PROGRAM.entities > MODULE.schedule

< MODULE.code

< MODULE.proper_effects

< MODULE.sdg

< MODULE.regions

< MODULE.in_regions

< MODULE.out_regions

< MODULE.complexities

< MODULE.transformers

< MODULE.preconditions

< MODULE.cumulated_effects

The next properties are used by Phase bdsc kdg parallelization to per-
mit the user defining the number of clusters and the memory size based on

143

the properties of the target architecture, generating communications or not in
SPIRE code.

BDSC_NB_CLUSTERS 4

BDSC_MEMORY_SIZE -1

BDSC_DISTRIBUTED_MEMORY TRUE

In order to control the granularity of parallel tasks, we introduce this prop-
erty. By default, we generate the maximum parallelism in a code. Otherwise,
i.e. COSTLY TASKS ONLY value is TRUE, only loops and call functions are
generated as parallel tasks. This is important in order to make a trade-off
between the cost of thread creation and task execution.

COSTLY_TASKS_ONLY FALSE

This property is used to evaluate BDSC scheduling robustness. Since our
BDSC scheduling heuristic relies on the numerical approximations of the execu-
tion time and communication costs of tasks, one needs to assess its sensitivity
over the accuracy of these estimations. Since a mathematical analysis of this is-
sue is made difficult by the heuristic nature of BDSC and, in fact, of scheduling
processes in general, we ran multiple versions of each application using vari-
ous static execution and communication cost models using a biased BDSC cost
model, where we modulated each execution time and communication cost value
randomly by at most ∆%, that is our propertu BDSC SENSITIVITY (the de-
fault BDSC cost model would thus correspond to ∆ = 0).

BDSC_SENSITIVITY 0

We represent cost, data and time information of different tasks in terms of
polynomials. We instrument using the phase bdsc code instrumentation the
input sequential code and run it once in order to obtain the numerical values
of the polynomials. The instrumented code contains the initial user code plus
instructions that compute the values of the cost polynomials for each statement.

bdsc_code_instrumentation > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.chains

< MODULE.sdg

< MODULE.regions

< MODULE.complexities

The next property is used also by Phase bdsc kdg parallelization. It
decides if cost, data and time information will be extracted from the result of
the instrumentation which is a dynamic analysis: BDSC INSTRUMENTED FILE file
or not, i.e, static analysis.

BDSC_INSTRUMENTED_FILE ""

144

We add this pass since we use in our expriments, comparison between DSC
and BDSC. In order to make this comparison automatic and simple, we ap-
ply Phase dsc code parallelization that performs DSC algorithm instead of
BDSC algorithm and generates the parallel code SPIRE.

dsc_code_parallelization > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.dg

< MODULE.regions

< MODULE.in_regions

< MODULE.out_regions

< MODULE.complexities

< MODULE.transformers

< MODULE.preconditions

< MODULE.cumulated_effects

8.4.3 SPIRE(PIPS) generation

The parallel code is represented using SPIRE of PIPS: A Generic Sequential to
Parallel Intermediate Representation Extension applied to PIPS.

Phase spire shared unstructured to structured applies BDSC and gen-
erates the parallel code SPIRE.

spire_shared_unstructured_to_structured > MODULE.shared_spire_code

< PROGRAM.entities > MODULE.code

< MODULE.code

< MODULE.sdg

< MODULE.schedule

Phase spire distributed unstructured to structured applies BDSC, gen-
erates the parallel code SPIRE (spawn and barrier constructs) and inserts send
and recv primitives.

spire_distributed_unstructured_to_structured > MODULE.distributed_spire_code

< PROGRAM.entities > MODULE.code

< MODULE.code

< MODULE.schedule

< MODULE.sdg

< MODULE.regions

< MODULE.in_regions

< MODULE.out_regions

< MODULE.transformers

< MODULE.preconditions

< MODULE.proper_effects

< MODULE.cumulated_effects

8.4.4 SPIRE-Based Parallel Code Generation

SPIRE is designed in such a way that it can facilitate the generation of code for
different types of parallel systems. Different parallel languages can be mapped

145

into SPIRE. The two following phases show how this intermediate representation
simplifies the task of producing code for various languages such as OpenMP and
MPI.

Generate OpenMP task parallel code using SPIRE-based PIPS parallel in-
termediate representation.

openmp_task_generation > MODULE.parallelized_code

< PROGRAM.entities

< MODULE.shared_spire_code

And to output the code decorated with OpenMP (omp task) directives, we
use the existing pass print parallelizedOMP code

Generate MPI parallel code using SPIRE-based PIPS parallel intermediate
representation.

mpi_task_generation > MODULE.parallelized_code

< PROGRAM.entities

< MODULE.distributed_spire_code

Output the code decorated with MPI instructions.

print_parallelizedMPI_code > MODULE.parallelprinted_file

< PROGRAM.entities

< MODULE.parallelized_code

8.4.5 MPI Code Generation

taskmapping in variable of the same name with MPI_DUPLICATE_VARIABLE_PREFIX 8.4.5
num proc

task_mapping > MODULE.task

< PROGRAM.entities

< MODULE.code

copyvalueofwrite in variable of the same name with MPI_DUPLICATE_VARIABLE_PREFIX 8.4.5
num proc

copy_value_of_write > MODULE.code

< PROGRAM.entities

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.summary_effects

< MODULE.code

< MODULE.task

copyvalueofwrite in variable of the same name with MPI_DUPLICATE_VARIABLE_PREFIX 8.4.5
num proc

copy_value_of_write_with_cumulated_regions > MODULE.code

< PROGRAM.entities

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.summary_effects

146

< MODULE.code

< MODULE.task

< MODULE.live_out_regions

MPI_DUPLICATE_VARIABLE_PREFIX "__dpvar__"

MPI_NBR_CLUSTER 4

MPI_LOCAL_VARIABLES_LIST ""

MPI_LOCAL_PARAMETER TRUE

variablereplication replicate variable and declaration with same name and
prefix MPI_DUPLICATE_VARIABLE_PREFIX 8.4.5 and suffix num proc

variable_replication > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.task

eliminateoriginalvariables eliminate original variables of the code to replace
them by there copy with same name and prefix MPI_DUPLICATE_VARIABLE_PREFIX 8.4.5
and suffix num proc

eliminate_original_variables > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.task

mpi_conversion > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.task

147

Chapter 9

Program Transformations

A program transformation is a special phase which takes a code as input, mod-
ifies it, possibly using results from several different analyses, and puts back this
modified code as result.

A rule describing a program transformation will never be chosen automati-
cally by pipsmake to generate some code since every transformation rule con-
tains a cycle for the MODULE.code resource. Since the first rule producing code,
described in this file, is controlizer 4.3 and since it is the only non-cyclic rule,
the internal representation always is initialized with it.

As program transformations produce nothing else, pipsmake cannot guess
when to apply these rules automatically. This is exactly what the user want
most of the time: program transformations are under explicit control by the user.
Transformations are applied when the user pushes one of wpips transformation
buttons or when (s)he enters an apply command when running tpips1, or by
executing a Perform Shell script. See the introduction for pointers to the user
interfaces.

Unfortunately, it is sometime nice to be able to chain several transforma-
tions without any user interaction. No general macro mechanism is available in
pipsmake, but it is possible to impose some program transformations with the
’ !’ command.

User inputs are not well-integrated although a user_query rule and a string
resource could easily be added. User interaction with a phase are performed
directly without notifying pipsmake to be more flexible and to allow dialogues
between a transformation and the user.

9.1 Loop Transformations

9.1.1 Introduction

Most loop transformations require the user to give a valid loop label to locate
the loop to be transformed. This is done interactively or by setting the following
property to the valid label:

LOOP_LABEL ""

1http://www.cri.ensmp.fr/pips/line-interface.html

148

http://www.cri.ensmp.fr/pips/line-interface.html
http://www.cri.ensmp.fr/pips/line-interface.html

Put a label on unlabelled loops for further interactive processing. Unless
FLAG_LOOPS_DO_LOOPS_ONLY 9.1.1 is set to false, only do loops are considered.

flag_loops > MODULE.code

> MODULE.loops

< PROGRAM.entities

< MODULE.code

FLAG_LOOPS_DO_LOOPS_ONLY TRUE

Display label of all modules loops

print_loops > MODULE.loops_file

< MODULE.loops

9.1.2 Loop range Normalization

Use intermediate variables as loop upper and lower bound when they are not
affine.

linearize_loop_range > MODULE.code

< PROGRAM.entities

< MODULE.code

9.1.3 Label Elimination

Clean all statement labels. No legality check is performed. This transformation
is particularly useful after a sequence of loop transformations is applied on a
structured code.

clean_labels > MODULE.code

< PROGRAM.entities

< MODULE.code

If LABEL_EXCEPTION 9.1.3 is set to a string, all the labels containing this
string will not be eliminated.

LABEL_EXCEPTION ""

9.1.4 Loop Distribution

Function distributer 9.1.4 is a restricted version of the parallelization function
rice* (see Section 8.1.3).

Distribute all the loops of the module.
Allen & Kennedy’s algorithm [2] is used in both cases. The only difference

is that distributer 9.1.4 does not produce DOALL loops, but just distributes
loops as much as possible.

alias distributer ’Distribute Loops’

distributer > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.dg

149

Partial distribution distributes the statements of a loop nest except the iso-
lated statements,that have no dependences at the common level l, are gathered
in the same l-th loop.

PARTIAL_DISTRIBUTION FALSE

9.1.5 Statement Insertion

Check if the statement flagged by STATEMENT_INSERTION_PRAGMA 9.1.5 can be
safely inserted in the current control flow. This pass should be reserved to
internal use only, another pass should create and insert a flagged statement and
then call this one to verify the validity of the insertion

statement_insertion > MODULE.code

< PROGRAM.entities

< ALL.code

> ALL.code

< MODULE.regions

< MODULE.out_regions

STATEMENT_INSERTION_PRAGMA "pips␣inserted␣statement␣to␣check"

STATEMENT_INSERTION_SUCCESS_PRAGMA "pips␣inserted␣statement"

STATEMENT_INSERTION_FAILURE_PRAGMA "pips␣inserted␣statement␣to␣remove"

9.1.6 Loop Expansion

Prepare the loop expansion by creating a new statement (that may be invalid)
for further processing by statement_insertion 9.1.5. Use STATEMENT_INSERTION_PRAGMA 9.1.5
to identify the created statement. Otherwise LOOP_LABEL 9.1.1 and LOOP_EXPANSION_SIZE 9.1.6
have the same meaning as in loop_expansion 9.1.6

loop_expansion_init > MODULE.code

< PROGRAM.entities

< MODULE.code

Extends the range of a loop given by LOOP_LABEL 9.1.1 to fit a size given by
LOOP_EXPANSION_SIZE 9.1.6. An offset can be set if LOOP_EXPANSION_CENTER 9.1.6
is set to True. The new loop is guarded to prevent illegal iterations, further
transformations can elaborate on this.

loop_expansion > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

LOOP_EXPANSION_SIZE ""

150

LOOP_EXPANSION_CENTER FALSE

Extends the dimension of all declared arrays so that no access is illegal.

array_expansion > PROGRAM.entities

< PROGRAM.entities

< MODULE.code

< MODULE.regions

9.1.7 Loop Fusion

This pass fuses as many loops as possible in a greedy manner. The loops must
appear in a sequence and have exactly the same loop bounds and if possible the
same loop indices. We’ll always try first to fuse loops where there is a depen-
dence between their body. We expect that this policy will maximize possibilities
for further optimizations.

Property LOOP_FUSION_GREEDY 9.1.7 allows to control whether it’ll try to
fuse as many loop as possible even without any reuse. This will be done in a
second pass.

Property LOOP_FUSION_MAXIMIZE_PARALLELISM 9.1.7 is used to control if
loop fusion has to preserve parallelism while fusing. If this property is true, a
parallel loop is never fused with a sequential loop.

Property LOOP_FUSION_KEEP_PERFECT_PARALLEL_LOOP_NESTS 9.1.7 prevents
to lose parallelism when fusing outer loops from a loop nests without being able
to fuse inner loops.

Property LOOP_FUSION_MAX_FUSED_PER_LOOP 9.1.7 limit the number of fu-
sion per loop. A negative value means that no limit will be enforced.

The fusion legality is checked in the standard way by comparing the depen-
dence graphs obtained before and after fusion.

This pass is still in the experimental stage. It may have side effects on the
source code when the fusion is attempted but not performed in case loop index
are different.

alias Fusion ’Fusion Loops’

loop_fusion > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.dg

This pass is the same is loop_fusion 9.1.7 excepts that it uses regions in-
stead of dependence graph. Properties are the same as before: LOOP_FUSION_GREEDY 9.1.7,
LOOP_FUSION_MAXIMIZE_PARALLELISM 9.1.7, LOOP_FUSION_KEEP_PERFECT_PARALLEL_LOOP_NESTS 9.1.7,
and LOOP_FUSION_MAX_FUSED_PER_LOOP 9.1.7 control the algorithm.

alias Fusion ’Fusion Loops With Regions’

loop_fusion_with_regions > MODULE.code

< PROGRAM.entities

< MODULE.code

151

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.preconditions

< MODULE.inv_regions

< MODULE.dg

LOOP_FUSION_MAXIMIZE_PARALLELISM TRUE

LOOP_FUSION_GREEDY FALSE

LOOP_FUSION_KEEP_PERFECT_PARALLEL_LOOP_NESTS TRUE

LOOP_FUSION_MAX_FUSED_PER_LOOP -1

9.1.8 Index Set Splitting

Index Set Splitting [24] splits the loop referenced by property LOOP_LABEL 9.1.1
into two loops. The first loop ends at an iteration designated by property
INDEX_SET_SPLITTING_BOUND 9.1.8 and the second start thereafter. It currently
only works for do loops. This transformation is always legal. Index set splitting
in combination with loop unrolling could be used to perform loop peeling.

alias index_set_splitting ’Index Set Splitting’

index_set_splitting > MODULE.code

> PROGRAM.entities

< PROGRAM.entities

< MODULE.code

Index Set Splitting requires the following globals to be set :

• LOOP_LABEL 9.1.1 is the loop label

• INDEX_SET_SPLITTING_BOUND 9.1.8 is the splitting bound

INDEX_SET_SPLITTING_BOUND ""

Additionnaly, INDEX_SET_SPLITTING_SPLIT_BEFORE_BOUND 9.1.8 can be used
to accurately tell to split the loop before or after the bound given in INDEX_SET_SPLITTING_BOUND 9.1.8

INDEX_SET_SPLITTING_SPLIT_BEFORE_BOUND FALSE

9.1.9 Loop Unrolling

9.1.9.1 Regular Loop Unroll

Unroll requests a loop label and an unrolling factor from the user. Then it
unrolls the specified loop as specified. The transformation is very general,
and it is interesting to run partial_eval 9.4.2, simplify_control 9.3.1 and
dead_code_elimination 9.3.2 after this transformation. When the number of

152

iterations cannot be proven to be a multiple of the unrolling factor, the extra it-
erations can be executed first or last (see LOOP_UNROLL_WITH_PROLOGUE 9.1.9.1).

Labels in the body are deleted. To unroll nested loops, start with the inner-
most loop.

This transformation is always legal.

alias unroll ’Loop Unroll’

unroll > MODULE.code

< PROGRAM.entities

< MODULE.code

Use LOOP_LABEL 9.1.1 and UNROLL_RATE 9.1.9.1 if you do not want to un-
roll interactively You can also set LOOP_UNROLL_MERGE 9.1.9.1 to use the same
declarations among all the unrolled statement (only meaningful in C).

UNROLL_RATE 0

LOOP_UNROLL_MERGE FALSE

The unrolling rate does not always divide exactly the number of iterations.
So an extra loop must be added to execute the remaining iterations. This extra
loop can be executed with the first iterations (prologue option) or the last itera-
tions (epilogue option). Property LOOP_UNROLL_WITH_PROLOGUE 9.1.9.1 can be
set to FALSE to use the epilogue when possible. The current implementation of
the unrolling with prologue is general, while the implementation of the unrolling
with epilogue is restricted to loops with a statically knonw increment of one.
The epilogue option may reduce misalignments.

LOOP_UNROLL_WITH_PROLOGUE TRUE

Another option might be to require unrolling of the prologue or epilogue
loop when possible.

9.1.9.2 Full Loop Unroll

A loop can also be fully unrolled if the range is numerically known. “Partial
Eval” may be usefully applied first.

This is only useful for small loop ranges.
Unrolling can be interactively applied and the user is requested a loop label:

alias full_unroll ’Full Loop Unroll (Interactive)’

full_unroll > MODULE.code

< PROGRAM.entities

< MODULE.code

Or directives can be inserted as comments for loops to be unrolled with:

alias full_unroll_pragma ’Full Loop Unroll (Pragma)’

full_unroll_pragma > MODULE.code

< PROGRAM.entities

< MODULE.code

153

The directive is a comment containing the string Cxxx just before a loop to fully
unroll (it is reserved to Fortran right now and should be generalized).

Full loop unrolling is applied one loop at a time by default. The user must
specify the loop label. This default feature can be turned off and all loops with
constant loop bounds and constant increment are fully unrolled.

Use LOOP_LABEL 9.1.1 to pass the desired label if you do not want to give it
interactively

Property FULL_LOOP_UNROLL_EXCEPTIONS 9.1.9.2 is used to forbid loop un-
rolling when specific user functions are called in the loop body. The function
names are separated by SPACEs. The default value is the empy set, i.e. the
empry string.

FULL_LOOP_UNROLL_EXCEPTIONS ""

9.1.10 Loop Fusion

This pass applies unconditionnally a loop fusion between the loop designated
by the property LOOP_LABEL 9.1.1 and the following loop. They must have the
same loop index and the same iteration set. No legality check is performed.

force_loop_fusion > MODULE.code

< PROGRAM.entities

< MODULE.code

9.1.11 Strip-mining

Strip-mine requests a loop label and either a chunk size or a chunk number.
Then it strip-mines the specified loop, if it is found. Note that the DO/ENDDO
construct is not compatible with such local program transformations.

alias strip_mine ’Strip Mining’

strip_mine > MODULE.code

< PROGRAM.entities

< MODULE.code

Behavior of strip mining can be controlled by the following properties:

• LOOP_LABEL 9.1.1 selects the loop to strip mine

• STRIP_MINE_KIND 9.1.11 can be set to 0 (fixed-size chunks) or 1 (fixed
number of chunks). Negative value is used for interactive prompt.

• STRIP_MINE_FACTOR 9.1.11 controls the size of the chunk or the number
of chunk depending on STRIP_MINE_KIND 9.1.11. Negative value is used
for interactive prompt.

STRIP_MINE_KIND -1

STRIP_MINE_FACTOR -1

154

9.1.12 Loop Interchange

loop_interchange 9.1.12 requests a loop label and exchange the outer-most
loop with this label and the inner-most one in the same loop nest, if such a loop
nest exists.

Presently, legality is not checked.

alias loop_interchange ’Loop Interchange’

loop_interchange > MODULE.code

< PROGRAM.entities

< MODULE.code

Property LOOP_LABEL 9.1.1 can be set to a loop label instead of using the
default interactive method.

9.1.13 Hyperplane Method

loop_hyperplane 9.1.13 requests a loop label and a hyperplane direction vector
and applies the hyperplane method to the loop nest starting with this loop label,
if such a loop nest exists.

Presently, legality is not checked.

alias loop_hyperplane ’Hyperplane Method’

loop_hyperplane > MODULE.code

< PROGRAM.entities

< MODULE.code

9.1.14 Loop Nest Tiling

loop_tiling 9.1.14 requests from the user a numerical loop label and a numer-
ical partitioning matrix and applies the tiling method to the loop nest starting
with this loop label, if such a loop nest exists.

The partitioning matrix must be of dimension n×n where n is the loop nest
depth. The default origin for the tiling is 0, but lower loop bounds are used to
adjust it and decrease the control overhead. For instance, if each loop is of the
usual kind, DO I = 1, N, the tiling origin is point (1, 1,...). The code generation
is performed according to the PPoPP’91 paper but redundancy elimination may
results in different loop bounds.

Presently, legality is not checked. There is no decision procedure to select
automatically an optimal partitioning matrix. Since the matrix must be numer-
ically known, it is not possible to generate a block distribution unless all loop
bounds are numerically known. It is assumed that the loop nest is fully parallel.

Jingling Xue published an advanced code generation algorithm for tiling in
Parallel Processing Letters (http://cs.une.edu.au/~xue/pub.html).

alias loop_tiling ’Tiling’

loop_tiling > MODULE.code

< PROGRAM.entities

< MODULE.code

This transformations prompts the user for a partition matrix. Alternatively,
this matrix can be provided through the LOOP_TILING_MATRIX 9.1.14 property.
The format of the matrix is a00 a01 a02,a10 a11 a12,a20 a21 a22

155

http://cs.une.edu.au/~xue/pub.html

LOOP_TILING_MATRIX ""

It is sometimes useful to apply a partial loop tiling, on the external loops of
the loop nest for instance. The PARTIAL_LOOP_TILING 9.1.14 property should
be TRUE. The LOOP_TILING_MATRIX 9.1.14 information is used.

PARTIAL_LOOP_TILING FALSE

Likewise, one can use the LOOP_LABEL 9.1.1 property to specify the targeted
loop.

The implementation of the parallel loop tiling transformation is ongoing. It
uses the hyperplane direction to generate the code with potential parallel loops
scanning tiles.

alias parallel_loop_tiling ’Parallel Tiling’

parallel_loop_tiling > MODULE.code

< PROGRAM.entities

< MODULE.dg

< MODULE.code

Loop tiling is valid only if it respects data dependencies. To check the legality
of the transformation application the CHECK_TRANSFORMATION_LEGALITY 9.1.14
property should be TRUE. If the transformation is not legal the code does not
changed.

CHECK_TRANSFORMATION_LEGALITY TRUE

Different codes can be generated after tiling, each having different behavior
and performance. TILE_DIRECTION 9.1.14 and LOCAL_TILE_DIRECTION 9.1.14
properties specify the chosen directions to scan respectively the tiles and the
local elements into each tile.

TILE_DIRECTION "TP"

TILE_DIRECTION 9.1.14 is set to TS when the direction is colinear to the
partitioning vectors. It is set to TP when the hyperplane direction associated
to orthogonal directions are used.

LOCAL_TILE_DIRECTION "LI"

The local elements of each tile are scanned 1) according to the partitioning
vectors when LOCAL_TILE_DIRECTION 9.1.14 is set LS, 2) using the hyperplane
direction associated to orthogonal directions if set to LP, 3) along the original
basis when set to LI.

9.1.15 Symbolic Tiling

Tiles a loop nest using a partitioning vector that can contain symbolic values.
The tiling only works for parallelepiped tiles. Use LOOP_LABEL 9.1.1 to specify
the loop to tile. Use SYMBOLIC_TILING_VECTOR 9.1.15 as a comma-separated
list to specify tile sizes. Use SYMBOLIC_TILING_FORCE 9.1.15 to bypass condition
checks. Consider using loop_nest_unswitching 8.2.8 if generated max disturbs
further analyses

156

symbolic_tiling > MODULE.code

! MODULE.coarse_grain_parallelization

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

SYMBOLIC_TILING_VECTOR ""

SYMBOLIC_TILING_FORCE FALSE

9.1.16 Loop Normalize

The loop normalization consists in transforming all the loops of a given module
into a normal form. In this normal form, the lower bound and the increment
are equal to one (1).

Property LOOP_NORMALIZE_PARALLEL_LOOPS_ONLY 9.1.16 control whether
we want to normalize only parallel loops or all loops.

If we note the initial DO loop as:

DO I = lower, upper, incre

...
ENDDO

the transformation gives the folowing code:

DO NLC = 0, (upper - lower + incre)/incre - 1, 1

I = incre*NLC + lower

...
ENDDO

I = incre * MAX((upper - lower + incre)/incre, 0) + lower

The normalization is done only if the initial increment is a constant number.
The normalization produces two assignment statements on the initial loop index.
The first one (at the beginning of the loop body) assigns it to its value function
of the new index and the second one (after the end of the loop) assigns it to its
final value.

alias loop_normalize ’Loop Normalize’

loop_normalize > MODULE.code

< PROGRAM.entities

< MODULE.code

If the increment is 1, the loop is considered already normalized. To have a
1-increment loop normalized too, set the following property

LOOP_NORMALIZE_ONE_INCREMENT FALSE

This is useful to have iteration spaces that begin at 0 for GPU for example.
The loop normalization has been defined in some days only Fortran was

available, so having loops starting at 1 like the default for arrays too make sense
in Fortran.

Anyway, no we could generalize for C (starting at 0 is more natural) or why
not from any other value that can be chosen with the following property:

157

LOOP_NORMALIZE_LOWER_BOUND 1

If you are sure the final assignment is useless, you can skip it with the
following property.

LOOP_NORMALIZE_SKIP_INDEX_SIDE_EFFECT FALSE

LOOP_NORMALIZE_PARALLEL_LOOPS_ONLY FALSE

9.1.17 Guard Elimination and Loop Transformations

Youcef Bouchebaba’s implementation of unimodular loop transformations. . .

guard_elimination > MODULE.code

< PROGRAM.entities

< MODULE.code

9.1.18 Tiling for sequences of loop nests

Tiling for sequences of loop nests
Youcef Bouchebaba’s implementation of tiling for sequences of loop nests

. . .

alias tiling_sequence ’Tiling sequence of loop nests’

tiling_sequence > MODULE.code

< PROGRAM.entities

< MODULE.code

9.2 Redundancy Elimination

9.2.1 Loop Invariant Code Motion

This is a test to implement a loop-invariant code motion. This phase hoist
loop-invariant code out of the loop.

A side effect of this transformation is that the code is parallelized too with
some loop distribution. If you don’t want this side effect, you can check sec-
tion ?? which does a pretty nice job too.

The original algorithm used is described in Chapters 12, 13 and 14 of Julien
Zory’s PhD dissertation [58].

invariant_code_motion > MODULE.code

< PROGRAM.entities

< MODULE.proper_effects

< MODULE.code MODULE.dg

Note: this pass deals with loop invariant code motion while the icm pass
deals with expressions.

158

9.2.2 Partial Redundancy Elimination

In essence, a partial redundancy [41] is a computation that is done more than
once on some path through a flowgraph. We implement here a partial redun-
dancy elimination transformation for logical expressions such as bound checks
by using informations given by precondition analyses.

This transformation is implemented by Thi Viet Nga Nguyen.
See also the transformation in 9.4.10, the partial evaluation, and so on.

alias partial_redundancy_elimination ’Partial Redundancy Elimination’

partial_redundancy_elimination > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.preconditions

9.2.3 Identity Elimination

This pass was done by Nelson LOSSING.
Function identity_elimination 9.2.3 deletes identity statements like x=x;

when x is an expression without side effect.
This pass also imply that if the instruction x=x; raise an exception, this

exception disapear with the instructon.

alias identity_elimination ’Identity Elimination’

identity_elimination > MODULE.code

< PROGRAM.entities

< MODULE.proper_effects

< MODULE.code

Function identity_elimination_with_points_to 9.2.3 is an extension of
identity_elimination 9.2.3 to also consider identity with pointer. So we want
to eliminate x=*p or *p=x, when p is a pointer who points-to x.

This extension is not implemented and only compute an identity_elimination 9.2.3.

alias identity_elimination_with_points_to ’Identity Elimination with Points-to’

identity_elimination_with_points_to > MODULE.code

< PROGRAM.entities

< MODULE.points_to

< MODULE.proper_effects

< MODULE.code

9.3 Control-Flow Optimizations

9.3.1 Control Simplification (a.k.a. Dead Code Elimina-
tion)

Function simplify_control 9.3.1 is used to delete non-executed code, such as
empty loop nests or zero-trip loops, for example after strip-mining or partial

159

evaluation.
Preconditions are used to find always true conditions in tests and to eliminate

such tests. In some cases, tests cannot be eliminated, but test conditions can be
simplified. One-trip loops are replaced by an index initialization and the loop
body. Zero-trip loops are replaced by an index initialization. Effects in bound
computations are preserved.

A lot of unexecuted code can simply be eliminated by testing its precondi-
tion feasibility. A very simple and fast test may be used if the preconditions
are normalized when they are computed, but this slows down the precondition
computation. Or non-normalized preconditions are stored in the database and
an accurate and slow feasibility test must be used. Currently, the first option
is used for assignments, calls, IOs and IF statements but a stronger feasibility
test is used for loops.

FORMAT statements are suppressed because they behave like a NOP com-
mand. They should be gathered at the beginning or at the end of the module us-
ing property GATHER_FORMATS_AT_BEGINNING 4.3 or GATHER_FORMATS_AT_END 4.3.
The property must be set before the control flow graph of the module is com-
puted.

The cumulated effects are used in debug mode to display information.
The simplify_control 9.3.1 phase also performs some If Simplifications

and Loop Simplifications [41].
This function was designed and implemented by Ronan Keryell.

alias simplify_control ’Simplify Control’

simplify_control > MODULE.code

> MODULE.callees

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.preconditions

This pass is the same as simplify_control 9.3.1. It is used under this
obsolete name in some validation scripts. The name has been preserved for
backward compatibility.

suppress_dead_code > MODULE.code

> MODULE.callees

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.preconditions

This pass is very similar to simplify_control 9.3.1, but it does not require
the preconditions. Only local information is used. It can be useful to clean up
input code with constant tests, e.g. 3>4, and constant loop bounds. It can also
be used after partial_eval 9.4.2 to avoid recomputing the preconditions yet an-
other time. The property SIMPLIFY_CONTROL_DIRECTLY_PRIVATE_LOOP_INDICES 9.3.1
assert that the loop indices don’t need a copy out, i.e. the value at the exit of
the loop can be forgotten.

160

SIMPLIFY_CONTROL_DIRECTLY_PRIVATE_LOOP_INDICES FALSE

Whether to try to simplify do/while loops (property introduced as a special
workaround for FREIA).

SIMPLIFY_CONTROL_DO_WHILE TRUE

alias simplify_control_directly ’Simplify Control Directly’

simplify_control_directly > MODULE.code

> MODULE.callees

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.summary_effects

9.3.1.1 Properties for Control Simplification

It is sometimes useful to display statistics on what has been found useless and
removed in a function, this property controls the statistics display:

DEAD_CODE_DISPLAY_STATISTICS TRUE

9.3.2 Dead Code Elimination (a.k.a. Use-Def Elimina-
tion)

Function dead_code_elimination 9.3.2 deletes statements whose def references
are all dead, i.e. are not used by later executions of statements. It was developed
by Ronan Keryell. The algorithm compute the set of live statements without
fix-point. An initial set of live statements is extended with new statements
reached thru use-def chains, control dependences and....

The initial set of live statements contains IO statements, RETURN, STOP,
return, exit, abort...

Note that use-def chains are computed intraproceduraly and not interproce-
duraly. Hence some statements may be preserved because they update a formal
parameter although this formal parameter is no longer used by the callers.

The dependence graph may be used instead of the use-def chains, but Ro-
nan Keryell, designer and implementer of the initial Fortran version, did not
produce convincing evidence of the benefit... The drawback is the additional
CPU time required.

This pass was extended to C by Mehdi Amini in 2009-2010, but it is not
yet stabilized. For C code, this pass requires that effects are calculated with
property MEMORY_EFFECTS_ONLY set to FALSE because we need that the DG
includes arcs for declarations as these latter are separate statements now.

clean_declarations 9.7.1 is automatically performed at the end, this is
why cumulated effects are needed.

The following properties are intended to force some function calls to be pre-
served by the algorithm, DEAD_CODE_ELIMINATION_KEEP_FUNCTIONS 9.3.2 ex-
pect a space separated list of function names while DEAD_CODE_ELIMINATION_KEEP_FUNCTIONS_PREFIX 9.3.2
expect a space separated list of prefix for function name. Does it really

work?

161

DEAD_CODE_ELIMINATION_KEEP_FUNCTIONS ""

DEAD_CODE_ELIMINATION_KEEP_FUNCTIONS_PREFIX ""

alias dead_code_elimination ’Dead Code Elimination’

dead_code_elimination > MODULE.code

> MODULE.callees

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.chains

Historical comments from Nga Nguyen: According to [1] p. 595, and [41] p.
592, a variable is dead if it is not used on any path from the location in the code
where it is defined to the exit point of the routine in the question; an instruc-
tion is dead if it computes only values that are not used on any executable path
leading from the instruction. The transformation that identifies and removes
such dead code is called dead code elimination. So in fact, the Use-def elimina-
tion pass in PIPS is a Dead code elimination pass and the Suppress dead code
pass (see Section 9.3.1) does not have a standard name. It could be the control
simplification pass. The wrong initial naming has been fixed, but it shows in
PIPS source code, in tpips scripts and in validation test cases.

For backward compatibility, the next pass name is preserved.

alias use_def_elimination ’Use-Def elimination’

use_def_elimination > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.chains

out_regions 6.12.8 are harder to compute than a simple data dependence
graph, but they provide some advantages over a standard dead-code elimina-
tion. They are computed interprocedurally. And they can be used to reduce
the iteration sets. Since out_regions 6.12.8 are also flow sensitive regions,
dead_code_elimination_with_out_regions 9.3.2 will also done an equivalent
simplification that simplify_control 9.3.1 will do when a standard dead-code
elimination can’t detect it.

loop_bound_minimization_with_out_regions 9.3.3 is automatically per-
formed at the end (after clean_declarations 9.7.1). It reduces the iteration
sets. The preconditions requirement comes from it.

DEAD_CODE_ELIMINATION_KEEP_FUNCTIONS 9.3.2 and DEAD_CODE_ELIMINATION_KEEP_FUNCTIONS_PREFIX 9.3.2
doesn’t work with dead_code_elimination_with_out_regions 9.3.2.

An equivalent result can/must be obtain by using dead_code_elimination 9.3.2
and applying region_chains 6.5.3 to compute use-def chains for intraprocedu-
ral result, or in_out_regions_chains 6.5.4 for interprocedural result. Except
for the possible optimization to reduce the iteration sets. (The equivalence of
the results are not tested)

162

alias dead_code_elimination_with_out_regions ’Dead Code Elimination with OUT Regions’

dead_code_elimination_with_out_regions > MODULE.code

> MODULE.callees

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.preconditions

< MODULE.out_regions

9.3.3 Loop bound minimization

loop_bound_minimization_with_out_regions 9.3.3 has been implemented by
Nelson LOSSING.

Loop bound minimization tries to minimize the loop bounds by filtering the
iterations which have no effects on the code executed after the loop. For this
purpose, it needs the out_regions 6.12.8 that will indicate which part of arrays
are computed in the loop and will be useful on the loop continuation.

This pass only modifies the loop bounds when it is possible, and not the
loop body nor the loop increment. Think to use loop_normalize 9.1.16, if you
want to start at 0 or 1, or have an increment of 1.

The new loop bounds can be expressed by variables or constants which differ
from the original bounds.

This pass can be launched successively several time and continues to make
some improvements in the code. The refinement of an execution of this pass
can provide more precise OUT Regions and so allows better minimization for
other loop bounds. As a consequence one launch of this pass is not equivalent
to two successive launches.

For n loops, at most n executions of this pass should provide an optimal
result. Any aditional execution is useless. No proof of this last assumption has
been done.

Only work for Fortran’s DO loop kind of loop.

alias loop_bound_minimization_with_out_regions ’Loop bound minimization with out regions’

loop_bound_minimization_with_out_regions > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.preconditions

< MODULE.out_regions

9.3.4 Control Restructurers

Two control restructurers are available: unspaghettify 9.3.4.1 which is used by
default in conjunction with controlizer 4.3 and restructure_control 9.3.4.2
which must be explicitly applied2

2A property can be used to force the call to restructurer by the controlizer 4.3.

163

9.3.4.1 Unspaghettify

The unspaghettifier is a heuristic to clean up and to simplify the control graphs
of a module. It is useful because the controlizer (see Section 4.3) or some
transformation phases can generate some spaghetti code with a lot of useless
unstructured code which can confuse some other parts of PIPS. Dead code
elimination, for example, uses unspaghettify 9.3.4.1.

This control restructuring transformation can be automatically applied in
the controlizer 4.3 phase (see Section 4.3) if the UNSPAGHETTIFY_IN_CONTROLIZER 4.3
property is true.

To add flexibility, the behavior of unspaghettify 9.3.4.1 is controlled by the
properties UNSPAGHETTIFY_TEST_RESTRUCTURING 9.3.4.1 and UNSPAGHETTIFY_RECURSIVE_DECOMPOSITION 9.3.4.1
to allow more restructuring from restructure_control 9.3.4.2 to be added in
the controlizer 4.3 for example.

This function was designed and implemented by Ronan Keryell.

alias unspaghettify ’Unspaghettify the Control Graph’

unspaghettify > MODULE.code

< PROGRAM.entities

< MODULE.code

To display the statistics about unspaghettify 9.3.4.1 and control graph
restructuring restructure_control 9.3.4.2.

UNSPAGHETTIFY_DISPLAY_STATISTICS TRUE

The following option enables the use of IF/THEN/ELSE restructuring when
applying unspaghettify:

UNSPAGHETTIFY_TEST_RESTRUCTURING FALSE

It is assumed as true for restructure_control 9.3.4.2. It recursively imple-
ment TEST restructuring (replacing IF/THEN/ELSE with GOTOs with struc-
tured IF/THEN/ELSE without any GOTOs when possible) by applying pattern
matching methods.

The following option enables the use of control graph hierarchisation when
applying unspaghettify:

UNSPAGHETTIFY_RECURSIVE_DECOMPOSITION FALSE

It is assumed as true for restructure_control 9.3.4.2. It implements a recur-
sive decomposition of the control flow graph by an interval graph partitioning
method.

The restructurer can recover some while loops if this property is set:

UNSPAGHETTIFY_WHILE_RECOVER FALSE

9.3.4.2 Restructure Control

restructure_control 9.3.4.2 is a more complete restructuring phase that is
useful to improve the accuracy of various PIPS phases.

164

It is implemented by calling unspaghettify 9.3.4.1 (§ 9.3.4.1) with the prop-
erties UNSPAGHETTIFY_TEST_RESTRUCTURING 9.3.4.1 and UNSPAGHETTIFY_RECURSIVE_DECOMPOSITION 9.3.4.1
set to TRUE.

Other restructuring methods are available in PIPS with the TOOLPACK’s
restructurer (see Section 9.3.5).

alias restructure_control ’Restructure the Control Graph’

restructure_control > MODULE.code

< PROGRAM.entities

< MODULE.code

9.3.4.3 DO Loop Recovery

This control-flow transformation transforms while loops into DO loops by re-
covering an index variable, an initial value, a final value and an increment.

Useful to be run after transformations ?!?

alias recover_for_loop ’Recover for-loops from while-loops’

recover_for_loop > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.transformers

< MODULE.summary_transformer

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.summary_effects

This phase cannot be called from inside the control restructurer since it
needs many higher-level analysis. This is why it is in a separate phase.

9.3.4.4 For Loop to DO Loop Conversion

Since in PIPS some transformations and analysis are more precise for Fortran
code, this is a transformation than try to transform the C-like for-loops into
Fortran-like do-loops.

Don’t worry about the C-code output: the prettyprinter output do-loop as
for-loop if the C-output is selected. The do-loop construct is interesting since
the iteration set is computed at the loop entry (for example it is not sensible to
the index modification from the inside of the loop) and this simplifies abstract
interpretation a lot.

This transformation transform for example a

for (i = lb ; i < ub ; i += s t r i d e)
body ;

into a

do i = lb , ub − 1 , s t r i d e
body

end do

165

alias for_loop_to_do_loop ’For-loop to do-loop transformation’

for_loop_to_do_loop > MODULE.code

< PROGRAM.entities

< MODULE.code

9.3.4.5 For Loop to While Loop Conversion

Since in PIPS some transformations and analysis may not be implemented for
C for loops but may be implemented for while loops, it is interesting to have
this for loop to while loop conversion.

This transformation transforms a

for (i n i t ; cond ; update)
body ;

into a

{
i n i t ;
while (cond) {

body ;
update ;

}
}

Since analysis are more precise on do-loops, you should apply a for_loop_to_do_loop 9.3.4.4
transformation first , and only after, apply this for_loop_to_while_loop 9.3.4.5
transformation that will transform the remaining for-loops into while loops.

alias for_loop_to_while_loop ’For-loop to while-loop transformation’

for_loop_to_while_loop > MODULE.code

< PROGRAM.entities

< MODULE.code

9.3.4.6 Do While to While Loop Conversion

Some transformations only work on while loops, thus it is useful to have this
transformation that transforms a

do {
body ;

} while (cond) ;

into a

{
body ;

}
while (cond) {

body ;
}

166

It is a transformation useful before while loop to for loop recovery for example
(see § 9.3.4.3).

alias dowhile_to_while ’Do-while to while-loop transformation’

dowhile_to_while > MODULE.code

< PROGRAM.entities

< MODULE.code

9.3.4.7 Spaghettify

spaghettify 9.3.4.7 is used in the context of the PHRASE project while cre-
ating “Finite State Machine”-like code portions in order to synthesize them in
reconfigurable units.

This phases transform structured code portions (eg. loops) in unstructured
statements.

spaghettify 9.3.4.7 transforms the module in a unstructured code with
hierarchical unstructured portions of code corresponding to the old control flow
structures.

To add flexibility, the behavior of spaghettify 9.3.4.7 is controlled by the
properties

• DESTRUCTURE TESTS

• DESTRUCTURE LOOPS

• DESTRUCTURE WHILELOOPS

• DESTRUCTURE FORLOOPS

to allow more or less destruction power.

alias spaghettify ’Spaghettify the Control Graph’

spaghettify > MODULE.code

< PROGRAM.entities

< MODULE.code

Thoses properties allow to fine tune spaghettify 9.3.4.7 phase

DESTRUCTURE_TESTS TRUE

DESTRUCTURE_LOOPS TRUE

DESTRUCTURE_WHILELOOPS TRUE

DESTRUCTURE_FORLOOPS TRUE

167

9.3.4.8 Full Spaghettify

The spaghettify 9.3.4.7 is used in context of PHRASE project while creat-
ing“Finite State Machine”-like code portions in order to synthesize them in
reconfigurable units.

This phases transforms all the module in a unique flat unstructured state-
ment.

Whereas the spaghettify 9.3.4.7 transforms the module in a unstructured
code with hierarchical unstructured portions of code corresponding to the old
structures, the full_spaghettify 9.3.4.8 transform the code in a sequence
statement with a beginning statement, a unique and flattened unstructured (all
the unstructured and sequences are flattened), and a final statement.

alias full_spaghettify ’Spaghettify the Control Graph for the entire module’

full_spaghettify > MODULE.code

< PROGRAM.entities

< MODULE.code

9.3.5 Control Flow Normalisation (STF)

This pass is now obsolete. Use restructure_control 9.3.4.2 instead.
Transformation stf 9.3.5 is a C interface to a Shell script used to restructure

a Fortran program using ISTST (via the combined tool fragment ISTLY =
ISTLX/ISTYP and then ISTST) from TOOLPACK [47, 44].

Be careful, since TOOLPACK is written in Fortran, you need the Fortran
runtime libraries to run STF if is has not been statically compiled...

Known bug/feature: stf 9.3.5 does not change resource code like other
transformations, but the source file. Transformations applied before stf 9.3.5
are lost.

This transformation is now assumed redundant with respect to the native
PIPS control restructurers, which deal with other languages too.

alias stf ’Restructure with STF’

stf > MODULE.source_file

< MODULE.source_file

9.3.6 Trivial Test Elimination

Function suppress_trivial_test 9.3.6 is used to delete the TRUE branch of
trivial test instruction. After apply suppress_trivial_test 9.3.6, the condi-
tion of the new test instruction is the condition correspondent to the FALSE
branch of the initial test.

This function was designed and implemented by Trinh Quoc Anh.

alias suppress_trivial_test ’Trivial Test Elimination’

suppress_trivial_test > MODULE.code

< PROGRAM.entities

< MODULE.code

168

9.3.7 Finite State Machine Generation

Theses phases are used for PHRASE project.
NB: The PHRASE project is an attempt to automatically (or semi-automatically)

transform high-level language for partial evaluation in reconfigurable logic (such
as FPGAs or DataPaths).

This library provides phases allowing to build and modify ”Finite State
Machine”-like code portions which will be later synthesized in reconfigurable
units. This was implemented by Sylvain Guérin.

9.3.7.1 FSM Generation

This phase tries to generate finite state machine from arbitrary code by applying
rules numeroting branches of the syntax tree and using it as state variable for
the finite state machine.

This phase recursively transforms each UNSTRUCTURED statement in a
WHILE-LOOP statement controlled by a state variable, whose different values
are associated to the different statements.

To add flexibility, the behavior of fsm_generation 9.3.7.1 is controlled by
the property FSMIZE_WITH_GLOBAL_VARIABLE 9.3.7.5 which controls the fact
that the same global variable (global to the current module) must be used for
each FSMized statements.

alias fsm_generation ’FSM Generation’

fsm_generation > MODULE.code

> PROGRAM.entities

< PROGRAM.entities

< MODULE.code

To generate a hierarchical finite state machine, apply first spaghettify 9.3.4.7
(§ 9.3.4.7) and then fsm_generation 9.3.7.1.

To generate a flat finite state machine, apply first full_spaghettify 9.3.4.8
(§ 9.3.4.8) and then fsm_generation 9.3.7.1 or use the aggregate phase full_fsm_generation 9.3.7.2.

9.3.7.2 Full FSM Generation

This phase tries to generate a flat finite state machine from arbitrary code by
applying rules numeroting branches of the syntax tree and using it as state
variable for the finite state machine.

This phase transform all the module in a FSM-like code, which is a WHILE-
LOOP statement controlled by a state variable, whose different values are asso-
ciated to the different statements.

In fact, this phase do nothing but rely on pipsmake to apply the succession of
the 2 phases full_spaghettify 9.3.4.8 and fsm_generation 9.3.7.1 (§ 9.3.7.1)

alias full_fsm_generation ’Full FSM Generation’

full_fsm_generation > MODULE.code

> PROGRAM.entities

! MODULE.full_spaghettify

169

! MODULE.fsm_generation

< PROGRAM.entities

< MODULE.code

9.3.7.3 FSM Split State

This phase is not yet implemented and do nothing right now...
This phase transform a state of a FSM-like statement and split it into n new

states where the portion of code to execute is smaller.
NB: Phase full_spaghettify 9.3.4.8 must have been applied first !

alias fsm_split_state ’FSM split state

fsm_split_state > MODULE.code

< PROGRAM.entities

< MODULE.code

9.3.7.4 FSM Merge States

This phase is not yet implemented and do nothing right now...
This phase transform 2 or more states of a FSM-like statement and merge

them into a new state where the portion of code to execute is bigger.
NB: Phase full_spaghettify 9.3.4.8 must have been applied first !

alias fsm_merge_states ’FSM merge states

fsm_merge_states > MODULE.code

< PROGRAM.entities

< MODULE.code

9.3.7.5 FSM Properties

Control the fact that the same global variable (global to the current module)
must be used for each FSMized statements.

FSMIZE_WITH_GLOBAL_VARIABLE FALSE

9.3.8 Control Counters

A code instrumentation that adds local integer counters in tests and loops to
know how many times a path is taken. This transformation may help some
semantical analyses.

alias add_control_counters ’Control counters

add_control_counters > MODULE.code

< PROGRAM.entities

< MODULE.code

170

9.4 Expression Transformations

9.4.1 Atomizers

Atomizer produces, or should produce, three-address like instructions, in For-
tran. An atomic instructions is an instruction that contains no more than three
variables, such as A = B op C. The result is a program in a low-level Fortran
on which you are able to use all the others passes of PIPS.

Atomizers are used to simplify the statement encountered by automatic dis-
tribution phases. For instance, indirect addressing like A(B(I)) = ... is re-
placed by T=B(I);A(T) =

9.4.1.1 General Atomizer

alias atomizer ’Atomizer’

atomizer > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.dg

9.4.1.2 Limited Atomizer

This pass performs subscripts atomization so that they can be converted in
reference for more accruate analysis.

simplify_subscripts > MODULE.code

< PROGRAM.entities

< MODULE.code

This pass evaluates expression of the form ∗”ae” that can be found in COLD
output.

I doubt it can be useful elsewhere ...

simplify_constant_address_expressions > MODULE.code

< PROGRAM.entities

< MODULE.code

This pass performs a conversion from complex to real. SIMPLIFY_COMPLEX_USE_ARRAY_OF_STRUCTS 9.4.1.2
controls the new layout

simplify_complex > MODULE.code

< PROGRAM.entities

< MODULE.code

SIMPLIFY_COMPLEX_USE_ARRAY_OF_STRUCTS TRUE

Split structures in separated variables when possible, that is remove the
structure variable and replaces all fields by different variables.

split_structures > MODULE.code

< PROGRAM.entities

< MODULE.code

171

Here is a new version of the atomizer using a small atomizer from the HPF
compiler (see Section 8.3.2).

alias new_atomizer ’New Atomizer’

new_atomizer > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

An atomizer is also used by WP65 (see Section 8.3.1)

9.4.1.3 Atomizer Properties

This transformation only atomizes indirect references of array access functions.

ATOMIZE_INDIRECT_REF_ONLY FALSE

By default, simple array accesses such as X(I+2) are atomized, although it
is not necessary to generate assembly code:

ATOMIZE_ARRAY_ACCESSES_WITH_OFFSETS TRUE

The purpose of the default option is to maximise common subexpression
elimination.

Once a code has been atomized, you can use this transformation to generate
two address code only It can be useful for asm generation

generate_two_addresses_code > MODULE.code

< MODULE.code

< MODULE.cumulated_effects

< PROGRAM.entities

Set following property to false if you want to split dereferencing:

GENERATE_TWO_ADDRESSES_CODE_SKIP_DEREFERENCING TRUE

9.4.2 Partial Evaluation

Function partial_eval 9.4.2 produces code where numerical constant expres-
sions or subexpressions are replaced by their value. Using the preconditions,
some variables are evaluated to a integer constant, and replaced wherever pos-
sible. They are not replaced in user function calls because Fortran uses a call-
by-reference mechanism and because they might be updated by the function.
For the same conservative reason, they are not replaced in intrinsics calls.

Note that symbolic constants were left unevaluated because they already are
constant. However it was found unfriendly by users because the principle of
least surprise was not enforced: symbolic constants were sometimes replaced in
the middle of an expression but not when the whole expression was a reference
to a symbolic constant. Symbolic integer constants are now replaced by their
values systematically.

Transformations simplify_control 9.3.1 and dead_code_elimination 9.3.2
should be performed after partial evaluation. It is sometimes important to run
more than one partial evaluation in a row, because the first partial evaluation

172

may linearize some initially non-linear expressions. Perfect Club benchmark
ocean is a case in point.

Comments from Nga Nguyen: According to [1] and [41], the name of this
optimization should be Constant-Expression Evaluation or Constant Folding for
integer values. This transformation produces well error message at compile time
indicating potential error such as division by zero.

alias partial_eval ’Partial Eval’

partial_eval > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.preconditions

PIPS 3 default behavior in various places is to evaluate symbolic constants.
While meaningful, this approach is not source-to-source compliant, so one can
set property EVAL_SYMBOLIC_CONSTANT 9.4.2 to FALSE to prevent some of those
evaluations.

EVAL_SYMBOLIC_CONSTANT TRUE

One can also set PARTIAL_EVAL_ALWAYS_SIMPLIFY 9.4.2 to TRUE in order
to force distribution, even when it does not seem profitable

PARTIAL_EVAL_ALWAYS_SIMPLIFY FALSE

Likewise, one can turn following property to true if he wants to use hard-
coded value for size of types. The C standard is broken down into two parts,
one is target independent, and one is target dependent. Currently, there is no
way to specify different architecture models such as 32/32, 32/64 or 64/64, as
the architecture model is hardwired in ri-util-local.h.

EVAL_SIZEOF FALSE

Regardless of the modelization, the C source code generated when this property
is set to true is potentially no longer portable to other targets. This property
is also used by the semantics analysis.

This function was implemented initially by Bruno Baron.

9.4.3 Reduction Detection

Phase Reductions detects generalized instructions and replaces them by calls
to a run-time library supporting parallel reductions. It was developed by Pierre
Jouvelot in CommonLISP, as a prototype, to show than NewGen data struc-
tures were language-neutral. Thus it by-passes some of pipsmake/dbm facilities.

This phase is now obsolete, although reduction detection is critical for code
restructuring and optimization... A new reduction detection phase was imple-
mented by Fabien Coelho. Have a look at § 6.4 but it does not include a
code transformation. Its result could be prettyprinted in an HPF style (FC:
implementation?).

3http://www.cri.ensmp.fr/pips

173

http://www.cri.ensmp.fr/pips
http://www.cri.ensmp.fr/pips

old_reductions > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

9.4.4 Reduction Replacement

replace_reduction_with_atomic 9.4.4 replace all reduction in loop that are
marked as parallel with reduction by coarse_grain_parallelization_with_reduction 8.1.6.

The property ATOMIC_OPERATION_PROFILE 9.4.4 control the set of atomic
operations and operand allowed. At that time only “cuda” is supported.

flag_parallel_reduced_loops_with_atomic 9.4.4 flag as parallel all loops
that were detected by coarse_grain_parallelization_with_reduction 8.1.6.

The property ATOMIC_OPERATION_PROFILE 9.4.4 control the set of atomic
operations and operand allowed. At that time only “cuda” is supported.

ATOMIC_OPERATION_PROFILE "cuda"

replace_reduction_with_atomic > MODULE.code

> MODULE.callees

< PROGRAM.entities

< MODULE.code

< MODULE.reduction_parallel_loops

< MODULE.cumulated_reductions

flag_parallel_reduced_loops_with_atomic > MODULE.code

> MODULE.callees

< PROGRAM.entities

< MODULE.code

< MODULE.reduction_parallel_loops

< MODULE.cumulated_reductions

Flag loops with openmp directives, taking into account reductions.

flag_parallel_reduced_loops_with_openmp_directives > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.reduction_parallel_loops

< MODULE.cumulated_reductions

9.4.5 Forward Substitution

CSE)
Scalars can be forward substituted. The effect is to undo already performed

optimizations such as invariant code motion and common subexpression elimi-
nation, or manual atomization. However we hope to do a better job automati-
cally!

alias forward_substitute ’Forward Substitution’

forward_substitute > MODULE.code

174

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.dg

< MODULE.cumulated_effects

One can set FORWARD_SUBSTITUTE_OPTIMISTIC_CLEAN 9.4.5 to TRUE in
order to clean (without check) forward - substituted assignments. Use cautiously
!

FORWARD_SUBSTITUTE_OPTIMISTIC_CLEAN FALSE

9.4.6 Expression Substitution

This transformation is quickly developed to fulfill the need of a simple pattern
matcher in pips. The user provide a module name through EXPRESSION_SUBSTITUTION_PATTERN 9.4.6
property and all expression similar to those contained in EXPRESSION_SUBSTITUTION_PATTERN 9.4.6
will be substituted to a call to this module. It is a kind of simple outlining trans-
formations, it proves to be useful during simdization to recognize some idioms.
Note that the pattern must contain only a single return instruction!

This phase was developed by Serge Guelton during his PhD.

alias expression_substitution ’Expression Substitution’

expression_substitution > MODULE.code

> MODULE.callee

< PROGRAM.entities

< ALL.code

Set RELAX_FLOAT_ASSOCIATIVITY 9.4.6 to TRUE if you want to consider all
floating point operations as really associative4:

RELAX_FLOAT_ASSOCIATIVITY FALSE

This property is used to set the one-liner module used during expression
substitution. It must be the name of a module already loaded in pips and
containing only one return instruction (the instruction to be matched).

EXPRESSION_SUBSTITUTION_PATTERN ""

9.4.7 Rename Operators

This transformation replaces all language operators by function calls.

rename_operator > MODULE.code

< MODULE.code

< PROGRAM.entities

4Floating point computations are not associative in real hardware because of finite precision
and rounding errors. For example (1050 ⊖ 10−60)⊕ 1 = 1 but 1050 ⊕ (−10−60 ⊕ 1) = 0.

175

The function name is derived from the operator name, the operator argu-
ments type(s) and a common prefix. Each function name is built using the pat-
tern [PREFIX][OP NAME][SUFFIX] (eg: int + int will lead to op addi). The
replacement function must have been declared, otherwise a warning is emited
and the operator is ignored.

For instance, the following code:

f loat f oo (f loat a , f loat b)
{

return a + b ;
}

becomes, using the default configuration:

f loat f oo (f loat a , f loat b)
{

return op addf (a , b) ;
}

OP NAME is defined by the following table:

post++ post inc
++pre inc pre
post−− post dec
−−pre dec pre

+ plus
unary + un plus

− minus
unary − un minus

* mul
/ div
% mod
= assign

*= mul up
/= div up
%= mod up
+= plus up

−= minus up
<= leq
< lt

>= geq
> gt

== eq
!= neq

Using the property RENAME_OPERATOR_OPS 9.4.7, it is possible to give a re-
strictive list of operator names on which operator renaming should be applied.
Operator that are not in this list are ignored.

RENAME_OPERATOR_OPS "plus␣minus␣mul␣div␣mod␣un_plus␣un_minus␣assign␣mul_up␣div_up␣mod_up␣plus_up␣minus_up"

Assuming that all arguments of the operator have the same type. SUFFIX
is deduced using the following table:

char c
short s

int i

long l
float f

double d

Bool b
Complex C

Imaginary I

Using the property RENAME_OPERATOR_SUFFIXES 9.4.7, it is possible to give
a restrictive list of suffix on which operator renaming should be applied. Every
type not listed in this list will be ignored.

RENAME_OPERATOR_SUFFIXES "f␣d␣C␣I"

The PREFIX is a common prefix defined by the property RENAME_OPERATOR_PREFIX 9.4.7
which is applied to each operators. It can be used to choose between multiple
implementations of the same operator. The default value is op .

RENAME_OPERATOR_PREFIX "op_"

176

In Pips, C For loop like for(i=0; i < n; i++) is represented by a Fortran-
like range-based Do loop do i = 1,n−1. Thus, the code:

for (i =0; i < n ; i++)

will be rewritten :

for (i =0; i <= op sub i (n , 1) ; i++)

If you want it to be rewritten :

for (o p a s s i g n i (&i , 0) ; o p l e q i (i , op sub i (n , 1)) ; o p i n c i (i , 1))

you should set the property RENAME_OPERATOR_REWRITE_DO_LOOP_RANGE 9.4.7
to TRUE. This is not the default behaviour, because in most case you don’t
want to rewrite For loop like this.

RENAME_OPERATOR_REWRITE_DO_LOOP_RANGE FALSE

Some operators (=, +=, . . .) takes a modifiable lvalue. In this case, the
expected function signature for a type T is T (T∗, T). For instance, the code:

f loat a , b ;
a += b ;

would be rewritten:

f loat a , b ;
op add upf(&a , b) ;

9.4.8 Array to Pointer Conversion

This transformation replaces all arrays in the module by equivalent linearized
arrays. Eventually using array/pointer equivalence.

linearize_array > MODULE.code

> COMPILATION_UNIT.code

> CALLERS.code

> PROGRAM.entities

< PROGRAM.entities

< MODULE.code

< COMPILATION_UNIT.code

< CALLERS.code

This transformation replaces all arrays in the module by equivalent linearized
arrays. This only makes the arrays starting their index from one.

linearize_array_fortran > MODULE.code

> CALLERS.code

> PROGRAM.entities

< PROGRAM.entities

< MODULE.code

< CALLERS.code

Use LINEARIZE_ARRAY_USE_POINTERS 9.4.8 to control whether arrays are
declared as 1D arrays or pointers. Pointers are accessed using dereferencement
and arrays using subscripts. This property does not apply to the fortran case.

177

LINEARIZE_ARRAY_USE_POINTERS FALSE

Use LINEARIZE_ARRAY_MODIFY_CALL_SITE 9.4.8 to control whether the call
site is modified or not.

LINEARIZE_ARRAY_MODIFY_CALL_SITE TRUE

Use LINEARIZE_ARRAY_CAST_AT_CALL_SITE 9.4.8 to control whether a cast
is inserted at call sites. Turning it on break further effects analysis, but with-
out the cast it might break compilation or at least generate warnings for type
mismatch. This property does not apply to the fortran case.

LINEARIZE_ARRAY_CAST_AT_CALL_SITE FALSE

Use LINEARIZE_ARRAY_SKIP_STATIC_LENGTH_ARRAYS 9.4.8 to skip the array
to pointer conversion for static length arrays. Linearization is always done.

LINEARIZE_ARRAY_SKIP_STATIC_LENGTH_ARRAYS FALSE

Use LINEARIZE_ARRAY_SKIP_LOCAL_ARRAYS 9.4.8 to skip the array to pointer
conversion for locally declared arrays. Linearization is always done.

LINEARIZE_ARRAY_SKIP_LOCAL_ARRAYS FALSE

9.4.9 Expression Optimization Using Algebraic Proper-
ties

This is an experimental section developed by Julien Zory as PhD work [58].
This phase aims at optimizing Fortran expression evaluation using algebraic
properties such as associativity, commutativity, neutral elements and so forth.
It is unfortunately obsolete because it relies on external pieces of software.

This phase restructure arithmetic expressions in order (1) to decrease the
number of operations (e.g. through factorization), (2) to increase the ILP by
keeping the corresponding DAG wide enough, (3) to facilitate the detection of
composite instructions such as multiply-add, (4) to provide additional oppor-
tunities for (4a) invariant code motion (ICM) and (4b) common subexpression
elimination (CSE).

Large arithmetic expressions are first built up via forward substitution when
the programmer has already applied ICM and CSE by hand.

The optimal restructuring of expressions depends on the target defined by
a combination of the computer architecture and the compiler. The target is
specified by a string property called EOLE_OPTIMIZATION_STRATEGY 9.4.9 which
can take values such as "P2SC" for IBM Power-2 architecture and XLF 4.3. To
activate all sub-transformations such as ICM and CSE set it to "FULL". See
properties for more information about values for this property and about other
properties controlling the behavior of this phase.

The current implementation is still shaky and does not handle well expres-
sions of mixed types such as X+1 where 1 is implictly promoted from integer to
real.

Warning: this phase relies on an external (and unavailable) binary. To use
it partly, you can set EOLE_OPTIMIZATION_STRATEGY 9.4.9 to "CSE" or "ICM",

178

or even ICMCSE to have both. This will only activate common subexpressions
elimination or invariant code motion (in fact, invariant sub-expression hoisting).
Since it is a quite common use case, they have been defined as independent
phases too. See 9.4.10.

alias optimize_expressions ’Optimize Expressions’

optimize_expressions > MODULE.code

< PROGRAM.entities

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.code

alias instruction_selection ’Select Instructions’

instruction_selection > MODULE.code

< PROGRAM.entities

< MODULE.code

EOLE: Evaluation Optimization of Loops and Expressions. Julien Zory stuff
integrated within pips [58]. It relies on an external tool named eole. The version
and options set can be controlled from the following properties. The status is
experimental. See the optimize_expressions 9.4.9 pass for more details about
the advanced transformations performed.

EOLE "newgen_eole"

EOLE_FLAGS "-nfd"

EOLE_OPTIONS ""

EOLE_OPTIMIZATION_STRATEGY "P2SC"

9.4.10 Common Subexpression Elimination

Here are described two interesting cases of the one in § 9.4.9.
Run common sub-expression elimination to factorize out some redundant

expressions in the code.
One can use COMMON_SUBEXPRESSION_ELIMINATION_SKIP_ADDED_CONSTANT 9.4.10

to skip expression of the form a+2 and COMMON_SUBEXPRESSION_ELIMINATION_SKIP_LHS 9.4.10
to prevent elimination of left hand side of assignment.

The heuristic used for common subexpression elimination is described in
Chapter 15 of Julien Zory’s PhD dissertation [58]. It was designed for Fortran
code. Its use for C code is experimental and flawed in general.

alias common_subexpression_elimination ’Common Subexpression Elimination’

common_subexpression_elimination > MODULE.code

< PROGRAM.entities

179

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.code

alias icm ’Invariant Code Motion’

icm > MODULE.code

< PROGRAM.entities

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.code

Note: the icm deals with expressions while the invariant_code_motion

deals with loop invariant code.
The following property is used in sac to limit the subexpressions: When set

to true, only subexpressions without ”+constant” terms are eligible.

COMMON_SUBEXPRESSION_ELIMINATION_SKIP_ADDED_CONSTANT FALSE

COMMON_SUBEXPRESSION_ELIMINATION_SKIP_LHS TRUE

The icm pass performs invariant code motion over sub-expressions.

9.5 Hardware Accelerator

Generate code from a FREIA application possibly targeting hardware accelera-
tor, such as SPoC, Terapix, or GPGPU. I’m unsure about the right granularity
(now it is at the function level) and the resource which is produced (should it be
an accelerated file?). The current choice does not allow to easily mix different
accelerators.

9.5.1 FREIA Software

Generate code for a software FREIA implementation, by applying various opti-
mizations at the library API level, but without generating accelerated functions.

freia_aipo_compiler > MODULE.code

> MODULE.callees

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

The following properties are generic to all FREIA accelerator targets.
Whether to label arcs in dag dot output with the image name, and to label

nodes with the statement number, and whether to filter out unused scalar nodes.

FREIA_DAG_LABEL_ARCS FALSE

FREIA_DAG_LABEL_NODES TRUE

180

FREIA_DAG_FILTER_NODES TRUE

Whether to compile lone operations, i.e. operations which do not belong to
a sequence.

FREIA_COMPILE_LONE_OPERATIONS TRUE

Whether to normalize some operations:

FREIA_NORMALIZE_OPERATIONS TRUE

Whether to simplify the DAG using algebraic properties.

FREIA_SIMPLIFY_OPERATIONS TRUE

Whether to remove dead image operations in the DAG. Should always be
beneficial.

FREIA_REMOVE_DEAD_OPERATIONS TRUE

Whether to remove duplicate operations in the DAG, including algebraic
optimizations with commutators. Should be always beneficial to terapix, but it
may depend for spoc.

FREIA_REMOVE_DUPLICATE_OPERATIONS TRUE

Whether to remove useless image copies from the expression DAG.

FREIA_REMOVE_USELESS_COPIES TRUE

Whether to move image copies within an expression DAG outside as external
copies, if possible.

FREIA_MOVE_DIRECT_COPIES TRUE

Whether to merge identical arguments, especially kernels, when calling an
accelerated function:

FREIA_MERGE_ARGUMENTS TRUE

Whether to attempt to reuse initial images if possible, instead of keeping
possibly newly introduced temporary images.

FREIA_REUSE_INITIAL_IMAGES TRUE

Try to allow shuffling image pointers, but this is not allowed by default
because it may lead to wrong code as the compiler currently ignores the infor-
mation and mixes up images.

FREIA_ALLOW_IMAGE_SHUFFLE FALSE

Whether to assume that casts are simple image copies. Default is to keep a
cast as cast, which is not accelerated.

FREIA_CAST_IS_COPY FALSE

Whether to cleanup freia returned status, as the code is assumed correct
when compiled.

181

FREIA_CLEANUP_STATUS TRUE

Assume this pixel size in bits:

FREIA_PIXEL_SIZE 16

If set to a non-zero value, assume this image size when generating code. If
zero, try generic code. In particular, the height is useful to compute a better
imagelet size when generating code for the Terapix hardware accelerator.

FREIA_IMAGE_HEIGHT 0

FREIA_IMAGE_WIDTH 0

If a FREIA application uses a function to transpose a morpho kernel, the fol-
lowing property can be used to store the function name. Pips expects a function
having the following signature: func name(int32 t kernelTransposed[9],

const int32 t kernelIn[9])

FREIA_TRANSPOSE_KERNEL_FUNC ""

Ad-hoc transformation to remove particular scalar write-write dependencies
in sequences. They are introduced by the do-while to while conversion on FREIA
convergence loops. There is an underlying generic transformation on sequences
that could be implemented with more thoughts on the subject.

freia_remove_scalar_ww_deps > MODULE.code

< PROGRAM.entities

< MODULE.code

9.5.2 FREIA SPoC

FREIA Compiler for SPoC target.
Consider applying freia_unroll_while beforehand to unroll convergence

use with the right number of iterations to make the best use of the available
hardware. Note that the same transformation would also make sense somehow
on sequences when the do-while to while transformation as been applied, but
the unrolling factor is much harder to decide in the sequence case as it would
depend on previous operations.

freia_spoc_compiler > MODULE.code

> MODULE.callees

> MODULE.spoc_file

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

freia_unroll_while > MODULE.code

< PROGRAM.entities

< MODULE.code

Default depth of the target SPoC accelerator:

HWAC_SPOC_DEPTH 8

182

9.5.3 FREIA Terapix

FREIA compiler for Terapix target.

freia_terapix_compiler > MODULE.code

> MODULE.callees

> MODULE.terapix_file

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

Number of processing elements (PE) for the Terapix accelerator:

HWAC_TERAPIX_NPE 128

Default size of memory, in pixel, for the Terapix accelerator (RAMPE is
RAM of PE):

HWAC_TERAPIX_RAMPE 1024

Terapix DMA bandwidth. How many terapix cycles to transfer an imagelet
row (size of which is necessarily the number of pe):

HWAC_TERAPIX_DMABW 24

Yes, twenty-four, this is not a typo. It does not seem to depend whether pixels
are 8-bit or 16-bit. The DDR tics are a little faster than the Terapix tics.

Terapix 2D global RAM (GRAM) width and height:

HWAC_TERAPIX_GRAM_WIDTH 64

HWAC_TERAPIX_GRAM_HEIGHT 32

Whether and how to further cut the dag for terapix. Expected values, by
order of compilation costs, are: none, compute, enumerate.

HWAC_TERAPIX_DAG_CUT "compute"

Whether input and output memory transfers overlap one with the other,
that is we have a full duplex DMA.

HWAC_TERAPIX_OVERLAP_IO FALSE

Note that it is already assumed that computations overlap with communications.
This adds the information that host-accelerator loads and stores run in parallel.
This has two impacts: the communication apparent time is reduced thanks
to the overlapping, which is good, but the imagelet memory cannot be reused
for inputs because it is still live while being stored, which is bad for memory
pressure.

Use this maximum size (height) of an imagelet if set to non-zero. It may be
useful to set this value to the image height (if known) so that compiler generates
code for smaller imagelets, so that the runtime is not surprised. This is rather
use of debug to impose an imagelet size.

HWAC_TERAPIX_IMAGELET_MAX_SIZE 0

183

Whether to reduce graphs to subgraphs of connected components. This
should be always beneficial for Terapix, so this is the default. This option is
added as a workaround against potential issues with the runtime.

HWAC_TERAPIX_REDUCE_TO_CONNECTED_COMPONENTS TRUE

9.5.4 FREIA OpenCL

FREIA compiler for OpenCL target, which may run on both multi-core and
GPU.

freia_opencl_compiler > MODULE.code

> MODULE.callees

> MODULE.opencl_file

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

Whether we should attempt to generate merged OpenCL image operations.
If not, the result will be simular to simple AIPO compilation, no actual helper
functions will be generated.

HWAC_OPENCL_MERGE_OPERATIONS TRUE

Whether to merge OpenCL constant-kernel operations.

HWAC_OPENCL_MERGE_KERNEL_OPERATIONS TRUE

Whether to generate OpenCL specialized constant-kernel operations.

HWAC_OPENCL_GENERATE_SPECIAL_KERNEL_OPS TRUE

Whether merged OpenCL image operations should include reductions as
well. Added to help debugging the code.

HWAC_OPENCL_MERGE_REDUCTIONS TRUE

Whether to generate OpenCL code for one operation on its own. It is not
interesting to do so because it is just equivalent to the already existing AIPO
implementation, but it can be useful for debug.

HWAC_OPENCL_COMPILE_ONE_OPERATION FALSE

Whether to add an explicit synchronization in the generated codes, before
calling a kernel. This property was added for debug.

HWAC_OPENCL_SYNCHRONIZE_KERNELS FALSE

Whether to preload pixels before using them in generated kernels. Should
be better for GPGPU, but not necessarily for CPU implementations.

HWAC_OPENCL_PRELOAD_PIXELS TRUE

Tell which image dimension is handled by the first OpenCL thread dimen-
sion. Value is either height or width.

184

HWAC_OPENCL_FIRST_THREAD_DIMENSION "height"

Tell which is the first loop in the kernel code: either on the image height or
width.

HWAC_OPENCL_FIRST_KERNEL_LOOP "height"

Whether to generate tiled kernels on the first thread dimension,

HWAC_OPENCL_TILING FALSE

9.5.5 FREIA Sigma-C for Kalray MPPA-256

FREIA compiler for Kalray MPPA-256 Sigma-C target.

freia_sigmac_compiler > MODULE.code

> MODULE.callees

> MODULE.sigmac_file

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

Minimal number of aggregated operators in a compound arithmetic agent

HWAC_SIGMAC_MERGE_ARITH 0

Generation of kernel-specific morphological operators

HWAC_SIGMAC_SPECIFIC_MORPHO TRUE

9.5.6 FREIA OpenMP+Async communications for Kalray
MPPA-256

FREIA compiler for Kalray MPPA-256 OpenMP + Async communications tar-
get.

freia_mppa_compiler > MODULE.code

> MODULE.callees

> MODULE.mppa_file

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

Compute clusters shared memory avalaible slots

HWAC_MPPA_MAX_SMEM_SLOTS 4

Maximum number of instructions in command structure

HWAC_MPPA_MAX_INSTRS_CMD 50

185

9.6 Function Level Transformations

9.6.1 Inlining

Inlining is a well known technique. Basically, it replaces a function call by the
function body. The current implementation does not work if the function has
static declarations, access global variables Actually it (seems to) work(s)
for pure, non-recursive functions . . . and not to work for any other kind of call.

Property INLINING_CALLERS 9.6.1 can be set to define the list of functions
where the call sites have to be inlined. By default, all call sites of the inlined
function are inlined.

Only for C because of pipsmake output declaration !

inlining > CALLERS.c_source_file

> PROGRAM.entities

> MODULE.callers

! MODULE.split_initializations

< PROGRAM.entities

< CALLERS.code

< CALLERS.printed_file

< MODULE.code

< MODULE.cumulated_effects

* ALL.restructure_control

* ALL.remove_useless_label

Use following property to control how generated variables are initialized

INLINING_USE_INITIALIZATION_LIST TRUE

Use following property to control whether inlining should ignore stubs:

INLINING_IGNORE_STUBS TRUE

Set the following property to TRUE to add comments on inlined statements
to keep track of their origin.

INLINING_COMMENT_ORIGIN FALSE

Same as inlining but always simulate the by-copy argument passing
Only for C because of pipsmake output declaration !

inlining_simple > CALLERS.c_source_file

> PROGRAM.entities

> MODULE.callers

! MODULE.split_initializations

< PROGRAM.entities

< CALLERS.code

< CALLERS.printed_file

< MODULE.code

< MODULE.callers

* ALL.restructure_control

* ALL.remove_useless_label

Regenerate the ri from the ri ...
Only for C because of pipsmake output declaration !

186

recompile_module > MODULE.c_source_file

< MODULE.code

The default behavior of inlining is to inline the given module in all call sites.
Use INLINING_CALLERS 9.6.1 property to filter the call sites: only given module
names will be considered.

INLINING_CALLERS ""

9.6.2 Unfolding

Unfolding is a complementary transformation of inlining 9.6.1. While inlin-
ing inlines all call sites to a given module in other modules, unfolding inlines
recursively all call sites in a given module, thus unfolding the content of the
module. An unfolded source code does not contain any call anymore. If you
run it recursievly, you should set INLINING_USE_INITIALIZATION_LIST 9.6.1
to false.

Only for C because of output declaration in pipsmake rule!

unfolding > MODULE.c_source_file

> MODULE.callees

> PROGRAM.entities

! CALLERS.split_initializations

< PROGRAM.entities

< MODULE.code

< MODULE.printed_file

< MODULE.cumulated_effects

< CALLEES.code

* ALL.restructure_control

* ALL.remove_useless_label

Same as unfolding, but cumulated effects are not used, and the resulting
code always simulates the by-copy argument passing.

Only for C because of output declaration in pipsmake rule!

unfolding_simple > MODULE.c_source_file

> MODULE.callees

> PROGRAM.entities

! CALLERS.split_initializations

< PROGRAM.entities

< MODULE.code

< MODULE.printed_file

< CALLEES.code

* ALL.restructure_control

* ALL.remove_useless_label

Use UNFOLDING_CALLEES 9.6.2, to specify which modules you want to inline
in the unfolded module. The unfolding will be performed as long as one of the
module in UNFOLDING_CALLEES 9.6.2 is called. More than one module can be
specified, they are separated by blank spaces.

187

UNFOLDING_CALLEES ""

The default behavior of the unfolding 9.6.2 pass is to recursively inline all
callees from the current module or from the argument modules of the pass, as
long as a callee remains. You can use UNFOLDING_FILTER 9.6.2 to inline all call
sites to a module not present in the space separated module list defined by the
string property:

UNFOLDING_FILTER ""

By default this list is empty and hence all call sites are inlined.

9.6.3 Outlining

This documentation is a work in progress, as well as the documented topic. Serge? Still
true? What
do you
mean?

Outlining is the opposite transformation of inlining 9.6.1. It replaces some
statements in an existing module by a call site to a new function whose execution
is equivalent to the execution of the replaced statements. The body of the new
function is similar to the piece of code replaced in the existing module. The user
is prompted for various pieces of information in order to perform the outlining:

• a new module name,

• the statement number of the first outlined statement,

• number of statements to outline.

The statements are a subset of a sequence. They are counted in the sequence. Serge: I in-
vent...(FI)OUTLINE_WRITTEN_SCALAR_BY_REFERENCE 9.6.3 controls whether we pass

written scalar by reference or not. This property might lead to incorrect code!

outline > MODULE.code

> PROGRAM.entities

< MODULE.privatized

< PROGRAM.entities

< MODULE.cumulated_effects

< MODULE.regions

< MODULE.code

The property OUTLINE_SMART_REFERENCE_COMPUTATION 9.6.3 is used to limit
the number of entities passed by reference. With it, a [0][0] is passed as an
a[n][m] entity, without it it is passed as an int or int∗ depending on the cumu-
lated read/write memory effects of the outlined statements. Serge: but

cumulated
effects are
always re-
quired?

If you need to pass the upper bound expression of a particular loop as a
parameter, which is used in Ter@pix code generation (see Section ???), set
OUTLINE_LOOP_BOUND_AS_PARAMETER 9.6.3 to the loop label.

Serge: a few
words of mo-
tivation?

The property OUTLINE_MODULE_NAME 9.6.3 is used to specify the new module
name. The user is prompted if it is set to its default value, the empty string.

But first the pass scans the code for any statement flagged with the pragma

Serge: un-
condition-
ally?

defined by the string property OUTLINE_PRAGMA 9.6.3.

Serge: What
happens
when it is set
to the empty
strin?

188

If set, the string property OUTLINE_LABEL 9.6.3 is used to choose the state-
ment to outline.

Serge: you
outline a
set of state-
ments; is it
reduced to a
singleton in
that case?

The boolean property OUTLINE_ALLOW_GLOBALS 9.6.3 controls whether global
variables whose initial values are not used are passed as parameters or not. It Serge: why

is it called
“globals”? It
seems that
this makes
sense for
any local
variable...

is suggested to addressed this issue with a previous privatization pass.
Finally, the boolean property OUTLINE_INDEPENDENT_COMPILATION_UNIT 9.6.3

can be set to true to outline the new module into a newly created compilation
unit. It is named after the OUTLINE_MODULE_NAME 9.6.3. All necessary types,
global variables and functions are declared into this new compilation unit. All

Serge?

Serge: Con-
sistency
betweeen
proper-
ties? Name
conflicts?

the functions brought in the new compilation unit through the sub-callgraph
are declared static and prefixed with OUTLINE_CALLEES_PREFIX 9.6.3.

Two properties were added for R-Stream compatibility. If OUTLINE_REMOVE_VARIABLE_RSTREAM_IMAGE 9.6.3
is set to True, instead of outlining loop indexes and written scalar variables the
outliner declares them as local variables inside the outlined function. Therefore
they are not added to the effective or formal parameters.

The behavior of OUTLINE_REMOVE_VARIABLE_RSTREAM_SCOP 9.6.3 is the same
as above. Except that this property only excludes loop indexes from being out-
lined.

OUTLINE_MODULE_NAME ""

OUTLINE_PRAGMA "pips␣outline"

OUTLINE_LABEL ""

OUTLINE_ALLOW_GLOBALS FALSE

OUTLINE_SMART_REFERENCE_COMPUTATION FALSE

OUTLINE_LOOP_BOUND_AS_PARAMETER ""

OUTLINE_INDEPENDENT_COMPILATION_UNIT FALSE

OUTLINE_WRITTEN_SCALAR_BY_REFERENCE TRUE

OUTLINE_CALLEES_PREFIX ""

OUTLINE_REMOVE_VARIABLE_RSTREAM_IMAGE FALSE

OUTLINE_REMOVE_VARIABLE_RSTREAM_SCOP FALSE

This pass was developped by Serge Guelton, as part of his PhD work.

189

9.6.4 Cloning

Procedures can be cloned to obtain several specialized versions. The call sites
must be updated to refer to the desired version.

Cloning can be automatic or assisted by the user. Several examples are
available in clone validation suite.

Slicing and specialization slicing have been introduced in [8, 9] and are more
general than cloning. For the time being, no slicing transformation is available
in PIPS 5 since they usually do not preserve the program semantics.

alias clone ’Manual Clone’

clone > CALLERS.code

> CALLERS.callees

< MODULE.code

< MODULE.callers

< MODULE.user_file

< CALLERS.callees

< CALLERS.code

alias clone_substitute ’Manual Clone Substitution’

clone_substitute > CALLERS.code

> CALLERS.callees

< MODULE.code

< MODULE.callers

< MODULE.user_file

< CALLERS.callees

< CALLERS.code

Cloning of a subroutine according to an integer scalar argument. The argu-
ment is specified through integer property TRANSFORMATION_CLONE_ON_ARGUMENT 9.6.4.
If set to 0, a user request is performed.

alias clone_on_argument ’Clone On Argument’

clone_on_argument > CALLERS.code

> CALLERS.callees

> MODULE.callers

< MODULE.code

< MODULE.callers

< MODULE.user_file

< CALLERS.callees

< CALLERS.preconditions

< CALLERS.code

Not use assisted version of cloning it just perform the cloning without any
substitution Use the CLONE_NAME 9.6.4 property if you want a particular clone
name. It’s up to another phase to perform the substitution.

5http://www.cri.ensmp.fr/pips

190

http://www.cri.ensmp.fr/pips
http://www.cri.ensmp.fr/pips

alias clone_only ’Simple Clone’

clone_only

< MODULE.code

< MODULE.user_file

There are two cloning properties. Cloning on an argument. If 0, a user
request is performed.

TRANSFORMATION_CLONE_ON_ARGUMENT 0

Clone name can be given using the CLONE NAME properties Otherwise, a
new one is generated

RSTREAM_CLONE_SUFFIX 9.6.4 is the suffix appended to cloned function for
R-Stream pre-compilation.

CLONE_NAME ""

RSTREAM_CLONE_SUFFIX ""

9.7 Declaration Transformations

9.7.1 Declarations Cleaning

Clean the declarations of unused variables and commons and so. It is also a code
transformation, since not only the module entity are updated by the process,
but also the declaration statements, some useless writes...

Clean the declarations of unused variables and commons and so.

alias clean_declarations ’Clean Declarations’

clean_declarations > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

In C, dynamic variables which are allocated and freed but otherwise never
used can be removed. This phase removes the calls to the dynamic allocation
functions (malloc and free or user defined equivalents), and remove their decla-
rations.

Clean unused local dynamic variables by removing malloc/free calls.

clean_unused_dynamic_variables > MODULE.code

< PROGRAM.entities

< MODULE.code

It may be a regular expression instead of a function name?

DYNAMIC_ALLOCATION "malloc"

191

DYNAMIC_DEALLOCATION "free"

Detecting and forcing variables in the register storage class can help sub-
sequent analyses, as they cannot be referenced by pointers.

force_register_declarations > PROGRAM.entities

> MODULE.code

< PROGRAM.entities

< MODULE.code

Whether to allow arrays to be qualified as registers:

FORCE_REGISTER_ARRAY TRUE

Whether to allow pointers to be qualified as registers:

FORCE_REGISTER_POINTER TRUE

Whether to allow formal parameters to be qualified as registers:

FORCE_REGISTER_FORMAL TRUE

Remove some simple cases of pointers used on scalars.

remove_simple_scalar_pointers > MODULE.code

< PROGRAM.entities

< MODULE.code

9.7.2 Array Resizing

One problem of Fortran code is the unnormalized array bound declarations. In
many program, the programmer put an asterisk (assumed-size array declarator),
even 1 for every upper bound of last dimension of array declaration. This
feature affects code quality and prevents others analyses such as array bound
checking or alias analysis. We developed in PIPS two new methods to find
out automatically the proper upper bound for the unnormalized and assumed-
size array declarations, a process we call array resizing. Both approaches have
advantages and drawbacks and maybe a combination of these ones is needed.

To have 100% resized arrays, we implement also the code instrumentation
task, in the top-down approach.

Different options to compute new declarations for different kinds of arrays
are described in properties-rc.tex. You can combine the two approaches to have
a better results by using these options.

How to use these approaches: after generating new declarations in the logfile,
you have to use the script $PIPS ROOT/Src/Script/misc/array resizing instrumentation.pl
to replace the unnormalized declarations and add new assignments in the source
code.

9.7.2.1 Top Down Array Resizing

The method uses the relationship between actual and formal arguments from
parameter-passing rules. New array declarations in the called procedure are
computed with respect to the declarations in the calling procedures. It is faster
than the first one because convex array regions are not needed.

This phase is implemented by Thi Viet Nga Nguyen (see [42]).

192

alias array_resizing_top_down ’Top Down Array Resizing’

array_resizing_top_down > MODULE.new_declarations

> PROGRAM.entities

< PROGRAM.entities

< CALLERS.code

< CALLERS.new_declarations

< CALLERS.preconditions

9.7.2.2 Bottom Up Array Resizing

The approach is based on an convex array region analysis that gives information
about the set of array elements accessed during the execution of code. The
regions READ and WRITE of each array in each module are merged and a new
value for the upper bound of the last dimension is calculated and then it will
replace the 1 or *.

This function is firstly implemented by Trinh Quoc Anh, and ameliorated
by Corinne Ancourt and Thi Viet Nga Nguyen (see [42]).

alias array_resizing_bottom_up ’Bottom Up Array Resizing’

array_resizing_bottom_up > MODULE.code

> PROGRAM.entities

< PROGRAM.entities

< MODULE.code

< MODULE.preconditions

< MODULE.regions

9.7.2.3 Full Bottom Up Array Resizing

This pass is base on Useful Variables Regions (see 6.12) that give for each
variable the read/write region for this variable for the whole program at decla-
ration time with his declaration memory state.

Contrary to the two previous array resizing passes, this pass was tested for
C code but may also work for Fortran (not tested). It doesn’t generate an
intrumentation file that will be used to modify the code but directly modify the
code.

This pass also computes new upper AND lower bounds for the array for all
the dimension. For language that doesn’t allow array notation (a[begin:end]
or a[begin:nbr elem]), a shift for all the access of the array is apply depending
of the lower boud. Since we modify all the dimension of the array, the data Some pret-

typrint
option may
be added
to allow
C array
notation.

structure in the memory are not kept.
Note : Property ARRAY_RESIZING_ASSUMED_SIZE_ONLY 9.7.2.5 has to be set

Ã FALSE to compute something in C code.
This pass is implemented by Nelson Lossing, with the solver made by Thi

Viet NgaNguyen for Bottom Up Array Resizing (see previous section 9.7.2.2).

alias array_resizing_full_bottom_up ’Full Bottom Up Array Resizing’

array_resizing_full_bottom_up > MODULE.code

> PROGRAM.entities

< PROGRAM.entities

< MODULE.code

193

< MODULE.preconditions

< MODULE.useful_variables_regions

9.7.2.4 Array Resizing Statistic

We provide here a tool to calculate the number of pointer-type A(,1) and
assumed-size A(,*) array declarators as well as other information.

alias array_resizing_statistic ’Array Resizing Statistic’

array_resizing_statistic > MODULE.code

< PROGRAM.entities

< MODULE.code

9.7.2.5 Array Resizing Properties

This phase is firstly designed to infer automatically new array declarations
for assumed-size (A(*)) and one (A(1) or also called ugly assumed-size) array
declarators. But it also can be used for all kinds of array : local or formal array
arguments, unnormalized or all kinds of declarations. There are two different
approaches that can be combined to have better results.

Top-down Array Resizing

There are three different options:

• Using information from the MAIN program or not (1 or 0). If you use
this option, modules that are never called by the MAIN program are not
taken into account. By default, we do not use this information (0).

• Compute new declarations for all kinds of formal array arguments, not
only assumed-size and one declarations (1 or 0). By default, we compute
for assumed-size and one only (0).

• Compute new declarations for assumed-size array only, not for ugly assumed-
size (one) array (1 or 0). By default, we compute for both kinds (0).

So the combination of the three above options gives us a number from 0 to 7
(binary representation : 000, 001,..., 111). You must pay attention to the order
of options. For example, if you want to use information from MAIN program
to compute new declarations for assumed-size and one array declarations, both
of them, the option is 4 (100). The default option is 0 (000).

ARRAY_RESIZING_TOP_DOWN_OPTION 0

Bottom-up Array Resizing

There are also three different options:

• Infer new declarations for arrays with declarations created by the top-
down approach or not (1 or 0). This is a special option because we
want to combine the two approaches: apply top-down first and then
bottom-up on the instrumented arrays (their declarations are of from:
I PIPS MODULE ARRAY). By default, we do not use this option (0).

194

• Compute new declarations for all kinds of array arguments, not only
assumed-size and one declarations (1 or 0). By default, we compute for
assumed-size and one only (0).

• Compute new declarations for local array arguments or not (1 or 0). By
default, we compute for formal array arguments only (0).

So the combination of the three above options gives us a number from 0 to 7
(binary representation : 000, 001,..., 111). You must pay attention to the order
of options. There are some options that exclude others, such as the option to
compute new declarations for instrumented array (I PIPS MODULE ARRAY).
The default option is 0 (000).

ARRAY_RESIZING_BOTTOM_UP_OPTION 0

Full Bottom-up Array Resizing

There are two possibles options that correspond to the second and third options
of bottom-up Array Resizing, but explicited it. This two options can certainly
replace the bit number combinaison for previous property?

Property ARRAY_RESIZING_ASSUMED_SIZE_ONLY 9.7.2.5 correspond to the
middle bit of ARRAY_RESIZING_BOTTOM_UP_OPTION 9.7.2.5. It has the same
default value, TRUE, that mean computation only for assumed-size and one dec-
larations (* or 1 for Fortran). But to compute C code, you have to change this
value for FALSE.

ARRAY_RESIZING_ASSUMED_SIZE_ONLY TRUE

Property ARRAY_RESIZING_ARGUMENT 9.7.2.5 correspond to the right bit of
ARRAY_RESIZING_BOTTOM_UP_OPTION 9.7.2.5. It permits to recompute bound
for argument array. By default, it’s at FALSE.

WARNING : The TRUE case is not tested because it can be very dangerous
since we don’t also modify the call site, and the data structure is also completly
modify.

ARRAY_RESIZING_ARGUMENT FALSE

9.7.3 Scalarization

Three scalarization pass have been developped. The first one, scalarization 9.7.3.1,
is based on convex array regions. The second one, constant_array_scalarization 9.7.3.2,
is based on constant array references. The third one, quick_scalarization 9.7.3.3,
is based on proper and cumulated effects and on the dependence graph. It is
supposed equivalent to the first one, but much faster because convex array re-
gions may be slow to compute.

Pass constant_array_scalarization 9.7.3.2 intends to eliminate array ref-
erences, e.g. for VHDL generation, for scalar constant propagations, e.g. to
propagate constant arrays, and, ultimately, to explicit the control of automata
encoded with a array containing pointers to transition functions and the next
state, e.g. a protocol controler.

195

The other two scalarization passes intend to reduce the number of array ac-
cesses by replacing them with scalar accesses. Combined with loop fusion and/or
used on automatically generated code, scalarization may eliminate intermediate
arrays and improve locality.

9.7.3.1 Scalarization Based on Convex Array Regions

Scalarization is the process of replacing array references with references to scalar
copies of the array elements wherever appropriate. Expected benefits include
lower memory footprint and access time because registers can be used instead
of temporary stack variables or memory accesses, and hence, shorter execution
times, as long as the register pressure is not so high that spill code is generated.

Scalarizing a given array reference is subject to two successive criteria, a
Legality criterion and a Profitability criterion:

• The Legality criterion is evaluated first. It tries and determines if replac-
ing the reference might lead to breaking dependence arcs, due to hidden
references to the element, e.g. “get(A,i)” instead of “A[i]”. Also, one and
only one array element must be accessed at each iteration because the
algorithm used is based on convex array regions and because their imple-
mentation assumes only one region per array and per access type. If these
two conditions are not met, no scalarization takes place.

• The Profitability criterion is then evaluated, to try and eliminate cases
where scalarization would yield no satisfactory performance gains, e.g.
when a scalarized reference has to be immediately copied back into the
original reference. This is performed at the source level and depends on
the effective register allocation and code generation.

The legality test is based on convex array regions, and not on the depen-
dence graph as is the Carr’s algorithm [13][14]. Currently, loop carried depen-
dence arcs prevent scalarization by PIPS, although some can be processed by
Carr’s algorithm. See non-regression tests Transformations/scalarization30 to
36. Procedure calls do not derail our legality test, but Carr’s benchmark does
not include any procedure call. Also, the convex array regions related to the
same array are merged in PIPS as a unique region, even when they have prov-
ably no intersection. As a result, each array can result in at most one scalar
when Carr’s algorithm can generate several ones.

This transformation is useful 1) to improve the readability of the source code
with constructs similar to let x be ..., 2) to improve the modelizations of the
execution, time or energy, by using source instructions closer to the machine
instruction, 3) to perform an optimization at the source level because the code
generator does not include a powerful (partially) redundant load elimination,
and 4) to be a useful pass in a fully source-to-source compiler. This trans-
formation is useful to reduce the expansion caused by the different atomizer
passes.

The new scalar variables use the default prefix ___scalar__ and are thus eas-
ily identified, but a new prefix can be user defined with Property SCALARIZATION_PREFIX 9.7.3.1.
IfSCALARIZATION_PREFIX 9.7.3.1 is the empty string, the names of the scalar-
ized variables are used.

196

If needed according to the IN and OUT convex array regions, the new vari-
ables are initialized, e.g. __scalar0__ = A[i], and/or copied back into the
initial array, e.g. A[i] = __scalar0__.

Scalarization is currently applicable both to Fortran and C code, but the
code generation slightly differs because local declarations are possible with C.
However, this may destroy perfect loop nests required by other passes. Property
SCALARIZATION_PRESERVE_PERFECT_LOOP_NEST 9.7.3.1 can be used to preserve
C perfect loop nests, this property is currently not completely implemented.
SCALARIZATION_KEEP_PERFECT_PARALLEL_LOOP_NESTS 9.7.3.1 can be used to
preserve C perfect parallel loop nests.

Pass scalarization 9.7.3.1 uses the read and written convex array regions
to decide if the scalarization is possible, the IN and OUT regions to decide if it
is useful to initialize the scalar copy or to restore the value of the array element.

alias scalarization ’Scalarization’

scalarization > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.regions

< MODULE.in_regions

< MODULE.out_regions

< CALLEES.summary_effects

Since OUT regions are computed interprocedurally, strange code may result
when a small or not so small function without any real output is scalarized. The
problem can be fixed by adding a PRINT or a printf to force an OUT region,
or by setting Property SCALARIZATION_FORCE_OUT 9.7.3.1 to true.

Also, it may be useful to use Property SEMANTICS_TRUST_ARRAY_DECLARATIONS 6.9.4.2
and/or SEMANTICS_TRUST_ARRAY_REFERENCES 6.9.4.2 to make sure that as many
loops as possible are entered. If not, loop bounds may act like guards, which
prevents PIPS from hoisting a reference out of a loop, although this is puzzling
for programmers because they expect all loops to be entered at least once...

As explained above, Property SCALARIZATION_PREFIX 9.7.3.1 is used to se-
lect the names of the new scalar variables. If it is set to the empty string, "",
the scalarized variable name is used as prefix, which improves readability.

SCALARIZATION_PREFIX ""

When property SCALARIZATION_USE_REGISTERS 9.7.3.1 is set to TRUE (de-
fault value), new variables are declared with the register qualifier. However,
this is not always compatible with other phases. Set it to FALSE to toggle off
this behavior.

SCALARIZATION_USE_REGISTERS TRUE

Also, as explained above, Property SCALARIZATION_PRESERVE_PERFECT_LOOP_NEST 9.7.3.1
is used to control the way new scalar variables are declared and initialized in
C. The current default value is FALSE because the locality of declarations is
better for automatic loop parallelization, but this could be changed as a priva-
tization pass should do as well while preserving perfect loop nests. Note that
initializations may have to be placed in such a way that a perfect loop nest is
nevertheless destroyed, even with this property set to true.

197

SCALARIZATION_PRESERVE_PERFECT_LOOP_NEST FALSE

SCALARIZATION_KEEP_PERFECT_PARALLEL_LOOP_NESTS FALSE

Property SCALARIZATION_FORCE_OUT 9.7.3.1 forces the generation of a copy-
out statement when it is useless according to the OUT region, for instance when
dealing with a library function.

SCALARIZATION_FORCE_OUT FALSE

Numerical property SCALARIZATION_THRESHOLD 9.7.3.1 is used to decide
profitability: the estimated complexity of the scalarized code must be less than
the initial complexity. Its minimal value is 2. It can be set to around 5 to forbid
scalarization in sequences with no loop benefit.

SCALARIZATION_THRESHOLD 2

Property SCALARIZATION_ACROSS_CONTROL_TEST 9.7.3.1 is used to control
the place where new memory accesses are inserted.

A memory access may be moved out of a loop, which is the best case for
performance, but it then is no longer control dependent on the loop bounds. A
new access is thus added if the compiler cannot prove that the loop is always
entered. However, the burden of the proof may be too much, if only because
nothing can be proven when the loop is sometimes entered and sometimes not.
Also, the memory access may be always perfectly legal.

The default value for SCALARIZATION_ACROSS_CONTROL_TEST 9.7.3.1 is "exactness",
allying safety to performance. It forbids scalarization when both read and writ-
ten regions for the current piece of code are approximate regions, and, in addi-
tion, it applies a cheap test. This is the default option.

When it is set to "strict", property SCALARIZATION_ACROSS_CONTROL_TEST 9.7.3.1
goes for safety before performance, allowing candidates from approximated re-
gions, but performing a strict test to check the validity of the transformation.

When the property is set to "cheap", memory accesses are moved outside of
control structures with only the cheapest test. Use this last value with caution,
since it is unsafe in the general case.

These properties are pretty hard to understand, as well as their impact. See
sequence06, 07, 08 and 44 in the validation suite of the scalarization pass.

SCALARIZATION_ACROSS_CONTROL_TEST "exactness"

This property tells that variables which are used with an & (address-of)
operator (a pointer is generated which references them) should not be scalarized.

SCALARIZATION_SKIP_ADDRESS_OF_VARIABLES FALSE

This pass was designed by François Irigoin and implemented by Laurent
Daverio and François Irigoin.

9.7.3.2 Scalarization Based on Constant Array References

Similar to scalarization 9.7.3.1, but with a different criterion: if an array is
only accessed with numerical constant subscript expressions, it is replaced by a

198

set of scalars and all its references are replaced by references to the corresponding
scalars.

constant_array_scalarization > MODULE.code

< PROGRAM.entities

< MODULE.code

This pass may be useful to make C source code more palatable to C to VHDL
converters that handle scalars better than arrays. It is also useful to propagate
constants contained in an array since the semantics passes only analyze scalar
variables.

This pass was designed and implemented by Serge Guelton.

9.7.3.3 Scalarization Based on Memory Effects and Dependence Graph

Pass scalarization 9.7.3.1 may be costly because it relies on array regions
analyses and uses them to check its legality criteria. The next phase alleviates
these drawbacks.

This pass solely relies on proper and cumulated effets, and as such may fail
to scalarize some accesses. However, it is expected to give good results in usual
cases, especially after loop_fusion 9.1.7.

It basically uses the same algorithm as scalar privatization, but performs on
the dependence graph rather than the chains graph for more precision about
array dependences. Several legality criteria are then tested to ensure the safety
of the transformation. In particular, it is checked that candidate references are
not accessed through hidden references (for instance in calls), and that only one
kind of reference is scalarized in the loop.

alias quick_scalarization ’Quick Scalarization’

quick_scalarization > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.proper_effects

< MODULE.dg

Pass quick_scalarization 9.7.3.3 was implemented by Béatrice Creusillet.

9.7.4 Induction Variable Substitution

Induction substitution is the process of replacing scalar variables by a linear
expression of the loop indices.

alias induction_substitution ’Induction variable substitution’

induction_substitution > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.transformers

< MODULE.preconditions

< MODULE.cumulated_effects

This pass was designed and implemented by Mehdi Amini.

199

9.7.5 Strength Reduction

Reduce the complexity of expression computation by generating induction vari-
ables when possible. E.g.

for (i =0; i<n ; i++)
a [i]=2;

Would become

for (i =0; i<n ; i++) {
∗a=2;
a++;

}

strength_reduction > MODULE.code

> PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.transformers

9.7.6 Flatten Code

The goal of this program transformation is to enlarge basic blocks as much
as possible to increase the opportunities for optimization. The input code is
assumed serial: parallel loops are declared sequential.

This transformation has been developed in PIPS for heterogeneous com-
puting and is combined with inlining to increase the size of the code executed
by an external accelerator while reducing the externalization overhead6. Other
transformations, such as partial evaluation and dead code elimination (including
use-def elimination) can be applied to streamline the resulting code further.

The transformation flatten_code 9.7.6 firstly moves declarations up in the
abstract syntax tree, secondly remove useless braces and thirdly fully unroll
loops when there iteration counts are known and the FLATTEN_CODE_UNROLL

property is true. Unrolling can also be controlled using Property FULL_LOOP_UNROLL_EXCEPTIONS 9.1.9.2.
The declarations are moved up: some parallel loops may become sequential. To
avoid inconsistency, all loops are declared sequential by flatten_code 9.7.6.

Inlining(s), which must be performed explicitly by the user with tpips or an-
other PIPS interface, can be used first to create lots of opportunities. The basic
block size increase is first due to brace removals made possible when declarations
have been moved up, and then to loop unrollings. Finally, partial evaluation,
dead code elimination and use-def based elimination can also straighten-out the
code and enlarge basic blocks by removing useless tests or assignments.

The code externalization and adaptation for a given hardware accelerator is
performed by another phase, see for instance Section 9.5.

Initially developed in August 2009 by Laurent Daverio, with help from
Fabien Coelho and François Irigoin.

alias flatten_code ’Flatten Code’

flatten_code > MODULE.code

6FREIA project

200

< PROGRAM.entities

< MODULE.code

If the following property is set, loop unrolling is applied too for loops with
static bounds.

FLATTEN_CODE_UNROLL TRUE

9.7.7 Split Update Operators

Split C operators such as a += b, a *= b, a >>= b, etc. into their expanded
form such as a = a + b.

Note that if the left hand side expression lhs implies side effects, the trans-
formed code is not equivalent since lhs be evaluated twice in the transformed
code. The left hand side is not checked for side effects. The legality of the
transformation is not guaranteed.

split_update_operator > MODULE.code

< PROGRAM.entities

< MODULE.code

Two improvements could be used. Check the side effects with a function such
as expression_to_proper_constant_path_effects() and/or use a pointer to
evaluate lhs a once to obtain p = &a; *p = *p +b;.

9.7.8 Split Initializations (C Code)

The purpose of this transformation is to separate the initialization part from
the declaration part in C code in order to make static code analyses simpler.

This transformation recurses through all variable declarations, and creates
a new statement each time an initial value is specified in the declaration, if the
initial value can be assigned and if the variable is not static. The declarations
are modified by eliminating the initial value, and a new assignment statement
with the initial value is added to the source code.

This transformation can be used, for instance, to improve reduction detection
(see TRAC Ticket 181).

Note that C array and structure initializations, which use braces, cannot be
converted into assignments. In such cases, the initial declaration is either left
untouched or expanded into a statement list.

alias split_initializations ’Split Initializations’

split_initializations > MODULE.code

< PROGRAM.entities

< MODULE.code

This transformation uses the C89_CODE_GENERATION property to generate
either C89 or C99 code.

This pass has been developed by Serge Guelton [25]. Its validation suite is
still too limited.

201

9.7.9 Set Return Type

The purpose of this transformation is to change the return type of a function.
The new type will be a typedef whose name is controlled by SET_RETURN_TYPE_AS_TYPEDEF_NEW_TYPE 9.7.9.
The corresponding typedef must exist in the symbol table.

This transformation loops over the symbols in the symbol table, and for
each of them which is a typedef, compare the local name to the property
SET_RETURN_TYPE_AS_TYPEDEF_NEW_TYPE 9.7.9. This approach is unsafe be-
cause there can be different typedef with the same name in different compilation
units, resulting in differents entries in the symbol table for a same local name.
The return type can also be incoherent with the return statement, thus it is not
safe to run it on a non-void function.

However this pass has been created for special need in par4all, and consid-
ering restrictions described above, it does the job.

SET_RETURN_TYPE_AS_TYPEDEF_NEW_TYPE "P4A_accel_kernel_wrapper"

alias set_return_type_as_typedef ’Set return type as typedef’

set_return_type_as_typedef > MODULE.code

< PROGRAM.entities

< MODULE.code

9.7.10 Cast Actual Parameters at Call Sites

The purpose of this transformation is to cast parameters at call sites according
to the prototype, a.k.a. the signature, of the called functions.

alias cast_at_call_sites ’Cast parameters at call sites’

cast_at_call_sites > CALLERS.code

< PROGRAM.entities

< MODULE.code

< MODULE.callers

< CALLERS.code

9.7.11 Scalar and Array Privatization

Variable privatization consists in discovering variables whose values are local to
a particular scope, usually a loop iteration.

Three different privatization functions are available. The quick privatization
is restricted to loop indices and is included in the dependence graph computation
(see Section 6.6). The scalar privatization should be applied before any serious
parallelization attempt. The array privatization is much more expensive and is
still mainly experimental.

You should keep in mind that, although they modify the internal repesenta-
tion of the code, scalar and array privatizations are only latent program trans-
formations, and no actual local variable declaration is generated. This is the
responsibility of code generation phases, which may use this information differ-
ently depending on their target.

202

9.7.11.1 Scalar Privatization

Two phases implement scalar privatization. Both detect variables which are
local to a loop nest. They differ in the way they handle global variables:
privatize_module 9.7.11.1 privatizes only local variables and function param-
eters, whereas privatize_module_even_globals 9.7.11.1 also tries to privatize
global variables. Both phases produce a fake resource, MODULE.privatized, so
that one or the other can be activated. The default phase is privatize_module 9.7.11.1.

Privatizer detects variables that are local to a loop nest and marks these
variables as private. A variable is private to a loop if the values assigned to this
variable inside the loop cannot reach a statement outside the loop body.

Note that illegal code, for instance code with uninitialized variables, can lead
to surprising privatizations, which are still correct since the initial semantics is
unspecified.

alias privatize_module ’Privatize Scalars’

privatize_module > MODULE.code

> MODULE.privatized

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.chains

This pass is similar to privatize_module 9.7.11.1, but it also privatizes
global scalar variables, using information from live_paths 6.13.1 analyses to
avoid privatizing global variables which are the values of which are used after-
wards, and callees summary_effects 6.2.4 to ensure that global variables are
not used in callees. This last property is necessary to keep the transformation as
local as possible. If it were not true, it would require to clone the sub call-trees.

alias privatize_module_even_globals ’Privatize Local and Global Scalars’

privatize_module_even_globals > MODULE.code

> MODULE.privatized

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.cumulated_effects

< MODULE.chains

< MODULE.live_out_paths

< MODULE.live_in_paths

< CALLEES.summary_effects

The results of this phase are not always as good as expected. this happens
when global variables are also used/defined in called modules. Requiring that
privatize_module_even_globals 9.7.11.1 is called on callees first (by using a
bang rule), is not sufficient, because declaring variable as private does not re-
move the effects on the variables. Enforcing that localize_declaration 9.7.11.2
is first performed on the called modules partially solves the problems, except
for loop indices of outermost loops which are not localized.

203

9.7.11.2 Declaration Localization

Use informations from privatize_module 9.7.11.1 to move C variable declara-
tions as close as possible to their uses. For instance

int i , j ;
for (i =0; i <10; i++)

for (j =0; j <10; j++)
. . .

becomes

int i ;
for (i =0; i <10; i++)
{

int j ;
for (j =0; j <10; j++)
. . .

}

localize_declaration > MODULE.code

< MODULE.privatized

< PROGRAM.entities

< MODULE.code

LOCALIZE_DECLARATION_SKIP_LOOP_INDICES FALSE

9.7.11.3 Array Privatization

Array privatization aims at privatizing whole arrays (array_privatizer 9.7.11.3)
or sets of array elements (array_section_privatizer 9.7.11.3) instead of scalar
variables only. The algorithm, developed by Béatrice Creusillet [20], is very
different from the algorithm used for solely privatizing scalar variables and relies
on IN and OUT regions analyses. Of course, it also privatizes scalar variables,
although the algorithm is much more expensive and should be used only when
necessary.

Array sections privatization is still experimental and should be used with
great care. In particular, it is not compatible with the next steps of the par-
allelization process, i.e. dependence tests and code generation, because it does
not modify the code, but solely produces a new region resource.

Another transformation, which can also be called a privatization, consists in
declaring as local to a procedure or function the variables which are used only
locally. This happens quite frequently in old Fortran codes where variables are
declared as SAVEd to avoid allocations at each invocation of the routine. How-
ever, this prevents parallelization of the loop surrounding the calls. The function
which performs this transformation is called declarations_privatizer 9.7.11.3.

alias array_privatizer ’Privatize Scalars & Arrays’

alias array_section_privatizer ’Scalar and Array Section Privatization’

alias declarations_privatizer ’Declaration Privatization’

204

array_privatizer > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.summary_effects

< MODULE.transformers

< MODULE.preconditions

< MODULE.regions

< MODULE.in_regions

< MODULE.out_regions

array_section_privatizer > MODULE.code

> MODULE.privatized_regions

> MODULE.copy_out_regions

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.summary_effects

< MODULE.transformers

< MODULE.preconditions

< MODULE.regions

< MODULE.in_regions

< MODULE.out_regions

declarations_privatizer > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.summary_effects

< MODULE.regions

< MODULE.in_regions

< MODULE.out_regions

Several privatizability criterions can be applied for array section privatiza-
tion, and its not yet clear which one should be used. The default case is to
remove potential false dependences between iterations. The first option, when
set to false, removes this constraint. It is useful for single assignment programs,
to discover what section is really local to each iteration.

When the second option is set to false, copy-out is not allowed, which means
only array regions that are not further reused in the program continuation can
be privatized.

ARRAY_PRIV_FALSE_DEP_ONLY TRUE

ARRAY_SECTION_PRIV_COPY_OUT TRUE

205

9.7.12 Scalar and Array Expansion

Variable expansion consists in adding new dimensions to a variable so as to par-
allelize surrounding loops. There is no known advantage for expansion against
privatization, but expansion is used when parallel loops must be distributed, for
instance to generate SIMD code.

It is assumed that the variables to be expanded are the private variables. So
this phase only is useful if a privatization has been performed earlier.

9.7.12.1 Scalar Expansion

Loop private scalar variables are expanded

alias variable_expansion ’Expand Scalar’

variable_expansion > MODULE.code

< MODULE.privatized

< PROGRAM.entities

< MODULE.code

Uses LOOP_LABEL 9.1.1 to select a particular loop, then finds all reduction
in this loop and performs variable expension on all reduction variables.

reduction_variable_expansion > MODULE.code

< PROGRAM.entities

< MODULE.cumulated_reductions

< MODULE.code

A variant of atomization that splits expressions but keep as much reduction
as possible. E.g: r+=a+b becomes r+=a ; r+=b;

reduction_atomization > MODULE.code

< PROGRAM.entities

< MODULE.cumulated_reductions

< MODULE.code

9.7.12.2 Array Expansion

Not implemented yet.

9.7.13 Variable Length Array

These passes are designed to analyze C code.
These passes verify if the length variable of a variable length array is initial-

ized and add some initilization if necessary.
For instance

int n ;
int a [n] ;
. . .

the pass detects that a[n] needs n and verifies that n is initialized.
They have been developped by Nelson Lossing.
Note: Can used_before_set 7.3 be equivalent, but statically?

206

9.7.13.1 Check Initialize Variable Length Array

We can check the intialization of vla using two different ways:
The first one check_initialize_vla_with_preconditions 9.7.13.1 uses

the preconditions and verifies that the variable has a value.
The other way check_initialize_vla_with_effects 9.7.13.1/ check_initialize_vla_with_regions 9.7.13.1

uses the effects/regions to check if the variable was written before use.

alias check_initialize_vla_with_preconditions ’Check Initialize Variable Length Array With Preconditions’

alias check_initialize_vla_with_effects ’Check Initialize Variable Length Array With Effects’

alias check_initialize_vla_with_regions ’Check Initialize Variable Length Array With Regions’

All these passes use property ERROR_ON_UNINITIALIZE_VLA 9.7.13.1 to gen-
erate a warning or an error when an uninitialized length variable is detected.
Indeed, we can have some false positive due to the precision of used ressources,
especially when the length variable is itself an array or a pointer.

ERROR_ON_UNINITIALIZE_VLA FALSE

check_initialize_vla_with_preconditions 9.7.13.1 uses the precondi-
tions to check whether the length variable is initialized.

For this purpose, it checks if the length variable has a value, but also verifies,
if it is possible, that this value is greater than or equal to zero. It only checks The norm

doesn’t allow
array initial-
ization with
0. But gcc
and clang
allow it with
a warning
(-pedantic).

if it is greater than or equal to zero because the passes 9.7.13.2 initialize them
at 0 by default.

It may be useful to activate SEMANTICS_ANALYZE_CONSTANT_PATH 6.9.4.1
and/or SEMANTICS_ANALYZE_SCALAR_POINTER_VARIABLES 6.9.4.1 to reduce false
positive if the length variable is itself an array or a pointer. But it does not
work everytime. (it’s not implemented yet.)

check_initialize_vla_with_preconditions

< PROGRAM.entities

< MODULE.code

< MODULE.preconditions

check_initialize_vla_with_effects 9.7.13.1 is not implemented yet.
It can required to set VLA_EFFECT_READ 6.2.7.4 as TRUE? Depending if cu-

mulated effects or out effects are used.
The idea is to check for each vla declaration, if the length variable is exactly

written before the declaration (It can correspond to an exact write, or to be
present in exact out effects with VLA_EFFECT_READ 6.2.7.4 at TRUE).

This method doesn’t permit to verify if the length variable is positive.
This pass can only be run bottom-up.

check_initialize_vla_with_effects

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

check_initialize_vla_with_regions 9.7.13.1 is not implemented yet.
It can required to set VLA_EFFECT_READ 6.2.7.4 as TRUE? Depending if regions

or out regions are used.

207

The idea is to check for each vla declaration, if the length variable is exactly
written before the declaration (It can correspond to an exact write, or to be
present in exact out regions with VLA_EFFECT_READ 6.2.7.4 at TRUE).

This method doesn’t permit to verify if the length variable is positive.
It may suppress some false positive for vla declare with an array cell as

length.
This pass can only be run bottom-up.

check_initialize_vla_with_regions

< PROGRAM.entities

< MODULE.code

< MODULE.regions

9.7.13.2 Initialize Variable Length Array

Similarly to the check 9.7.13.1, there is two different ways to determine the
variable length to initialize: by using the preconditions or by using the effect-
s/regions.

So we have different passes to generate the initialization.

alias initialize_vla_with_preconditions ’Initialize Variable Length Array With Preconditions’

alias initialize_vla_with_effects ’Initialize Variable Length Array With Effects’

alias initialize_vla_with_regions ’Initialize Variable Length Array With Regions’

The only thing that differs in these passes is how the list of variables to ini-
tialize is generated, and so the PIPS dependence ressources that will be needed.

These passes initialize length variables at declaration times for scalar. When
the length variable is a cell of another array, it is initialized just after the dec-
laration of the array (not implemented yet). For instance,

int n , l [1] ;
. . .
int a [n] ;
int b [l [0]] ;
. . .

becomes

int n=0, l [1] ;
l [0]=0 ;
. . .
int a [n] ;
int b [l [0]] ;
. . .

The passes uses the propoerty INITIALIZE_VLA_VALUE 9.7.13.2 to know the
initial value, 0 by default.

INITIALIZE_VLA_VALUE 0

initialize_vla_with_preconditions > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.preconditions

208

initialize_vla_with_effects > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

initialize_vla_with_regions > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.regions

9.7.14 Freeze variables

Function freeze_variables 9.7.14 produces code where variables interactively
specified by the user are transformed into constants. This is useful when the
functionality of a code must be reduced. For instance, a code designed for N
dimensions could be reduced to a 3-D code by setting N to 3. This is not obvious
when N changes within the code. This is useful to specialize a code according CA? More

information?
The variable
names are
requested
from the
PIPS user?

to specific input data7.

alias freeze_variables ’Freeze Variables’

freeze_variables > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.cumulated_effects

9.8 Miscellaneous transformations

The following warning paragraphs should not be located here, but the whole
introduction has to be updated to take into account the merger with properties-
rc.tex, the new content (the transformation section has been exploded) and the
new passes such as gpips. No time right now. FI.

All PIPS transformations assume that the initial code is legal according to
the language standard. In other words, its semantics is well defined. Otherwise,
it is impossible to maintain a constant semantics through program transfor-
mations. So uninitialized variables, for instance, can lead to codes that seem
wrong, because they are likely to give different outputs than the initial code.
But this does not matter as the initial code output is undefined and could well
be the new output,

Also, remember that dead code does not impact the semantics in an observ-
able way. Hence dead code can be transformed in apparently weird ways. For
instance, all loops that are part of a dead code section can be found parallel,
although they are obviously sequential, because all the references will carry an
unfeasible predicate. In fact, reference A(I), placed in a dead code section, does
not reference the memory and does not have to be part of the dependence graph.

Dead code can crop out in many modules when a whole application linked
with a library is analyzed. All unused library modules are dead for PIPS.

7See the CHiLL tool.

209

On the other hand, missing source modules synthesized by PIPS may also
lead to weird results because they are integrated in the application with empty
definitions. Their call sites have no impact on the application semantics.

9.8.1 Type Checker

Typecheck code according to Fortran standard + double-complex. Typecheck-
ing is performed interprocedurally for user-defined functions. Insert type con-
versions where implicitly needed. Use typed intrinsics instead of generic ones.
Precompute constant conversions if appropriate (e.g. 16 to 16.0E0). Add com-
ments about type errors detected in the code. Report back how much was
done.

type_checker > MODULE.code

< PROGRAM.entities

< MODULE.code

< CALLEES.code

Here are type checker options. Whether to deal with double complex or
to refuse them. Whether to add a summary of errors, conversions and sim-
plifications as a comment to the routine. Whether to always show complex
constructors.

TYPE_CHECKER_DOUBLE_COMPLEX_EXTENSION FALSE

TYPE_CHECKER_LONG_DOUBLE_COMPLEX_EXTENSION FALSE

TYPE_CHECKER_ADD_SUMMARY FALSE

TYPE_CHECKER_EXPLICIT_COMPLEX_CONSTANTS FALSE

9.8.2 Manual Editing

The window interfaces let the user edit the source files, because it is very use-
ful to demonstrate PIPS. As with stf 9.3.5, editing is not integrated like other
program transformations, and previously applied transformations are lost. Con-
sistency is however always preserved.

A general edit facility fully integrated in pipsmake is planned for the (not
so) near future. Not so near because user demand for this feature is low.

Since tpips can invoque any Shell command, it is also possible to touch and
edit source files.

9.8.3 Transformation Test

This is plug to implement quickly a program transformation requested by a user.
Currently, it is a full loop distribution suggested by Alain Darte to compare
different implementations, namely Nestor and PIPS.

210

alias transformation_test ’Transformation Test’

transformation_test > MODULE.code

< PROGRAM.entities

< MODULE.code

9.9 Extensions Transformations

9.9.1 OpenMP Pragma

The following transformation reads the sequential code and generates OpenMP
pragma as an extension to statements. The pragmas produced are based on the
information previously computed by differents phases and already stores in the
pips internal representation of the sequential code. It might be interesting to
use the phase internalize parallel code (see § 8.1.8) before to apply ompify code
in order to maximize the number of parallel information available.

ompify_code > MODULE.code

< MODULE.code

As defined in the ri, the pragma can be of different types. The following
property can be set to str or expr. Obviously, if the property is set to str then
pragmas would be generated as strings otherwise pragmas would be generated
as expressions.

PRAGMA_TYPE "expr"

The PIPS phase OMP LOOP PARALLEL THRESHOLD SET allows to
add the OpenMP if clause to all the OpenMP pragmas. Afterwards, the num-
ber of iterations in the loop is evaluated dynamically and compared to the
defined threshold. The loop is parallelized only if the threshold is reached.

omp_loop_parallel_threshold_set > MODULE.code

< MODULE.code

The OMP LOOP PARALLEL THRESHOLD VALUE property , is used as
a parameter by the PIPS phase OMP LOOP PARALLEL THRESHOLD SET.
The number of iteration of the parallel loop will be compared to that value in
an omp if clause. The OpenMP run time will decide dynamicaly to parallelize
the loop if the number of iteration is above this threshold.

OMP_LOOP_PARALLEL_THRESHOLD_VALUE 0

The OMP IF CLAUSE RECURSIVE property , is used as a parameter by
the PIPS phase OMP LOOP PARALLEL THRESHOLD SET. If set to TRUE
the number of iterations of the inner loops will be used to test if the threshold
is reached. Otherwise only the nunber of iteration of the processed loop will be
used.

OMP_IF_CLAUSE_RECURSIVE TRUE

211

Compiler tends to produce many parallel loops which is generally not optimal
for performance. The following transformation merges nested omp pragma in a
unique omp pragma.

omp_merge_pragma > MODULE.code

< MODULE.code

PIPS merges the omp pragma on the inner or outer loop depending on the
property OMP MERGE POLICY. This string property can be set to either
outer or inner.

OMP_MERGE_POLICY "outer"

The OMP MERGE PRAGMA phase with the inner mode can be used after
the phase limit nested parallelism (see § 8.1.11). Such a combinaison allows to
fine choose the loop depth you really want to parallelize with OpenMP.

The merging of the if clause of the omp pragma follows its own rule. This
clause can be ignore without changing the output of the program, it only changes
the program perfomances. Then three policies are offered to manage the if
clause merging. The if clause can simply be ignored. Or the if clauses can
be merged alltogether using the boolean opertaion or or and. When ignored,
the if clause can be later regenerated using the appropriated PIPS phase :
OMP LOOP PARALLEL THRESHOLD SET. To summarize, remenber that
the property can be set to ignore or or and

OMP_IF_MERGE_POLICY "ignore"

212

Chapter 10

Output Files (Prettyprinted
Files)

PIPS results for any analysis and/or transformations can be displayed in several
different formats. User views are the closest one to the initial user source code.
Sequential views are obtained by prettyprinting the PIPS internal representation
of modules. Code can also be displayed graphically or using Emacs facilities
(through a property). Of course, parallelized versions are available. At the
program level, call graph and interprocedural control flow graphs, with different
degrees of ellipse, provide interesting summaries.

Dependence graphs can be shown, but they are not user-friendly. No filtering
interface is available. They mainly are useful for debugging and for teaching
purposes.

10.1 Parsed Printed Files (User View)

These are files containing a pretty-printed version of the parsed code, before
the controlizer is applied. It is the code display closest to the user source
code, because arcs in control flow graphs do not have to be rewritten as GOTO
statements. However, it is inconsistent with the internal representation of the
code as soon a a code transformation has been applied.

Bug: the inconsistence between the user view and the internal code repre-
sentation presently is not detected. Solution: do not use user views.

The Fortran statements may be decorated with preconditions or transform-
ers or complexities or any kind of effects, including convex array regions,...
depending on the prettyprinter selected used to produce this file.

Transformers and preconditions require cumulated effects to build the mod-
ule value basis.

10.1.1 Menu for User Views

alias parsed_printed_file ’User View’

alias print_source ’Basic’

alias print_source_transformers ’With Transformers’

213

alias print_source_preconditions ’With Preconditions’

alias print_source_total_preconditions ’With Total Preconditions’

alias print_source_regions ’With Regions’

alias print_source_in_regions ’With IN Regions’

alias print_source_out_regions ’With OUT Regions’

alias print_source_complexities ’With Complexities’

alias print_source_proper_effects ’With Proper Effects’

alias print_source_cumulated_effects ’With Cumulated Effects’

alias print_source_in_effects ’With IN Effects’

alias print_source_out_effects ’With OUT Effects’

alias print_source_continuation_conditions ’With Continuation Conditions’

10.1.2 Standard User View

Display the code without any decoration.

print_source > MODULE.parsed_printed_file

< PROGRAM.entities

< MODULE.parsed_code

10.1.3 User View with Transformers

Display the code decorated with the transformers.

print_source_transformers > MODULE.parsed_printed_file

< PROGRAM.entities

< MODULE.parsed_code

< MODULE.transformers

< MODULE.summary_transformer

< MODULE.cumulated_effects

< MODULE.summary_effects

10.1.4 User View with Preconditions

Display the code decorated with the preconditions.

print_source_preconditions > MODULE.parsed_printed_file

< PROGRAM.entities

< MODULE.parsed_code

< MODULE.preconditions

< MODULE.summary_precondition

< MODULE.summary_effects

< MODULE.cumulated_effects

10.1.5 User View with Total Preconditions

Display the code decorated with the total preconditions.

print_source_total_preconditions > MODULE.parsed_printed_file

< PROGRAM.entities

< MODULE.parsed_code

214

< MODULE.total_preconditions

< MODULE.summary_precondition

< MODULE.summary_effects

< MODULE.cumulated_effects

10.1.6 User View with Continuation Conditions

Display the code decorated with the continuation conditions.

print_source_continuation_conditions > MODULE.parsed_printed_file

< PROGRAM.entities

< MODULE.parsed_code

< MODULE.must_continuation

< MODULE.may_continuation

< MODULE.must_summary_continuation

< MODULE.may_summary_continuation

< MODULE.cumulated_effects

10.1.7 User View with Convex Array Regions

Display the code decorated with the regions.

print_source_regions > MODULE.parsed_printed_file

< PROGRAM.entities

< MODULE.parsed_code

< MODULE.regions

< MODULE.summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.1.8 User View with Invariant Convex Array Regions

Display the code decorated with the regions.

print_source_inv_regions > MODULE.parsed_printed_file

< PROGRAM.entities

< MODULE.parsed_code

< MODULE.inv_regions

< MODULE.summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.1.9 User View with IN Convex Array Regions

Display the code decorated with the IN regions.

print_source_in_regions > MODULE.parsed_printed_file

< PROGRAM.entities

< MODULE.parsed_code

215

< MODULE.in_regions

< MODULE.in_summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.1.10 User View with OUT Convex Array Regions

Display the code decorated with the OUT regions.

print_source_out_regions > MODULE.parsed_printed_file

< PROGRAM.entities

< MODULE.parsed_code

< MODULE.out_regions

< MODULE.out_summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.1.11 User View with Complexities

Display the code decorated with the complexities.

print_source_complexities > MODULE.parsed_printed_file

< PROGRAM.entities

< MODULE.parsed_code

< MODULE.complexities

< MODULE.summary_complexity

10.1.12 User View with Proper Effects

Display the code decorated with the proper effects.

print_source_proper_effects > MODULE.parsed_printed_file

< PROGRAM.entities

< MODULE.parsed_code

< MODULE.proper_effects

10.1.13 User View with Cumulated Effects

Display the code decorated with the cumulated effects.

print_source_cumulated_effects > MODULE.parsed_printed_file

< PROGRAM.entities

< MODULE.parsed_code

< MODULE.cumulated_effects

< MODULE.summary_effects

216

10.1.14 User View with IN Effects

Display the code decorated with its IN effects.

print_source_in_effects > MODULE.parsed_printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.in_effects

< MODULE.in_summary_effects

10.1.15 User View with OUT Effects

Display the code decorated with its OUT effects.

print_source_out_effects > MODULE.parsed_printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.out_effects

< MODULE.out_summary_effects

10.2 Printed File (Sequential Views)

These are files containing a pretty-printed version of the internal representation,
code.

The statements may be decorated with the result of any analysis, e.g.complexities,
preconditions, transformers, convex array regions,. . . depending on the pretty
printer used to produce this file.

To view C programs, it is a good idea to select a C pretty printer, for example
in tpips with:

setproperty PRETTYPRINT_C_CODE TRUE (obsolete, replaced by PRETTYPRINT_LANGUAGE ‘‘C’’)

Transformers and preconditions (and regions?) require cumulated effects to
build the module value basis.

10.2.1 Html output

This is intended to be used with PIPS IR Navigator (tm).
Produce a html version of the internal representation of a PIPS Module. The

property HTML_PRETTYPRINT_SYMBOL_TABLE 10.2.1 control whether the symbol
table should be included in the output.

html_prettyprint > MODULE.html_ir_file

< PROGRAM.entities

< MODULE.code

Produce a html version of the symbol table, it’s module-independent, it’ll
produce the same output for each module (the symbol table is global/unique).

html_prettyprint_symbol_table > PROGRAM.html_ir_file

< PROGRAM.entities

< MODULE.code

217

HTML_PRETTYPRINT_SYMBOL_TABLE FALSE

10.2.2 Menu for Sequential Views

alias printed_file ’Sequential View’

alias print_code ’Statements Only’

alias print_code_transformers ’Statements & Transformers’

alias print_code_complexities ’Statements & Complexities’

alias print_code_preconditions ’Statements & Preconditions’

alias print_code_total_preconditions ’Statements & Total Preconditions’

alias print_code_regions ’Statements & Regions’

alias print_code_regions ’Statements & Invariant Regions’

alias print_code_complementary_sections ’Statements & Complementary Sections’

alias print_code_in_regions ’Statements & IN Regions’

alias print_code_out_regions ’Statements & OUT Regions’

alias print_code_privatized_regions ’Statements & Privatized Regions’

alias print_code_proper_effects ’Statements & Proper Effects’

alias print_code_in_effects ’Statements & IN Effects’

alias print_code_out_effects ’Statements & OUT Effects’

alias print_code_cumulated_effects ’Statements & Cumulated Effects’

alias print_code_proper_reductions ’Statements & Proper Reductions’

alias print_code_cumulated_reductions ’Statements & Cumulated Reductions’

alias print_code_static_control ’Statements & Static Controls’

alias print_code_continuation_conditions ’Statements & Continuation Conditions’

alias print_code_proper_regions ’Statements & Proper Regions’

alias print_code_proper_references ’Statements & Proper References’

alias print_code_cumulated_references ’Statements & Cumulated References’

alias print_initial_precondition ’Initial Preconditions’

alias print_code_points_to_list ’Statements & Points To’

alias print_code_simple_pointer_values ’Statements & Simple Pointer Values’

10.2.3 Standard Sequential View

Display the code without any decoration.

print_code > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

10.2.4 Sequential View with Transformers

Display the code statements decorated with their transformers, except for loops,
which are decorated with the transformer from the loop entering states to the
loop body states. The effective loop transformer, linking the input to the out-
put state of a loop, is recomputed when needed and can be deduced from the

218

precondition of the next statement after the loop1.

print_code_transformers > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.transformers

< MODULE.summary_transformer

< MODULE.cumulated_effects

< MODULE.summary_effects

10.2.5 Sequential View with Initial Preconditions

print_initial_precondition > MODULE.printed_file

< MODULE.initial_precondition

< PROGRAM.entities

print_program_precondition > PROGRAM.printed_file

< PROGRAM.program_precondition

< PROGRAM.entities

10.2.6 Sequential View with Complexities

Display the code decorated with the complexities.

print_code_complexities > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.complexities

< MODULE.summary_complexity

10.2.7 Sequential View with Preconditions

Display the code decorated with the preconditions.

print_code_preconditions > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.preconditions

< MODULE.summary_precondition

< MODULE.cumulated_effects

< MODULE.summary_effects

1PIPS design maps statement to decorations. For one loop statement, we need two trans-
formers: one transformer to propagate the loop precondition as loop body precondition and
a second transformer to propagate the loop precondition as loop postcondition. The second
transformer can be deduced from the first one, but not the first one from the second one,
and the second transformer is not used to compute the loop postcondition as it is more accu-
rate to use the body postcondition. It is however computed to derive a compound statement
transformer, e.g. the loop is part of block, which is part of a module statement, and then
junked.

219

10.2.8 Sequential View with Total Preconditions

Display the code decorated with the total preconditions.

print_code_total_preconditions > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.total_preconditions

< MODULE.summary_total_precondition

< MODULE.cumulated_effects

< MODULE.summary_effects

10.2.9 Sequential View with Continuation Conditions

Display the code decorated with the continuation preconditions.

print_code_continuation_conditions > MODULE.printed_file

< PROGRAM.entities

< MODULE.parsed_code

< MODULE.must_continuation

< MODULE.may_continuation

< MODULE.must_summary_continuation

< MODULE.may_summary_continuation

< MODULE.cumulated_effects

10.2.10 Sequential View with Convex Array Regions

10.2.10.1 Sequential View with Plain Pointer Regions

Display the code decorated with the pointer regions.

print_code_pointer_regions > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.pointer_regions

< MODULE.summary_pointer_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.2.10.2 Sequential View with Proper Pointer Regions

Display the code decorated with the proper pointer regions.

print_code_proper_pointer_regions > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.proper_pointer_regions

< MODULE.summary_pointer_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

220

10.2.10.3 Sequential View with Invariant Pointer Regions

Display the code decorated with the invariant read/write pointer regions.

print_code_inv_pointer_regions > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.inv_pointer_regions

< MODULE.summary_pointer_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.2.10.4 Sequential View with Plain Convex Array Regions

Display the code decorated with the regions.

print_code_regions > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.regions

< MODULE.summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.2.10.5 Sequential View with Proper Convex Array Regions

Display the code decorated with the proper regions.

print_code_proper_regions > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.proper_regions

< MODULE.summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.2.10.6 Sequential View with Invariant Convex Array Regions

Display the code decorated with the invariant read/write regions.

print_code_inv_regions > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.inv_regions

< MODULE.summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

221

10.2.10.7 Sequential View with IN Convex Array Regions

Display the code decorated with the IN regions.

print_code_in_regions > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.in_regions

< MODULE.in_summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.2.10.8 Sequential View with OUT Convex Array Regions

Display the code decorated with the OUT regions.

print_code_out_regions > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.out_regions

< MODULE.out_summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.2.10.9 Sequential View with Privatized Convex Array Regions

Display the code decorated with the privatized regions.

print_code_privatized_regions > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.summary_effects

< MODULE.privatized_regions

< MODULE.copy_out_regions

10.2.11 Sequential View with Complementary Sections

Display the code decorated with complementary sections.

print_code_complementary_sections > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.compsec

< MODULE.summary_compsec

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

222

10.2.12 Sequential View with Proper Effects

Display the code decorated with the proper pointer effects.

print_code_proper_pointer_effects > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.proper_pointer_effects

Display the code decorated with the proper effects.

print_code_proper_effects > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

Display the code decorated with the proper references.

print_code_proper_references > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.proper_references

10.2.13 Sequential View with Cumulated Effects

Display the code decorated with the cumulated effects.

print_code_cumulated_pointer_effects > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_pointer_effects

< MODULE.summary_pointer_effects

Display the code decorated with the cumulated effects.

print_code_cumulated_effects > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.summary_effects

Display the code decorated with the cumulated references.

print_code_cumulated_references > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_references

10.2.14 Sequential View with IN Effects

Display the code decorated with its IN effects.

print_code_in_effects > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.in_effects

< MODULE.in_summary_effects

223

10.2.15 Sequential View with OUT Effects

Display the code decorated with its OUT effects.

print_code_out_effects > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.out_effects

< MODULE.out_summary_effects

10.2.16 Sequential View with Live Paths

Display the code decorated with the live in paths.

print_code_live_in_paths > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.live_in_paths

< MODULE.live_in_summary_paths

Display the code decorated with the live out paths.

print_code_live_out_paths > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.live_out_paths

< MODULE.live_out_summary_paths

Display the code decorated with the live out regions.

print_code_live_out_regions > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.live_out_regions

10.2.17 Sequential View with Proper Reductions

Display the code decorated with the proper reductions.

print_code_proper_reductions > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.proper_reductions

10.2.18 Sequential View with Cumulated Reductions

Display the code decorated with the cumulated reductions.

print_code_cumulated_reductions > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_reductions

< MODULE.summary_reductions

224

10.2.19 Sequential View with Static Control Information

Display the code decorated with the static control.

print_code_static_control > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.static_control

10.2.20 Sequential View with Points-To Information

Display the code decorated with the points to information.

print_code_points_to_list > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.points_to

10.2.21 Sequential View with Simple Pointer Values

Displays the code with simple pointer values relationships.

print_code_simple_pointer_values > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.simple_pointer_values

Displays the code with simple gen pointer values and kill sets.

print_code_simple_gen_kill_pointer_values > MODULE.printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.simple_gen_pointer_values

< MODULE.simple_kill_pointer_values

10.2.22 Prettyprint Properties

10.2.22.1 Language

PIPS can handle many different languages. By default the PrettyPrinter uses
the native language as an output but it is also possible to prettyprint Fortran
code as C code. Possible values for the PRETTYPRINT LANGUAGE property
are: native F95 F77 C.

PRETTYPRINT_LANGUAGE "native"

225

10.2.22.2 Layout

When prettyprinting semantic information (preconditions, transformers and re-
gions), add a line before and after each piece of information if set to TRUE. The
resulting code is more readable, but is larger.

PRETTYPRINT_LOOSE TRUE

By default, each prettyprinted line of Fortran or C code is terminated by its
statement number in columns 73-80, unless no significative statement number
is available. This feature is used to trace the origin of statements after program
transformations and parallelization steps.

This feature may be inconvenient for some compilers or because it generates
large source files. It may be turned off.

Note that the statement number is equal to the line number in the function
file, that is the source file obtained after PIPS preprocessing2 and filtering3, and
not the user file, which is the file submitted by the user and which may contain
several functions.

Note also that some phases in pips may add new statement that are not
present in the original file. In this case the number of the statement that requires
such a transformation, is used for the added statement.

PRETTYPRINT_STATEMENT_NUMBER TRUE

Note: this default value is overriden to FALSE by activate_language()

for C and Fortran 95.
The structured control structure is shown by using an indentation. The

default value is 3.

PRETTYPRINT_INDENTATION 3

Some people prefer to use a space after a comma to separate items in lists
such as declaration lists or parameter lists in order to improve readability. Other
people would rather pack more information per line. The default option is chosen
for readability.

PRETTYPRINT_LISTS_WITH_SPACES TRUE

Depending on the user goal, it may be better to isolate comments used to
display results of PIPS analyses from the source code statement. This is the
default option.

PRETTYPRINT_ANALYSES_WITH_LF TRUE

These qualifiers are not parsed and the prettyprinter ignores them by default,
set the following properties for seeing them. They are set by gpu_qualify_pointers.

PRETTYPRINT_GLOBAL_QUALIFIER ""

2PIPS preprocessing usually includes the standard C or Fortran preprocessing phase but
also breaks down user files into compilation units and function files, a.k.a. initial files in
Fortran and source files in C.

3Filtering is applied on Fortran files only to perform file includes. It is implemented in
Perl.

226

PRETTYPRINT_LOCAL_QUALIFIER ""

PRETTYPRINT_CONSTANT_QUALIFIER ""

PRETTYPRINT_PRIVATE_QUALIFIER ""

This feature only exists for the semantics analyses.
How to prettyprint C integer types:

PRETTYPRINT_C_CHAR_TYPE "char"

PRETTYPRINT_C_SHORT_TYPE "short"

PRETTYPRINT_C_INT_TYPE "int"

PRETTYPRINT_C_LONG_TYPE "long␣int"

PRETTYPRINT_C_LONGLONG_TYPE "long␣long␣int"

PRETTYPRINT_C_INT128_TYPE "__int128_t"

PRETTYPRINT_C_UCHAR_TYPE "unsigned␣char"

PRETTYPRINT_C_USHORT_TYPE "unsigned␣short"

PRETTYPRINT_C_UINT_TYPE "unsigned␣int"

PRETTYPRINT_C_ULONG_TYPE "unsigned␣long␣int"

PRETTYPRINT_C_ULONGLONG_TYPE "unsigned␣long␣long␣int"

PRETTYPRINT_C_UINT128_TYPE "__uint128_t"

PRETTYPRINT_C_SCHAR_TYPE "signed␣char"

PRETTYPRINT_C_SSHORT_TYPE "signed␣short"

PRETTYPRINT_C_SINT_TYPE "signed␣int"

PRETTYPRINT_C_SLONG_TYPE "signed␣long␣int"

PRETTYPRINT_C_SLONGLONG_TYPE "signed␣long␣long␣int"

227

10.2.22.3 Target Language Selection

10.2.22.3.1 Parallel output style How to print, from a syntactic point of
view, a parallel do loop. Possible values are: do doall f90 hpf cray craft

cmf omp.

PRETTYPRINT_PARALLEL "do"

10.2.22.3.2 Default sequential output style How to print, from a syn-
tactic point of view, a parallel do loop for a sequential code. Of course, by
default, the sequential output is sequential by definition, so the default value is
"do".

But we may interested to change this behaviour to display after an applica-
tion of internalize_parallel_code 8.1.8 the parallel code that is hidden in
the sequential code. Possible values are: do doall f90 hpf cray craft cmf

omp.
By default, parallel information is displayed with am OpenMP flavor since

it is widely used nowadays.

PRETTYPRINT_SEQUENTIAL_STYLE "omp"

10.2.22.4 Display Analysis Results

Add statement effects as comments in output; not implemented (that way) yet.

PRETTYPRINT_EFFECTS FALSE

The next property, PRETTYPRINT_IO_EFFECTS 10.2.22.4, is used to control
the computation of implicit statement IO effects and display them as comments
in output. The implicit effects on the logical unit are simulated by a read/write
action to an element of the array TOP-LEVEL:LUNS(), or to the whole array
when the element is not known at compile time. This is the standard behavior
for PIPS. Some phases, e.g. hpfc, may turn this option off, but it is much more
risky than to filter out abstract effects. Furthermore, the filtering is better
because it takes into account all abstract effects, not only IO effects on logical
units. PIPS users should definitely not turn off this property as the semantic
equivalence between the inout and the output program is no longer guaranteed.

PRETTYPRINT_IO_EFFECTS TRUE

To transform C source code properly, variable and type declarations as well
as variable and type references must be tracked alhtough standard use and def
information is restricted to memory loads and stores because the optimizations
are performed at a lower level. Fortran 77 analyses do not need information
about variable declarations and there is not possibility of type definition. So
the added information about variable declarations and references may be pure
noise. It is possible to get rid of it by setting this property to TRUE, which is
its default value before August 2010. For C code, it is better to set it to FALSE.
For the time being, the default value cannot depend on the code language.

PRETTYPRINT_MEMORY_EFFECTS_ONLY FALSE

228

Transform DOALL loops into sequential loops with an opposed increment
to check validity of the parallelization on a sequential machine. This property
is not implemented.

PRETTYPRINT_REVERSE_DOALL FALSE

It is possible to print statement transformers as comments in code. This
property is not intended for PIPS users, but is used internally. Transformers
can be prettyprinted by using activate and PRINT_CODE_TRANSFORMERS

PRETTYPRINT_TRANSFORMER FALSE

It is possible to print statement preconditions as comments in code. This
property is not intended for PIPS users, but is used internally. Preconditions
can be prettyprinted by using activate and PRINT_CODE_PRECONDITIONS

PRETTYPRINT_EXECUTION_CONTEXT FALSE

It is possible to print statement with convex array region information as
comments in code. This property is not intended for PIPS users, but is used
internally. Convex array regions can be prettyprinted by using activate and
PRINT_CODE_REGIONS or PRINT_CODE_PROPER_REGIONS

PRETTYPRINT_REGION FALSE

By default, convex array regions are printed for arrays only, but the inter-
nal representation includes scalar variables as well. The default option can be
overriden with this property.

PRETTYPRINT_SCALAR_REGIONS FALSE

10.2.22.5 Display Internals for Debugging

All these debugging options should be set to FALSE for normal operation, when
the prettyprinter is expected to produce code as close as possible to the input
form. When they are turned on, the output is closer to the PIPS internal
representation.

Sequences are implicit in Fortran and in many programming languages but
they are internally represented. It is possible to print pieces of information
gathered about sequences by turning on this property.

PRETTYPRINT_BLOCKS FALSE

To print all the C blocks (the { } in C, you can set the following property:

PRETTYPRINT_ALL_C_BLOCKS FALSE

This property is a C-specialized version of PRETTYPRINT_BLOCKS, since in C you
can represent the blocks. You can combine this property with a PRETTYPRINT_EMPTY_BLOCKS
set to true too. Right now, the prettyprint of the C block is done in the wrong
way, so if you use this option, you will have redundant blocks inside instructions,
but you will have all the other hidden blocks too...

To print unstructured statements:

PRETTYPRINT_UNSTRUCTURED FALSE

229

Print all effects for all statements regardless of PRETTYPRINT_BLOCKS 10.2.22.5
and PRETTYPRINT_UNSTRUCTURED 10.2.22.5.

PRETTYPRINT_ALL_EFFECTS FALSE

Print empty statement blocks (false by default):

PRETTYPRINT_EMPTY_BLOCKS FALSE

Print statement ordering information (false by default):

PRETTYPRINT_STATEMENT_ORDERING FALSE

The next property controls the print out of DO loops and CONTINUE state-
ment. The code may be prettyprinted with DO label and CONTINUE instead
of DO-ENDDO, as well as with other useless CONTINUE (This property en-
compasses a virtual PRETTYPRINT ALL CONTINUE STATEMENTS). If set to FALSE,
the default option, all useless CONTINUE statements are NOT prettyprinted
(ie. all those in structured parts of the code). This mostly is a debugging option
useful to understand better what is in the internal representation.

10.2.22.5.1 Warning: if set to TRUE, generated code may be wrong after
some code transformations like distribution...

PRETTYPRINT_ALL_LABELS FALSE

Print code with DO label as comment.

PRETTYPRINT_DO_LABEL_AS_COMMENT FALSE

Print private variables without regard for their effective use. By default,
private variables are shown only for parallel DO loops.

PRETTYPRINT_ALL_PRIVATE_VARIABLES FALSE

Non-standard variables and tests are generated to simulate the control effect
of Fortran IO statements. If an end-of-file condition is encountered or if an io-
error is raised, a jump to relevant labels may occur if clauses ERR= or END= are
defined in the IO control list. These tests are normally not printed because
they could not be compiled by a standard Fortran compiler and because they
are redundant with the IO statement itself.

PRETTYPRINT_CHECK_IO_STATEMENTS FALSE

Print the final RETURN statement, although this is useless according to
Fortran standard. Note that comments attached to the final return are lost if it
is not printed. Note also that the final RETURN may be part of an unstructured
in which case the previous property is required.

PRETTYPRINT_FINAL_RETURN FALSE

The internal representation is based on a standard IF structure, known as
block if in Fortran jargon. When possible, the prettyprinter uses the logical if
syntactical form to save lines and to produce an output assumed closer to the
input. When statements are decorated, information gathered by PIPS may be
lost. This property can be turned on to have an output closer to the internal

230

representation. Note that edges of the control flow graphs may still be displayed
as logical if since they never carry any useful information4.

PRETTYPRINT_BLOCK_IF_ONLY FALSE

Effects give data that may be read and written in a procedure. These data
are represented by their entity name. By default the entity name used is the
shortest nom-ambiguous one. The PRETTYPRINT_EFFECT_WITH_FULL_ENTITY_NAME 10.2.22.5.1
property can be used to force the usage of full entity name (module name +
scope + local name).

PRETTYPRINT_EFFECT_WITH_FULL_ENTITY_NAME FALSE

In order to have information on the scope of commons, we need to know
the common in which the entity is declared if any. To get this information the
PRETTYPRINT_WITH_COMMON_NAMES 10.2.22.5.1 property has to set to TRUE.

PRETTYPRINT_WITH_COMMON_NAMES FALSE

By default, expressions are simplified according to operator precedences. It
is possible to override this prettyprinting option and to reflect the abstract tree
with redundant parentheses.

PRETTYPRINT_ALL_PARENTHESES FALSE

By default, the C prettyprinter uses a minimum of braces to improve read-
ability. However, gcc advocates the use of more braces to avoid some ambigui-
ties about else clauses. In order to run succesfully gcc with options -Wall and
-Werror, it is possible to force the print-out of all possible braces.

PRETTYPRINT_ALL_C_BRACES FALSE

The previous property leads to hard to read source code. Property PRETTYPRINT_GCC_C_BRACES 10.2.22.5.1
is used to print only a few additional braces required by gcc to avoid ambiguous
else warning messages.

PRETTYPRINT_GCC_C_BRACES FALSE

10.2.22.6 Declarations

By default in Fortran (and not in C), module declarations are preserved as
huge strings to produce an output as close as possible to the input (see field
decls_text in type code). However, large program transformations and code
generation phases, e.g. hpfc, require updated declarations.

Regenerate all variable declarations, including those variables not declared
in the user program. By default in Fortran, when possible, the user declaration
text is used to preserve comments.

PRETTYPRINT_ALL_DECLARATIONS FALSE

4Information is carried by the vertices (i.e. nodes). A CONTINUE statement is generated
to have an attachment node when some information must be stored and displayed.

231

If the prettyprint of the header and the declarations are done by PIPS, try to
display the genuine comments. Unfortunately, there is no longer order relation
between the comments and the declarations since these are sorted by PIPS. By
default, do not try to display the comments when PIPS is generating the header.

PRETTYPRINT_HEADER_COMMENTS FALSE

How to regenerate the common declarations. It can be none, declaration, or
include.

PRETTYPRINT_COMMONS "declaration"

DATA declarations are partially handled presently.

PRETTYPRINT_DATA_STATEMENTS TRUE

Where to put the dimension information, which must appear once. The
default is associated to the type information. It can be associated to The type,
or preferably to the common if any, or maybe to a dimension statement, which
is not implemented.

PRETTYPRINT_VARIABLE_DIMENSIONS "type"

10.2.22.7 FORESYS Interface

Print transformers, preconditions and regions in a format accepted by Foresys
and Partita. Not maintained.

PRETTYPRINT_FOR_FORESYS FALSE

10.2.22.8 HPFC Prettyprinter

To deal specifically with the prettyprint for hpfc.

PRETTYPRINT_HPFC FALSE

10.2.22.9 C Internal Prettyprinter

To unify code generation, Fortran intrinsics such as MIN, MAX, DIV, INT and
MOD are always used. MAX and MIN are especially convenient as they are
overloaded and accept any number of arguments. The generated code can be
prettyprinted as is and C code be fixed with macroprocessing.

This does not work for MIN and MAX because of their varying number of ar-
guments. Some code generating passes are using them with only two arguments,
which make the code hard to read if easy to preprocess.

Another option is to let the prettyprinter deal with the issue and gener-
ate calls to some PIPS run-time functions or macros such as pips min() and
pips max. This is the default behavior.

However, some passes such as function cloning use the prettyprinter and then
the parser to regenerate an internal representation. To preserve the intrinsics
used and to debug PIPS 5, the next property must be set.

5http://www.cri.ensmp.fr/pips

232

http://www.cri.ensmp.fr/pips
http://www.cri.ensmp.fr/pips

PRETTYPRINT_INTERNAL_INTRINSICS FALSE

To generate correct code, some transformations such as loop tiling, need to
use the floor division with negative numbers. It can be implemented as PIPS
run-time function or macro such as pips div(). The default option is to keep
the Fortran and C intrinsics “/”.

PRETTYPRINT_DIV_INTRINSICS TRUE

10.2.22.10 Interface to Emacs

The following property tells PIPS to attach various Emacs properties for inter-
active purpose. Used internally by the Emacs pretyyprinter and the epip user
interface.

PRETTYPRINT_ADD_EMACS_PROPERTIES FALSE

10.3 Printed Files with the Intraprocedural Con-
trol Graph

These are files containing a pretty-printed version of code to be displayed with its
intraprocedural control graph as a graph, for example using the uDrawGraph6

program (formerly known as daVinci) or dot/GraphViz tools. More con-
cretely, use some scripts like pips_unstructured2daVinci or pips_unstructured2dot
to display graphically these .pref-graph files.

The statements may be decorated with complexities, preconditions, trans-
formers, regions,. . . depending on the printer used to produce this file.

10.3.1 Menu for Graph Views

alias graph_printed_file ’Control Graph Sequential View’

alias print_code_as_a_graph ’Graph with Statements Only’

alias print_code_as_a_graph_transformers ’Graph with Statements & Transformers’

alias print_code_as_a_graph_complexities ’Graph with Statements & Complexities’

alias print_code_as_a_graph_preconditions ’Graph with Statements & Preconditions’

alias print_code_as_a_graph_total_preconditions ’Graph with Statements & Total Preconditions’

alias print_code_as_a_graph_regions ’Graph with Statements & Regions’

alias print_code_as_a_graph_in_regions ’Graph with Statements & IN Regions’

alias print_code_as_a_graph_out_regions ’Graph with Statements & OUT Regions’

alias print_code_as_a_graph_proper_effects ’Graph with Statements & Proper Effects’

alias print_code_as_a_graph_cumulated_effects ’Graph with Statements & Cumulated Effects’

10.3.2 Standard Graph View

Display the code without any decoration.

6http://www.informatik.uni-bremen.de/uDrawGraph

233

http://www.informatik.uni-bremen.de/uDrawGraph
http://www.informatik.uni-bremen.de/uDrawGraph

print_code_as_a_graph > MODULE.graph_printed_file

< PROGRAM.entities

< MODULE.code

10.3.3 Graph View with Transformers

Display the code decorated with the transformers.

print_code_as_a_graph_transformers > MODULE.graph_printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.transformers

< MODULE.summary_transformer

< MODULE.cumulated_effects

< MODULE.summary_effects

10.3.4 Graph View with Complexities

Display the code decorated with the complexities.

print_code_as_a_graph_complexities > MODULE.graph_printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.complexities

< MODULE.summary_complexity

10.3.5 Graph View with Preconditions

Display the code decorated with the preconditions.

print_code_as_a_graph_preconditions > MODULE.graph_printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.preconditions

< MODULE.summary_precondition

< MODULE.cumulated_effects

< MODULE.summary_effects

10.3.6 Graph View with Preconditions

Display the code decorated with the preconditions.

print_code_as_a_graph_total_preconditions > MODULE.graph_printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.total_preconditions

< MODULE.summary_total_postcondition

< MODULE.cumulated_effects

< MODULE.summary_effects

234

10.3.7 Graph View with Regions

Display the code decorated with the regions.

print_code_as_a_graph_regions > MODULE.graph_printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.regions

< MODULE.summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.3.8 Graph View with IN Regions

Display the code decorated with the IN regions.

print_code_as_a_graph_in_regions > MODULE.graph_printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.in_regions

< MODULE.in_summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.3.9 Graph View with OUT Regions

Display the code decorated with the OUT regions.

print_code_as_a_graph_out_regions > MODULE.graph_printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.out_regions

< MODULE.out_summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.3.10 Graph View with Proper Effects

Display the code decorated with the proper effects.

print_code_as_a_graph_proper_effects > MODULE.graph_printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

235

10.3.11 Graph View with Cumulated Effects

Display the code decorated with the cumulated effects.

print_code_as_a_graph_cumulated_effects > MODULE.graph_printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.cumulated_effects

< MODULE.summary_effects

10.3.12 ICFG Properties

This prettyprinter is NOT a call graph prettyprinter (see Section 6.1). Control
flow information can be displayed and every call site is shown, possibly with
some annotation like precondition or region

This prettyprinter uses the module codes in the workspace database to build
the ICFG.

Print IF statements controlling call sites:

ICFG_IFs FALSE

Print DO loops enclosing call sites:

ICFG_DOs FALSE

It is possible to print the interprocedural control flow graph as text or as a
graph using daVinci format. By default, the text output is selected.

ICFG_DV FALSE

To be destroyed:

ICFG_CALLEES_TOPO_SORT FALSE

ICFG_DRAW TRUE

ICFG default indentation when going into a function or a structure.

ICFG_INDENTATION 4

Debugging level (should be ICFG_DEBUG_LEVEL and numeric instead of boolean!):

ICFG_DEBUG FALSE

Effects are often much too numerous to produce a useful interprocedural
control flow graph.

The integer property RW_FILTERED_EFFECTS 10.3.12 is used to specify a fil-
tering criterion.

• 0: READ_ALL,

• 1: WRITE_ALL,

• 2: READWRITE_ALL,

• 3: READ_END,

236

• 4: WRITE_END,

• 5: READWRITE_END, .

RW_FILTERED_EFFECTS 0

10.3.13 Graph Properties

10.3.13.1 Interface to Graphics Prettyprinters

To output a code with a hierarchical view of the control graph with markers in-
stead of a flat one. It purposes a display with a graph browser such as daVinci7:

PRETTYPRINT_UNSTRUCTURED_AS_A_GRAPH FALSE

and to have a decorated output with the hexadecimal addresses of the control
nodes:

PRETTYPRINT_UNSTRUCTURED_AS_A_GRAPH_VERBOSE FALSE

10.4 Parallel Printed Files

File containing a pretty-printed version of a parallelized_code. Several ver-
sions are available. The first one is based on Fortran-77, extended with a
DOALL construct. The second one is based on Fortran-90. The third one gen-
erates CRAY Research directives as comments if and only if the correspondent
parallelization option was selected (see Sectionsubsection-parallelization).

No one knows why there is no underscore between parallel and printed...

10.4.1 Menu for Parallel View

alias parallelprinted_file ’Parallel View’

alias print_parallelized77_code ’Fortran 77’

alias print_parallelizedHPF_code ’HPF directives’

alias print_parallelizedOMP_code ’OMP directives’

alias print_parallelized90_code ’Fortran 90’

alias print_parallelizedcray_code ’Fortran Cray’

alias print_parallelizedMPI_code ’C MPI’

10.4.2 Fortran 77 Parallel View

Output a Fortran-77 code extended with DOALL parallel constructs.

print_parallelized77_code > MODULE.parallelprinted_file

< PROGRAM.entities

< MODULE.parallelized_code

7http://www.informatik.uni-bremen.de/~davinci

237

http://www.informatik.uni-bremen.de/~davinci
http://www.informatik.uni-bremen.de/~davinci

10.4.3 HPF Directives Parallel View

Output the code decorated with HPF directives.

print_parallelizedHPF_code > MODULE.parallelprinted_file

< PROGRAM.entities

< MODULE.parallelized_code

10.4.4 OpenMP Directives Parallel View

Output the code decorated with OpenMP (OMP) directives.

print_parallelizedOMP_code > MODULE.parallelprinted_file

< PROGRAM.entities

< MODULE.parallelized_code

10.4.5 Fortran 90 Parallel View

Output the code with some Fortran-90 array construct style.

print_parallelized90_code > MODULE.parallelprinted_file

< PROGRAM.entities

< MODULE.parallelized_code

10.4.6 Cray Fortran Parallel View

Output the code decorated with parallel Cray directives. Note that the Cray
parallelization algorithm should have been used in order to match Cray direc-
tives for parallel vector processors.

print_parallelizedcray_code > MODULE.parallelprinted_file

< PROGRAM.entities

< MODULE.parallelized_code

< MODULE.cumulated_effects

10.5 Call Graph Files

This kind of file contains the sub call graph8 of a module. Of course, the call
graph associated to the MAIN module is the program call graph.

Each module can be decorated by summary information computed by one
of PIPS analyses.

If one module has different callers, its sub call tree is replicated once for each
caller9.

No fun to read, but how could we avoid it with a text output? But it is
useful to check large analyses.

The resource defined in this section is callgraph_file (note the missing
underscore between call and graph in callgraph...). This is a file resource to be
displayed, which cannot be loaded in memory by pipsdbm.

8It is not a graph but a tree.
9In the ICFG , the replication would occur for each call site.

238

Note that the input resource lists could be reduced to one resource, the
decoration. pipsmake would deduce the other ones. There is no need for a
transitive closure, but some people like it that way to make resource usage
verification possible... RK: ex-

plain... FI:
no idea; we
would like
to display
any set of
resources,
but the sets
are too nu-
merous to
have a phase
for each.

10.5.1 Menu for Call Graphs

Aliases for call graphs must de different from aliases for interprocedural control
flow graphs (ICFG). A simple trick, a trailing SPACE character, is used.

alias callgraph_file ’Callgraph View’

alias print_call_graph ’Calls’

alias print_call_graph_with_complexities ’Calls & Complexities’

alias print_call_graph_with_preconditions ’Calls & Preconditions’

alias print_call_graph_with_total_preconditions ’Calls & Total Preconditions’

alias print_call_graph_with_transformers ’Calls & Transformers’

alias print_call_graph_with_proper_effects ’Calls & Proper effects’

alias print_call_graph_with_cumulated_effects ’Calls & Cumulated effects’

alias print_call_graph_with_regions ’Calls & Regions’

alias print_call_graph_with_in_regions ’Calls & In Regions’

alias print_call_graph_with_out_regions ’Calls & Out regions’

10.5.2 Standard Call Graphs

To have the call graph without any decoration.

print_call_graph > MODULE.callgraph_file

< PROGRAM.entities

< MODULE.code

< CALLEES.callgraph_file

10.5.3 Call Graphs with Complexities

To have the call graph decorated with the complexities.

print_call_graph_with_complexities > MODULE.callgraph_file

< PROGRAM.entities

< MODULE.code

< CALLEES.callgraph_file

< MODULE.summary_complexity

< MODULE.complexities

10.5.4 Call Graphs with Preconditions

To have the call graph decorated with the preconditions.

print_call_graph_with_preconditions > MODULE.callgraph_file

< PROGRAM.entities

< MODULE.code

< CALLEES.callgraph_file

< MODULE.summary_precondition

239

< MODULE.summary_effects

< MODULE.preconditions

< MODULE.cumulated_effects

10.5.5 Call Graphs with Total Preconditions

To have the call graph decorated with the total preconditions.

print_call_graph_with_total_preconditions > MODULE.callgraph_file

< PROGRAM.entities

< MODULE.code

< CALLEES.callgraph_file

< MODULE.summary_total_postcondition

< MODULE.summary_effects

< MODULE.total_preconditions

< MODULE.cumulated_effects

10.5.6 Call Graphs with Transformers

To have the call graph decorated with the transformers.

print_call_graph_with_transformers > MODULE.callgraph_file

< PROGRAM.entities

< MODULE.code

< CALLEES.callgraph_file

< MODULE.summary_transformer

< MODULE.summary_effects

< MODULE.transformers

< MODULE.cumulated_effects

10.5.7 Call Graphs with Proper Effects

To have the call graph decorated with the proper effects.

print_call_graph_with_proper_effects > MODULE.callgraph_file

< PROGRAM.entities

< MODULE.code

< CALLEES.callgraph_file

< MODULE.proper_effects

10.5.8 Call Graphs with Cumulated Effects

To have the call graph decorated with the cumulated effects.

print_call_graph_with_cumulated_effects > MODULE.callgraph_file

< PROGRAM.entities

< MODULE.code

< CALLEES.callgraph_file

< MODULE.cumulated_effects

< MODULE.summary_effects

240

10.5.9 Call Graphs with Regions

To have the call graph decorated with the regions.

print_call_graph_with_regions > MODULE.callgraph_file

< PROGRAM.entities

< MODULE.code

< CALLEES.callgraph_file

< MODULE.regions

< MODULE.summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.5.10 Call Graphs with IN Regions

To have the call graph decorated with the IN regions.

print_call_graph_with_in_regions > MODULE.callgraph_file

< PROGRAM.entities

< MODULE.code

< CALLEES.callgraph_file

< MODULE.in_regions

< MODULE.in_summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.5.11 Call Graphs with OUT Regions

To have the call graph decorated with the OUT regions.

print_call_graph_with_out_regions > MODULE.callgraph_file

< PROGRAM.entities

< MODULE.code

< CALLEES.callgraph_file

< MODULE.out_regions

< MODULE.out_summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

This library is used to display the calling relationship between modules. It
is different from the interprocedural call flow graph, ICFG (see Section 10.3.12).
For example: if A calls B twice, in callgraph, there is only one edge between A
and B; while in ICFG (see next section)), there are two edges between A and
B, since A contains two call sites.

The call graph is derived from the modules declarations. It does not really
the parsed code per se, but the code must have been parsed to have up-to-date
declarations in the symbol table.

Because of printout limitations, the call graph is developed into a tree before
it is printed. The sub-graph of a module appears as many times as is has callers.
The resulting printout may be very long.

241

There is no option for the callgraph prettyprinter except for debugging.
Debugging level (should be CALLGRAPH_DEBUG_LEVEL and numeric!)

CALLGRAPH_DEBUG FALSE

10.6 DrawGraph Interprocedural Control Flow
Graph Files (DVICFG)

This is the file ICFG with format of graph uDrawGraph10 (formerly daVinci).
This should be generalized to be less tool-dependent.

10.6.1 Menu for DVICFG’s

alias dvicfg_file ’DVICFG View’

alias print_dvicfg_with_filtered_proper_effects ’Graphical Calls & Filtered proper effects’

10.6.2 Minimal ICFG with graphical filtered Proper Ef-
fects

Display the ICFG graphically decorated with the write proper effects filtered
for a variable.

print_dvicfg_with_filtered_proper_effects > MODULE.dvicfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.dvicfg_file

< MODULE.proper_effects

< CALLEES.summary_effects

10.7 Interprocedural Control Flow Graph Files
(ICFG)

This kind of file contains a more or less precise interprocedural control graph.
The graph can be restricted to call sites only, to call sites and enclosing DO loops
or to call sites, enclosing DO loops and controlling IF tests. This abstraction
option is orthogonal to the set of decorations, but pipsmake does not support
this orthogonality. All combinations are listed below.

Each call site can be decorated by associated information computed by one
of PIPS analyses.

10.7.1 Menu for ICFG’s

Note: In order to avoid conflicts with callgraph aliases, a space character is
appended at each alias shared with call graph related functions (Guillaume
Oget).

10http://www.informatik.uni-bremen.de/uDrawGraph

242

http://www.informatik.uni-bremen.de/uDrawGraph
http://www.informatik.uni-bremen.de/uDrawGraph

alias icfg_file ’ICFG View’

alias print_icfg ’Calls ’

alias print_icfg_with_complexities ’Calls & Complexities ’

alias print_icfg_with_preconditions ’Calls & Preconditions ’

alias print_icfg_with_total_preconditions ’Calls & Total Preconditions ’

alias print_icfg_with_transformers ’Calls & Transformers ’

alias print_icfg_with_proper_effects ’Calls & Proper effects ’

alias print_icfg_with_filtered_proper_effects ’Calls & Filtered proper effects ’

alias print_icfg_with_cumulated_effects ’Calls & Cumulated effects ’

alias print_icfg_with_regions ’Calls & Regions ’

alias print_icfg_with_in_regions ’Calls & In Regions ’

alias print_icfg_with_out_regions ’Calls & Out regions ’

alias print_icfg_with_loops ’Calls & Loops’

alias print_icfg_with_loops_complexities ’Calls & Loops & Complexities’

alias print_icfg_with_loops_preconditions ’Calls & Loops & Preconditions’

alias print_icfg_with_loops_total_preconditions ’Calls & Loops & Total Preconditions’

alias print_icfg_with_loops_transformers ’Calls & Loops & Transformers’

alias print_icfg_with_loops_proper_effects ’Calls & Loops & Proper effects’

alias print_icfg_with_loops_cumulated_effects ’Calls & Loops & Cumulated effects’

alias print_icfg_with_loops_regions ’Calls & Loops & Regions’

alias print_icfg_with_loops_in_regions ’Calls & Loops & In Regions’

alias print_icfg_with_loops_out_regions ’Calls & Loops & Out regions’

alias print_icfg_with_control ’Calls & Control’

alias print_icfg_with_control_complexities ’Calls & Control & Complexities’

alias print_icfg_with_control_preconditions ’Calls & Control & Preconditions’

alias print_icfg_with_control_total_preconditions ’Calls & Control & Total Preconditions’

alias print_icfg_with_control_transformers ’Calls & Control & Transformers’

alias print_icfg_with_control_proper_effects ’Calls & Control & Proper effects’

alias print_icfg_with_control_cumulated_effects ’Calls & Control & Cumulated effects’

alias print_icfg_with_control_regions ’Calls & Control & Regions’

alias print_icfg_with_control_in_regions ’Calls & Control & In Regions’

alias print_icfg_with_control_out_regions ’Calls & Control & Out regions’

10.7.2 Minimal ICFG

Display the plain ICFG, without any decoration.

print_icfg > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

10.7.3 Minimal ICFG with Complexities

Display the ICFG decorated with complexities.

print_icfg_with_complexities > MODULE.icfg_file

< PROGRAM.entities

243

< MODULE.code

< CALLEES.icfg_file

< MODULE.summary_complexity

< MODULE.complexities

10.7.4 Minimal ICFG with Preconditions

Display the ICFG decorated with preconditions. They are expressed in the callee
name space to evaluate the interest of cloning, depending on the information
available to the callee at a given call site.

print_icfg_with_preconditions > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.summary_precondition

< MODULE.summary_effects

< MODULE.preconditions

< MODULE.cumulated_effects

10.7.5 Minimal ICFG with Preconditions

Display the ICFG decorated with total preconditions. They are expressed in
the callee name space to evaluate the interest of cloning, depending on the
information available to the callee at a given call site.

print_icfg_with_total_preconditions > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.summary_total_postcondition

< MODULE.summary_effects

< MODULE.total_preconditions

< MODULE.cumulated_effects

10.7.6 Minimal ICFG with Transformers

Display the ICFG decorated with transformers.

print_icfg_with_transformers > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.transformers

< MODULE.summary_transformer

< MODULE.cumulated_effects

10.7.7 Minimal ICFG with Proper Effects

Display the ICFG decorated with the proper effects.

244

print_icfg_with_proper_effects > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.proper_effects

10.7.8 Minimal ICFG with filtered Proper Effects

Display the ICFG decorated with the write proper effects filtered for a variable.

print_icfg_with_filtered_proper_effects > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.proper_effects

< CALLEES.summary_effects

10.7.9 Minimal ICFG with Cumulated Effects

Display the ICFG decorated with cumulated effects.

print_icfg_with_cumulated_effects > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.cumulated_effects

< MODULE.summary_effects

10.7.10 Minimal ICFG with Regions

Display the ICFG decorated with regions.

print_icfg_with_regions > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.regions

< MODULE.summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.7.11 Minimal ICFG with IN Regions

Display the ICFG decorated with IN regions.

print_icfg_with_in_regions > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.in_regions

< MODULE.in_summary_regions

245

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.7.12 Minimal ICFG with OUT Regions

Display the ICFG decorated with OUT regions.

print_icfg_with_out_regions > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.out_regions

< MODULE.out_summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.7.13 ICFG with Loops

Display the plain ICFG with loops, without any decoration.

print_icfg_with_loops > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

10.7.14 ICFG with Loops and Complexities

Display the ICFG decorated with loops and complexities.

print_icfg_with_loops_complexities > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.summary_complexity

< MODULE.complexities

10.7.15 ICFG with Loops and Preconditions

Display the ICFG decorated with preconditions.

print_icfg_with_loops_preconditions > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.summary_precondition

< MODULE.preconditions

< MODULE.cumulated_effects

246

10.7.16 ICFG with Loops and Total Preconditions

Display the ICFG decorated with total preconditions.

print_icfg_with_loops_total_preconditions > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.summary_total_postcondition

< MODULE.total_preconditions

< MODULE.cumulated_effects

10.7.17 ICFG with Loops and Transformers

Display the ICFG decorated with transformers.

print_icfg_with_loops_transformers > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.transformers

< MODULE.summary_transformer

< MODULE.cumulated_effects

10.7.18 ICFG with Loops and Proper Effects

Display the ICFG decorated with proper effects.

print_icfg_with_loops_proper_effects > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.proper_effects

10.7.19 ICFG with Loops and Cumulated Effects

Display the ICFG decorated with cumulated effects.

print_icfg_with_loops_cumulated_effects > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.cumulated_effects

< MODULE.summary_effects

10.7.20 ICFG with Loops and Regions

Display the ICFG decorated with regions.

print_icfg_with_loops_regions > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

247

< CALLEES.icfg_file

< MODULE.regions

< MODULE.summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.7.21 ICFG with Loops and IN Regions

Display the ICFG decorated with IN regions.

print_icfg_with_loops_in_regions > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.in_regions

< MODULE.in_summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.7.22 ICFG with Loops and OUT Regions

Display the ICFG decorated with the OUT regions.

print_icfg_with_loops_out_regions > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.out_regions

< MODULE.out_summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.7.23 ICFG with Control

Display the plain ICFG with loops, without any decoration.

print_icfg_with_control > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

10.7.24 ICFG with Control and Complexities

Display the ICFG decorated with the complexities.

print_icfg_with_control_complexities > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

248

< MODULE.summary_complexity

< MODULE.complexities

10.7.25 ICFG with Control and Preconditions

Display the ICFG decorated with the preconditions.

print_icfg_with_control_preconditions > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.summary_precondition

< MODULE.preconditions

< MODULE.cumulated_effects

10.7.26 ICFG with Control and Total Preconditions

Display the ICFG decorated with the preconditions.

print_icfg_with_control_total_preconditions > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.summary_total_postcondition

< MODULE.total_preconditions

< MODULE.cumulated_effects

10.7.27 ICFG with Control and Transformers

Display the ICFG decorated with the transformers.

print_icfg_with_control_transformers > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.transformers

< MODULE.summary_transformer

< MODULE.cumulated_effects

10.7.28 ICFG with Control and Proper Effects

Display the ICFG decorated with the proper effects.

print_icfg_with_control_proper_effects > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.proper_effects

249

10.7.29 ICFG with Control and Cumulated Effects

Display the ICFG decorated with the cumulated effects.

print_icfg_with_control_cumulated_effects > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.cumulated_effects

< MODULE.summary_effects

10.7.30 ICFG with Control and Regions

Display the ICFG decorated with the regions.

print_icfg_with_control_regions > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.regions

< MODULE.summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.7.31 ICFG with Control and IN Regions

Display the ICFG decorated with the IN regions.

print_icfg_with_control_in_regions > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.in_regions

< MODULE.in_summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

10.7.32 ICFG with Control and OUT Regions

Display the ICFG decorated with the OUT regions.

print_icfg_with_control_out_regions > MODULE.icfg_file

< PROGRAM.entities

< MODULE.code

< CALLEES.icfg_file

< MODULE.out_regions

< MODULE.out_summary_regions

< MODULE.preconditions

< MODULE.transformers

< MODULE.cumulated_effects

250

10.8 Data Dependence Graph File

This file contains the data dependence graph.
Known bug: there is no precise relationship between the dependence graph

seen by the parallelization algorithms selected and any of its many views...
Two text formats are available: the default format which includes depen-

dence cone and a SRU format which packs all information about one arc on
one line and which replaces the dependence cone by the dependence direction
vector (DDV). The line numbers given with this format are in fact relative
(approximatively...) to the statement line in the PIPS output.

The SRU format was defined with researchers at Slippery Rock University
(PA). The property

PRINT_DEPENDENCE_GRAPH_USING_SRU_FORMAT 10.8.10.1

is set to FALSE by default.
Two graph format, daVinci and GraphViz, are also available.

10.8.1 Menu For Dependence Graph Views

alias dg_file ’Dependence Graph View’

alias print_effective_dependence_graph ’Default’

alias print_loop_carried_dependence_graph ’Loop Carried Only’

alias print_whole_dependence_graph ’All arcs’

alias print_filtered_dependence_graph ’Filtered Arcs’

alias print_filtered_dependence_daVinci_graph ’Filtered Arcs Output to uDrawGraph’

alias impact_check ’Check alias impact’

alias print_chains_graph ’Chains’

alias print_dot_chains_graph ’Chains (for dot)’

alias print_dot_dependence_graph ’Dependence graph (for dot)’

10.8.2 Effective Dependence Graph View

Display dependence levels for loop-carried and non-loop-carried dependence arcs
due to non-privatized variables. Do not display dependence cones.

print_effective_dependence_graph > MODULE.dg_file

< PROGRAM.entities

< MODULE.code

< MODULE.dg

10.8.3 Loop-Carried Dependence Graph View

Display dependence levels for loop-carried dependence arcs only. Ignore arcs
labeled by private variables and do not print dependence cones.

print_loop_carried_dependence_graph > MODULE.dg_file

< PROGRAM.entities

< MODULE.code

< MODULE.dg

251

10.8.4 Whole Dependence Graph View

Display dependence levels and dependence polyhedra/cones for all dependence
arcs, whether they are loop carried or not, whether they are due to a private
variable (and ignored by parallelization algorithms) or not. Dependence cones
labeling arcs are printed too.

print_whole_dependence_graph > MODULE.dg_file

< PROGRAM.entities

< MODULE.code

< MODULE.dg

10.8.5 Filtered Dependence Graph View

Same as print_whole_dependence_graph 10.8.4 but it’s filtered by some vari-
ables. Variables to filter is a comma separated list set by user via property
“EFFECTS FILTER ON VARIABLE”.

print_filtered_dependence_graph > MODULE.dg_file

< PROGRAM.entities

< MODULE.code

< MODULE.dg

10.8.6 Filtered Dependence daVinci Graph View

Same as print_filtered_dependence_graph 10.8.5 but its output is uDraw-
Graph11 format.

print_filtered_dependence_daVinci_graph > MODULE.dvdg_file

< PROGRAM.entities

< MODULE.code

< MODULE.dg

10.8.7 Impact Check

Check impact of alias on the dependance graph. RK: What
is that? FI:
Maybe, we
should sign
our contri-
butions? See
validation?

Note: the signature of the pass implies that it is a transformation pass, not
a display pass. The location of its description is wrong.

impact_check > MODULE.code

< PROGRAM.entities

< MODULE.alias_associations

< MODULE.cumulated_effects

< MODULE.summary_effects

< MODULE.proper_effects

< MODULE.preconditions

< MODULE.summary_precondition

< MODULE.dg

< ALL.code

11http://www.informatik.uni-bremen.de/uDrawGraph

252

http://www.informatik.uni-bremen.de/uDrawGraph
http://www.informatik.uni-bremen.de/uDrawGraph
http://www.informatik.uni-bremen.de/uDrawGraph

10.8.8 Chains Graph View

Display the def-use or chains graph in a textual format. The following properties
control the output:

PRINT_DEPENDENCE_GRAPH 10.8.10.1
PRINT_DEPENDENCE_GRAPH_WITHOUT_PRIVATIZED_DEPS 10.8.10.1
PRINT_DEPENDENCE_GRAPH_WITHOUT_NOLOOPCARRIED_DEPS 10.8.10.1
PRINT_DEPENDENCE_GRAPH_WITH_DEPENDENCE_CONES 10.8.10.1
PRINT_DEPENDENCE_GRAPH_USING_SRU_FORMAT 10.8.10.1

print_chains_graph > MODULE.dg_file

< PROGRAM.entities

< MODULE.code

< MODULE.chains

10.8.9 Chains Graph Graphviz Dot View

Display the chains graph in graphviz dot format.

print_dot_chains_graph > MODULE.dotdg_file

< PROGRAM.entities

< MODULE.code

< MODULE.chains

10.8.10 Data Dependence Graph Graphviz Dot View

Display the dependence graph in graphviz dot format.
Using pyps, some convenient functions are provide, for instance :

import pypsex

w = workspace (. . .)

w. fun . my function name . view dg ()

which generate in the current directory a file named my function name.png.

print_dot_dependence_graph > MODULE.dotdg_file

< PROGRAM.entities

< MODULE.code

< MODULE.dg

10.8.10.1 Properties Used to Select Arcs to Display

Here are the properties used to control the printing of dependence graphs in
a file called module name.dg. These properties should not be used explicitly
because they are set implicitly by the different print-out procedures available in
pipsmake.rc. However, not all combinations are available from pipsmake.rc.

PRINT_DEPENDENCE_GRAPH FALSE

To print the dependence graph without the dependences on privatized vari-
ables

253

PRINT_DEPENDENCE_GRAPH_WITHOUT_PRIVATIZED_DEPS FALSE

To print the dependence graph without the non-loop-carried dependences:

PRINT_DEPENDENCE_GRAPH_WITHOUT_NOLOOPCARRIED_DEPS FALSE

To print the dependence graph with the dependence cones:

PRINT_DEPENDENCE_GRAPH_WITH_DEPENDENCE_CONES FALSE

To print the dependence graph in a computer friendly format defined by
Deborah Whitfield (SRU):

PRINT_DEPENDENCE_GRAPH_USING_SRU_FORMAT FALSE

10.8.11 Properties for Dot output

Here are the properties available to tune the Dot output, read dot documenta-
tion for available colors, style, shape, etc.

PRINT_DOTDG_STATEMENT TRUE

Print statement code and not only ordering inside nodes.

PRINT_DOTDG_TOP_DOWN_ORDERED TRUE

Add a constraint on top-down ordering for node instead of free dot place-
ment.

PRINT_DOTDG_CENTERED FALSE

Should dot produce a centered graph ?

PRINT_DOTDG_TITLE ""

PRINT_DOTDG_TITLE_POSITION "b"

Title and title position (t for top and b for bottom) for the graph.

PRINT_DOTDG_BACKGROUND "white"

Main Background.

PRINT_DOTDG_NODE_SHAPE "box"

Shape for statement nodes.

PRINT_DOTDG_NODE_SHAPE_COLOR "black"

PRINT_DOTDG_NODE_FILL_COLOR "white"

PRINT_DOTDG_NODE_FONT_COLOR "black"

PRINT_DOTDG_NODE_FONT_SIZE "18"

254

PRINT_DOTDG_NODE_FONT_FACE "Times -Roman"

Color for the shape, background, and font of each node.

PRINT_DOTDG_FLOW_DEP_COLOR "red"

PRINT_DOTDG_ANTI_DEP_COLOR "green"

PRINT_DOTDG_OUTPUT_DEP_COLOR "blue"

PRINT_DOTDG_INPUT_DEP_COLOR "black"

Color for each type of dependence

PRINT_DOTDG_FLOW_DEP_STYLE "solid"

PRINT_DOTDG_ANTI_DEP_STYLE "solid"

PRINT_DOTDG_OUTPUT_DEP_STYLE "solid"

PRINT_DOTDG_INPUT_DEP_STYLE "dashed"

Style for each type of dependence

10.8.12 Loop Nest Dependence Cone

Before applying a loop transformation, information on the loop nest dependen-
cies can help to check its legality. This pass enumerates the elements of the
dependence cone that represent dependencies inside the loop nest. Loop label
should be given.

alias dc_file ’Loopnest Dependence Cone’

print_loopnest_dependence_cone > MODULE.dc_file

< PROGRAM.entities

< MODULE.code

< MODULE.dg

10.9 Fortran to C prettyprinter

A basic and experimental C dumper to output a Fortran program in C code.
It is not the same as the default pretty printer that is normaly used to pretty
print C code in C. This pass is mainly use inside PIPS and Par4All to be able
to generate call to CUDA kernels from a fortran code. The kernel is supposed
not to use I/O intrinsics (such as WRITE, READ), they are not handle at the
moment (and not usefull in the CUDA context) by the crough printer. However
it is still possible to print the C code with the name of the fortran intrinsic using
the property CROUGH PRINT UNKNOWN INTRINSIC.

255

print_crough > MODULE.crough

< PROGRAM.entities

< MODULE.code

< MODULE.summary_effects

Display the crough output of a fortran function.

print_c_code > MODULE.c_printed_file

< MODULE.crough

Once C version of fortran code has been generated, ones might like to call
this C functions from fortran code. A convenient way to do this is to use an
interface in the fortran code. PIPS can generate the interface module for any
function using the following pass.

print_interface > MODULE.interface

< PROGRAM.entities

< MODULE.code

10.9.1 Properties for Fortran to C prettyprinter

By default the crough pass fails if it encounters a fortran intrinsic that cannot
be translated to C. However it is still possible to print the C code with the name
of the fortran intrinsic using the following property.

CROUGH_PRINT_UNKNOWN_INTRINSIC FALSE

By default the crough pass tries to match the best C type for any Fortran
type. Here is the matches between Fortran and C variables:

• INTEGER is matched to int.

• INTEGER*4 is matched to int.

• INTEGER*8 is matched to long long int.

• REAL is matched to float.

• REAL*4 is matched to float.

• REAL*8 is matched to double.

However, many Fortran compilers (ifort, gfortran) allow to change the type
size at compile time. It is possible to do the same by setting the property
CROUGH USER DEFINED TYPE to TRUE. In such a case the include file
specified by the property CROUGH INCLUDE FILE is included by any file gen-
erated using crough. It has to define (using #define or typedef) the two types de-
fined by the properties CROUGH INTEGER TYPE and CROUGH REAL TYPE.
Obviously those types are used in the generated C file to declare variables that
has the types INTEGER or REAL in the original Fortan file. When choosing
that solution all INTEGER and REAL (including INTEGER*4, INTEGER*8,
REAL*4 and REAL*8) variables will be set to the same user defined types.

CROUGH_USER_DEFINED_TYPE FALSE

256

CROUGH_INCLUDE_FILE "p4a_crough_types.h"

CROUGH_INTEGER_TYPE "p4a_int"

CROUGH_REAL_TYPE "p4a_real"

Is is possible to prettyprint function parameters that are arrays as pointers
using the property CROUGH ARRAY PARAMETER AS POINTER

CROUGH_ARRAY_PARAMETER_AS_POINTER FALSE

When PRETTYPRINT C FUNCTION NAME WITH UNDERSCORE is
set to TRUE, an underscore is added at the end of the module name. This
is needed when translating only some part of a Fortran Program to C. This
property must be used with great care, so that only interface function names
are changed : the function names in subsequent calls are not modified. An other
solution to call a C function from a fortran program is to use/declare an interface
in the fortran source code (This feature is part of the Fortran 2003 standard but
many Fortran95 compilers support it). The property CROUGH FORTRAN USES INTERFACE
can be set to TRUE when the Fotran code integrates interfaces. In such a case,
the unmodified scalar function parameters (by the function or any of its callees)
are expected to be passed by values, the other parameters are passed by pointers.
Finally when using interfaces it is also possible to pass all the scalar variables
by values using the propety CROUGH SCALAR BY VALUE IN FCT DECL.
Now, let’s talk about function called from the fortran code PIPS has to print in
C. The problem on how to pass scalars (by value or by pointer) also exists. At
the moment PIPS is less flexible for function call. One of the solution has to be
choosen using the property CROUGH SCALAR BY VALUE IN FCT CALL.

PRETTYPRINT_C_FUNCTION_NAME_WITH_UNDERSCORE FALSE

CROUGH_FORTRAN_USES_INTERFACE FALSE

CROUGH_SCALAR_BY_VALUE_IN_FCT_DECL FALSE

CROUGH_SCALAR_BY_VALUE_IN_FCT_CALL FALSE

If the property DO RETURN TYPE AS TYPEDEF is set to TRUE the
crough phase additionaly does the same thing that the phase set return type as typedef
does (cf section 2). In such a case the same property SET RETURN TYPE AS TYPEDEF NEW TYPE
is taken into account. This is only posible for the SUBROUTINES and the
FUNCTIONS but not for the PROGRAMS

DO_RETURN_TYPE_AS_TYPEDEF FALSE

Using the property INCLUDE FILES LIST, it is possible to insert some
#include statement before to output the code. The INCLUDE FILES LIST is
a string interpreted as coma (and/or blank) separated list of files.

CROUGH_INCLUDE_FILE_LIST ""

257

10.10 Prettyprinters Smalltalk

This pass is used by the phrase project, which is an attempt to automatically
(or semi-automatically) transform high-level language application into control
code with reconfigurable logic accelerators (such as fpgas or data-paths with
alu).

This pass is used in context of PHRASE project for synthetisation of recon-
figurable logic for a portion of initial code. This function can be viewed as a
SmallTalk pretty-printer of a subset of Fortran or C.

It is used as input for the Madeo synthesis tools from UBO/AS that is
written in SmallTalk and take circuit behaviour in SmallTalk.

It is an interesting language fusion...

alias print_code_smalltalk ’Smalltalk Pretty-Printer’

print_code_smalltalk > MODULE.smalltalk_code_file

< PROGRAM.entities

< MODULE.code

10.11 Prettyprinter for the Polyhderal Compiler
Collection (PoCC)

This pass is used for printing pragmas scop and endscop which delimit the
static control parts (SCoP) of the code. Instrumented code can be an input for
any PoCC compiler.

alias pocc_prettyprinter ’pocc_prettyprinter’

pocc_prettyprinter > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.static_control

For the outlining of the control static parts, function prefix names to be used
during the generation:

SCOP_PREFIX "SCoP"

STATIC_CONTROLIZE_ACROSS_USER_CALLS TRUE

Because user function calls are not allowed in PoCC static control parts,
whereas they are generally accepted in PIPS (see Arnauld Leservot’s PhD), we
introduce a property to control the impact of user calls. This property could
be called POCC_COMPATIBILITY if there were a set of limiting rules to apply
for PoCC, but user calls are the only current issue12 So the property is called
STATIC_CONTROLIZE_ACROSS_USER_CALLS 10.11 and its default value is TRUE.

12The PLUTO compiler does not support intrinsics calls either, althoug it is part of the
PoCC collection.

258

10.11.1 Rstream interface

Detect non-SCoP of the code. Based on R-Stream constraints. Must be pre-
ceded by the pocc prettyprinter phase.

alias rstream_interface ’rstream_interface’

rstream_interface > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.static_control

10.12 Regions to loops

This phase is designed to replace the body of a function by simple assign-
ments. The new body is representative of the regions described by the old
body. When PSYSTEME_TO_LOOPNEST_FOR_RSTREAM 10.12 is set to True, the
function in charge of computing loop nests from systems chooses the constant
values rather than the symbolic values for loop ranges.

alias regions_to_loops ’regions_to_loops’

regions_to_loops > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.summary_regions

PSYSTEME_TO_LOOPNEST_FOR_RSTREAM FALSE

10.13 Prettyprinter for CLAIRE

This pass is used for the DREAM-UP project. The internal representation of
a C or Fortran program is dumped as CLAIRE objects, either DATA ARRAY or
TASK. CLAIRE is an object-oriented language used to develop constraint solvers.

The only type constructor is array. Basic types must be storable on a fixed
number of bytes.

The code structure must be a sequence of loop nests. Loops must be perfectly
nested and parallel. Each loop body must be a single array assignment. The
right-hand side expression must be a function call.

If the input code does not meet these conditions, a user error is generated.
This pass is used for the specification input and transformation in the XML

format which can further be used by number of application as input. This
function can be viewed as a XML pretty-printer of a subset of C and Fortran
programs.

alias print_xml_code ’XML Pretty-Printer’

print_xml_code > MODULE.xml_printed_file

< PROGRAM.entities

259

< MODULE.code

< MODULE.complexities

< MODULE.preconditions

< MODULE.regions

This phase was developped for the DREAM-UP/Ter@ops project to generate
models of functions used for automatic mapping by APOTRES []. It generates
XML code like the print xml code pass, but the input contains explicitly
loops to scan motifs. It is useless for other purposes. RK: gnih?

FI: to be
deleted?
CA: more to
say?

alias print_xml_code_with_explicit_motif ’XML Pretty-Printer with explicit motif’

print_xml_code_with_explicit_motif > MODULE.xml_printed_file

< PROGRAM.entities

< MODULE.code

This pass is used in the DREAM-UP project for module specification input
and transformation (?) []. This function can be viewed as a CLAIRE pretty-
printer of a subset of Fortran.

alias print_claire_code ’Claire Pretty-Printer’

print_claire_code > MODULE.claire_printed_file

< PROGRAM.entities

< MODULE.code

< MODULE.preconditions

< MODULE.regions

This pass generates CLAIRE code like the print claire code pass, but
the input contains explicitly loops to scan motifs.

alias print_claire_code_with_explicit_motif ’Claire Pretty-Printer with explicit motif’

print_claire_code_with_explicit_motif > MODULE.claire_printed_file

< PROGRAM.entities

< MODULE.code

This pass was developped for the Ter@ops project to generate models of
functions and application used for automatic mapping by SPEAR. It generates
XML code. There are two versions: one using points-to analysis information
and the second one without points-to analyses.

XML_APPLICATION_MAIN "main"

alias print_xml_application ’Spear XML Pretty-Printer’

print_xml_application > MODULE.spear_code_file

> MODULE.task_variable_changed_by

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

260

< MODULE.preconditions

< MODULE.regions

< MODULE.dg

< CALLEES.code

< CALLEES.summary_effects

< CALLEES.spear_code_file

alias print_xml_application_with_points_to ’Spear XML Pretty-Printer (with pt)’

print_xml_application_with_points_to > MODULE.spear_code_file

> MODULE.task_variable_changed_by

< PROGRAM.entities

< MODULE.code

< MODULE.points_to

< MODULE.proper_effects

< MODULE.preconditions

< MODULE.regions

< MODULE.dg

< CALLEES.code

< CALLEES.summary_effects

< CALLEES.spear_code_file

print_xml_application_main > MODULE.spear_app_file

< PROGRAM.entities

< MODULE.code

< MODULE.points_to

< MODULE.proper_effects

< MODULE.preconditions

< MODULE.regions

< MODULE.dg

< MODULE.spear_code_file

< MODULE.task_variable_changed_by

< CALLEES.summary_effects

261

Chapter 11

Feautrier Methods (a.k.a.
Polyhedral Method)

This part of PIPS was implemented at Centre d’Études Atomiques, Limeil-
Brévannes, by Benôıt deDinechin, Arnauld Leservot and AlexisPlatonoff.

Unfortunately, this part is no longer used in PIPS right now because of some
typing issues in the code. To be fixed when somebody needs it.

11.1 Static Control Detection

static_controlize 11.1 transforms all the loops in order to have steps equal
to one. Only loops with constant step different than one are normalized. Nor-
malized loop counters are instantiated as a new kind of entity: NLC. This entity
is forwarded in the inner statements. It also gets the structural parameters and
makes new ones when it is possible (“NSP”). It detects enclosing loops, enclos-
ing tests and the static_control property for each statement. Those three
informations are mapped on statements. Function static_controlize 11.1
also modifies code (> MODULE.code). It is not specified here for implementation
bug purpose.

The definition of a static control program is given in [21].

alias static_controlize ’Static Controlize’

static_controlize > MODULE.static_control

< PROGRAM.entities

< MODULE.code

See the alias print_code_static_control 10.2.19 and function print_code_static_control 10.2.19
in Section 10.1 and so on.

11.2 Scheduling

Function scheduling computes a schedule, called Base De Temps in French,
for each assignment instruction of the program. This computation is based on
the Array Data Flow Graph (see [22, 23]).

262

The output of the scheduling is of the following form: (the statements are
named in the same manner as in the array DFG)

W: Statement examined

pred: Conditions for which the following schedule is valid

dims: Time at which the execution of W is schedule, in function of the loop
counters of the surrounding loops.

11.3 Code Generation for Affine Schedule

Function reindexing transforms the code using the schedule (bdt) and the map-
ping (plc) (see [15, 46]). The result is a new resource named reindexed_code.

11.4 Prettyprinters for CM Fortran

How to get a pretty-printed version of reindexed_code ? Two prettyprinters
are available. The first one produces CM Fortran and the result is stored in a
file suffixed by .fcm. The second one produces CRAFT Fortran and the result
is stored in a file suffixed by .craft.

Use the polyhedric method to parallelize the code and display the reindexed
code in a CMF (parallel Fortran extension from TMC, Thinking Machine Cor-
poration) style.

Use the polyhedric method to parallelize the code and display the reindexed
code in a CRAFT (parallel Fortran used on the Cray T3 serie) style.

263

Chapter 12

User Interface Menu
Layouts

For presentation issues, it is useful to select only the features that are needed by
a user and to display them in a comprehensive order. For that purpose, a layout
description mechanism is used here to pick among the PIPS phases described
above.

For each menu, the left part before the arrow, ->, is the menu item title
and the right part is the PIPS procedure to be called when the item is selected.
For the view menu (section 12.1, there is two display methods to view resources
separated by a comma, the first one is the method for wpips, the second one is
the one used in epip, followed by the icon to use.

Use a blank line to insert a menu separator.

12.1 View Menu

The view menu is displayed according to the following layout and methods
(wpips method, epip method, icon name for the frame):

View

printed_file -> wpips_display_plain_file,epips-display-fortran-file,sequential

parsed_printed_file -> wpips_display_plain_file,epips-display-fortran-file,user

alias_file -> wpips_display_plain_file,epips-display-plain-file,-

graph_printed_file -> wpips_display_graph_file_display,epips-display-graph-file,-

dg_file -> wpips_display_plain_file,epips-display-plain-file,DG

adfg_file -> wpips_display_plain_file,epips-display-plain-file,-

bdt_file -> wpips_display_plain_file,epips-display-plain-file,-

plc_file -> wpips_display_plain_file,epips-display-plain-file,-

callgraph_file -> wpips_display_plain_file,epips-display-xtree-file,callgraph

dvcg_file -> wpips_display_graph_file_display,epips-display-graph-file,callgraph

icfg_file -> wpips_display_plain_file,epips-display-plain-file,ICFG

264

wp65_compute_file -> wpips_display_WP65_file,epips-display-distributed-file,WP65_PE

parallelprinted_file -> wpips_display_plain_file,epips-display-fortran-file,parallel

flinted_file -> wpips_display_plain_file,epips-display-plain-file,-

12.2 Transformation Menu

The transformation menu is displayed as here:
Transformations

distributer

full_unroll

unroll

loop_interchange

loop_normalize

strip_mine

loop_tiling

tiling_sequence

privatize_module

array_privatizer

declarations_privatizer

restructure_control

unspaghettify

simplify_control

simplify_control_directly

partial_eval

dead_code_elimination

stf

freeze_variables

partial_redundancy_elimination

array_bound_check_bottom_up

array_bound_check_top_down

array_bound_check_interprocedural

array_resizing_bottom_up

array_resizing_top_down

alias_check

atomizer

new_atomizer

clone

clone_substitute

clone_on_argument

265

clean_declarations

unsplit

static_controlize

At the end of this menu is added a special entry in wpips, the “Edit” line that
allows the user to edit the original file. It is seen as a very special transformation,
since the user can apply whatever transformation (s)he wants...

266

Chapter 13

Conclusion

New functionalities can easily be added to PIPS. The new pass names must be
declared somewhere in this file as well as the resources required and produced.
Then, make must be run in the Documentation directory and the pipsmake

library must be recompiled and PIPS interfaces (pips, tpips, wpips) linked
with the new C modules.

It is much more difficult to add a new type of resources, because PIPS

database manager, pipsdbm, is not as automatized as pipsmake. This is ex-
plained in [28].

267

Chapter 14

Known Problems

1. pipsmake behavior may be erratic if files are accessed across a nfs network
of non-synchronized workstations (see for instance UNIX rdate command
or better ntp daemon).

2. STOP statements in subroutines (i.e. control effects and control dependen-
cies) are not taken into account when parallelizing the caller.

268

Bibliography

[1] Aho, A. V., Sethi, R., and Ullman, J. D. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986. 48, 56, 162, 173

[2] Allen, R., and Kennedy, K. Automatic translation of fortran programs
to vector form. TOPLAS 9 (Oct. 1987), 491–542. 60, 149

[3] Amini, M., Coelho, F., Irigoin, F., and Keryell, R. Static com-
pilation analysis for host-accelerator communication optimization. In In-
ternational Workshop on Languages and Compilers for Parallel Computing
(LCPC) (Fort Collins, Colorado, May 2011). 136

[4] Amini, M., Irigoin, F., and Keryell, R. Compilation et optimisa-
tion statique des communications hôte-accélérateur. In Rencontres Fran-
cophones du Parallélisme (RenPar) (Saint-Malo, France, May 2011). 136

[5] Ancourt, C., Coelho, F., and Irigoin, F. A Modular Static Analysis
Approach to Affine Loop Invariants Detection. In NSAD: 2nd Interna-
tional Workshop on Numerical and Symbolic Abstract Domains (Perpig-
nan, France, Sept. 2010), ENCTS, Elsevier. 65

[6] Ancourt, C., and Irigoin, F. Scanning polyhedra with do loops. In
PPOPP (1991), pp. 39–50. 122

[7] ANSI. Ansi x3.9-1978. programming language fortran. Tech. rep., Amer-
ican National Standards Institute, 1978. Also known as ISO 1539-1980,
informally known as FORTRAN 77. 108

[8] Aung, M., Horwitz, S., Joiner, R., and Reps, T. Specialization
slicing. In Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (New York, NY, USA,
2014), PLDI ’14, ACM, pp. 167–167. 190

[9] Aung, M., Horwitz, S., Joiner, R., and Reps, T. Specialization
slicing. ACM Trans. Program. Lang. Syst. 36, 2 (June 2014), 5:1–5:67. 190

[10] Baron, B. Construction flexible et cohérente pour la compilation inter-
procédurale. Tech. Rep. EMP-CRI-E157, ENSMP, 1991. 1

[11] Baron, B., Irigoin, F., and Jouvelot, P. Projet pips. manuel util-
isateur du paralléliseur batch. Tech. Rep. EMP-CRI-E144, ENSMP, 1991.
1

269

[12] Callahan, D., Cooper, K. D., and Kennedy, K. Interprocedural
constant propagation. In In Proceedings of the SIGPLAN ’86 Symposium
on Compiler Construction (1986), pp. 152–161. 65

[13] Carr, S. Memory Hierarchy Management. PhD thesis, Rice University,
Sept. 1992. 196

[14] Carr, S., and Kennedy, K. Scalar replacement in the presence of con-
ditional control flow. Softw. Pract. Exper. 24 (January 1994), 51–77. 196

[15] Collard, J.-F. Code generation in automatic parallelizers. Tech. Rep.
93-21, LIP-IMAG, 1993. 263

[16] Cousot, P., and Halbwachs, N. Automatic discovery of linear re-
straints among variables of a program. In Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages
(New York, NY, USA, 1978), POPL ’78, ACM, pp. 84–96. 65

[17] Creusillet, B. Automatic Task Generation on
the SCMP architecture for data flow applications.
http://www.par4all.org/documentation/publications, 2011. 142

[18] Creusillet, B., and Irigoin, F. Interprocedural array region analyses.
In Languages and Compilers for Parallel Computing (Aug. 1995), no. 1033
in Lecture Notes in Computer Science, Springer-Verlag, pp. 46–60. 84, 89

[19] Creusillet, B., and Irigoin, F. Interprocedural array region analyses.
IJPP 24 (December 1996), 513–546. 89

[20] Creusillet-Apvrille, B. Analyses de régions de tableaux et applications.
PhD thesis, École des mines de Paris, Dec. 1996. 87, 89, 93, 204

[21] Feautrier, P. Dataflow analysis of array and scalar references.
International Journal of Parallel Programming 20 (1991), 23–53.
10.1007/BF01407931. 262

[22] Feautrier, P. Some efficient solutions to the affine scheduling problem:
I. One-dimensional time. International Journal of Parallel Programming
21 (Oct. 1992), 313–348. 262

[23] Feautrier, P. Some efficient solutions to the affine scheduling problem.
Part II. Multidimensional time. International Journal of Parallel Program-
ming 21 (1992), 389–420. 10.1007/BF01379404. 262

[24] Griebl, M., Feautrier, P., and Lengauer, C. Index set splitting.
International Journal of Parallel Programming 28 (1999), 607–631. 152

[25] Guelton, S. Building Source-to-Source compilers for Heterogenous tar-
gets. PhD thesis, Télécom Bretagne, 2011. 201

[26] Irigoin, F. Partitionnement des boucles imbriquées. Une technique
d’optimisation pour les programmes scientifiques. PhD thesis, Université
Pierre et Marie Curie (Paris 6), June 1987. 60

270

[27] Irigoin, F. Interprocedural analyses for programming environments. In
Workshop on Environments and Tools For Parallel Scientific Computing,
CNRS-NSF (Sept. 1992). 65

[28] Irigoin, F. Projet pips. environnement de dÃ©veloppement. Tech. Rep.
E-146, CRI, École des mines de Paris, 1994. 267

[29] Irigoin, F. Detecting affine loop invariants using a modular static analysis.
Tech. Rep. A-368, CRI, École des mines de Paris, 2005. 65

[30] Irigoin, F., and Ancourt, C. Final report on software caching for
simulated global memory, puma esprit 2701, deliberable 6.5.1. Emp-caii-
i155, École des Mines de Paris, Nov. 1991. 121

[31] Irigoin, F., and Ancourt, C. Automatic code distribution. In CPC
(1992). 121

[32] Irigoin, F., and Ancourt, C. Compilation pour machines à mémoire
répartie. In Algorithmique Parallèle, M. Cosnard, Nivat, and Y. Robert,
Eds., École de Printemps du LITP. Masson, 1992. 121

[33] Irigoin, F., Jouvelot, P., and Triolet, R. Semantical interproce-
dural parallelization: an overview of the PIPS project. In Proceedings of
the 5th international conference on Supercomputing (New York, NY, USA,
1991), ICS ’91, ACM, pp. 244–251. 1, 41

[34] Irigoin, F., Jouvelot, P., and Triolet, R. Pips: Internal represen-
tation of fortran code. Tech. Rep. CAI E-166, École des mines de Paris,
1992. This report is constantly updated and available on-line. 30, 48, 65

[35] Irigoin, F., and Triolet, R. Automatic do-loop partitioning for improv-
ing data locality in scientific programs. In Vector and Parallel Processors
for Scientific Computation 2 (Rome, Sept. 1987). 60

[36] Irigoin, F., and Triolet, R. Computing dependence direction vectors
and dependence cones with linear systems. Tech. Rep. CAI E-94, École des
mines de Paris, 1987. 60

[37] Irigoin, F., and Triolet, R. Supernode partitioning. In Proceedings of
the 15th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages (New York, NY, USA, 1988), POPL ’88, ACM, pp. 319–
329. 60

[38] Jouvelot, P., and Gifford, D. K. Reasoning about continuations with
control effects. In Proceedings of the ACM SIGPLAN 1989 Conference on
Programming language design and implementation (New York, NY, USA,
1989), PLDI ’89, ACM, pp. 218–226. 48

[39] Karr, M. Affine Relationships Among Variables of a Program. Acta
Informatica, 133–151. 65

[40] Li, Z., and Yew, P.-C. Program parallelization with interproce-
dural analysis. The Journal of Supercomputing 2 (1988), 225–244.
10.1007/BF00128178. 51

271

[41] Muchnick, S. S. Advanced compiler design and implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1997. 159, 160, 162,
173

[42] Nguyen, N. T. V. Vérifications efficaces des applications scientifiques par
analyse statique et instrumentation de code. Efficient and effective software
verifications for scientific applications using static analysis and code instru-
mentation. PhD thesis, École des mines de Paris, November 2002. 105, 107,
108, 109, 192, 193

[43] Nguyen, T. V. N., and Irigoin, F. Efficient and effective array bound
checking. ACM Trans. Program. Lang. Syst. 27 (May 2005), 527–570. 105

[44] Osterweil, L. Toolpack-an experimental software development envi-
ronment research project. IEEE Transactions on Software Engineering
9 (1983), 673–685. 168

[45] Platonoff, A. Calcul des effets des procédures au moyen des régions.
Emp-caii-i132, École des Mines de Paris, June 1990. 84, 89

[46] Platonoff, A. Contribution Ã la Distribution Automatique des
DonnÃ©es pour Machines Massivement ParallÃšles. PhD thesis, Uni-
versité Pierre et Marie Curie, Mar 1995. 263

[47] Pollicini, A. A. Using Toolpack Software Tools, 1st ed. Kluwer Academic
Publishers, Norwell, MA, USA, 1988. 168

[48] Triolet, R. Contribution à la parallélisation automatique de programmes
Fortran comportant des appels de procédure. PhD thesis, Université Pierre
et Marie Curie (Paris 6), June 1984. 89

[49] Triolet, R., Irigoin, F., and Feautrier, P. Direct parallelization
of call statements. In SIGPLAN Symposium on Compiler Construction
(1986), pp. 176–185. 89

[50] Triolet, R., and Jouvelot, P. Newgen : A langage-independent pro-
gram generator. Tech. Rep. A-191, CRI, École des mines de Paris, 1989.
18

[51] Triolet, R., and Jouvelot, P. Newgen user manual. Tech. Rep. A-xxx,
CRI, École des mines de Paris, 1990. 18

[52] Ventroux, N., and David, R. Scmp architecture: an asymmetric mul-
tiprocessor system-on-chip for dynamic applications. In Proceedings of
the Second International Forum on Next-Generation Multicore/Manycore
Technologies (New York, NY, USA, 2010), IFMT ’10, ACM, pp. 6:1–6:12.
141

[53] Ventroux, N., Sassolas, T., Guerre, A., Creusillet, B., and
Keryell, R. Sesam/par4all: a tool for joint exploration of mpsoc ar-
chitectures and dynamic dataflow code generation. In Proceedings of the
2012 Workshop on Rapid Simulation and Performance Evaluation: Meth-
ods and Tools (New York, NY, USA, 2012), RAPIDO ’12, ACM, pp. 9–16.
142

272

[54] Wolfe, M. J. High Performance Compilers for Parallel Computing,
1st ed. Benjamin/Cummings, Redwood City, CA, USA, 1996. 110

[55] Yang, Y.-Q. Tests des dépendances et transformations de programme.
PhD thesis, Université Pierre et Marie Curie (Paris 6), Nov. 1993. 60

[56] Yang, Y.-Q., Ancourt, C., and Irigoin, F. Minimal data depen-
dence abstractions for loop transformations. In Proceedings of the 7th In-
ternational Workshop on Languages and Compilers for Parallel Computing
(London, UK, 1995), LCPC ’94, Springer-Verlag, pp. 201–216. 60

[57] Zhou, L. Analyse statique et dynamique de la complexité des programmes
scientifiques. PhD thesis, Université Pierre et Marie Curie (Paris 6), Sept.
1994. 83, 84, 86

[58] Zory, J. Contributions à l’optimisation de programmes scientifiques. PhD
thesis, École des mines de Paris, Dec. 1999. 158, 178, 179

273

Index

(, 174

Abort, 19
Abstract Syntax Tree, 30
Alias Analysis, 95
Alias Checking, 108
Alias Classes, 95
Alias Propagation, 107
ALIASING ACROSS TYPES, 55
Allen & Kennedy Algorithm, 112
Allen&Kennedy, 111
Alternate Return, 34
Analysis, 47, 226
Analysis (Semantics), 65
Array access, 105
Array Expansion, 206
Array Privatization, 202, 204
Array Region, 87, 93, 103
ARRAY PRIV FALSE DEP ONLY, 204
ARRAY SECTION PRIV COPY OUT,

204
Assigned GO TO, 36
AST, 30
Atomic Chains, 57
Atomization, 172
ATOMIZE INDIRECT REF ONLY, 172
Atomizer, 115, 171
atomizer, 171
Automatic Distribution, 121

Buffer overflow, 105

C, 232
C Intrinsics), 232
C Run Time, 232
C3 Linear Library, 18
Call Graph, 47, 238
Callees, 31
CFG, 40
CHAINS DATAFLOW DEPENDENCE ONLY,

59

CHAINS MASK EFFECTS, 59
Check Initialize Variable Length Ar-

ray, 207
checkpoint, 18
CLEAN UP SEQUENCES DISPLAY STATISTICS,

43
Cloning, 190
CM Fortran, 228
Code Distribution, 127
Code Prettyprinter, 225
Common subexpression elimination, 172,

174, 179
compilation unit, 37
Complementary Sections, 103
Complementary Sections (Summary),

104
Complex Constant, 25
Complexity, 83, 85, 216
Complexity (Floating Point), 85
Complexity (Summary), 84
Complexity (Uniform), 84
COMPLEXITY COST TABLE, 86
COMPLEXITY EARLY EVALUATION,

86
COMPLEXITY INTERMEDIATES, 85
COMPLEXITY PARAMETERS, 85
COMPLEXITY PRINT COST TABLE,

85
COMPLEXITY PRINT STATISTICS,

85
COMPLEXITY TRACE CALLS, 85
COMPUTE ALL DEPENDENCES, 64
Computed GO TO, 36
CONSTANT PATH EFFECTS, 53
Control Counters, 170
Control Flow Graph, 40
Control Restructurer, 163, 168
Control Simplification, 159
Controlizer, 40
correctness, 33
Craft, 228

274

Cray, 112
Cray Fortran, 228
CSE, 172, 179
Cumulated Effects, 49

Data Dependence Graph, 251, 253
DaVinci, 237
DDG Prettyprinter, 253
Dead Code, 161
Dead Code Elimination, 159
Dead code elimination, 161
DEAD CODE DISPLAY STATISTICS,

161
Debug, 229
Debug (Complexity), 85
Debug (Semantics), 82
Debugging, 18
Declaration, 231
Def-Use Chains, 56, 63
Dependence Graph, 59
Dependence Test, 61
dependence test

fast, 61
full, 61
regions, 61
semantics, 61

Dependence test statistics, 62
DEPENDENCE TEST, 61
DESTRUCTURE FORLOOPS, 167
DESTRUCTURE LOOPS, 167
DESTRUCTURE TESTS, 167
DESTRUCTURE WHILELOOPS, 167
DG, 59
DISJUNCT IN OUT REGIONS, 93
DISJUNCT REGIONS, 93
Distribution, 110, 121
Distribution (Loop), 149
Distribution init, 129
Division, 78
DREAM-UP, 259
Dynamic Aliases, 95

Effect, 48
Effects (Cumulated), 49
Effects (IN), 51
Effects (Live In), 95
Effects (Live Out), 95
Effects (Memory), 52
Effects (OUT), 51
Effects (Proper), 48

EFFECTS FILTER ON VARIABLE, 52
EFFECTS POINTER MODIFICATION CHECKING,

53
Emacs, 233
Emulated Shared Memory, 121
Entity, 30
ENTRY, 34
EXACT REGIONS, 93
Expansion, 206
Expression, 79

FDG, 251
Final Postcondition, 75
Finite State Machine Generation, 169
Fix Point, 79
Floating Point Complexity, 85
Flow Sensitivity, 78
Foresys, 232
Format (Fortran), 42
Fortran (Cray), 228
Fortran 90, 33, 228
Forward substitution, 174
freeze variables, 209
FSM Generation, 170
FSMIZE WITH GLOBAL VARIABLE,

170
FUSE CONTROL NODES WITH COMMENTS OR LABEL,

43

GATHER FORMATS AT BEGINNING,
42

GATHER FORMATS AT END, 42
General Loop Interchange, 155
GENERATE NESTED PARALLEL LOOPS,

111
GLOBAL EFFECTS TRANSLATION,

124
GO TO (Assigned), 36
GO TO (Computed), 36

hCFG, 40
Hierarchical Control Flow Graph, 40
Hollerith, 24
HPF, 122, 124, 228, 232
HPFC, 122
HPFC BUFFER SIZE, 124
HPFC DYNAMIC LIVENESS, 124
HPFC EXPAND CMPLID, 124
HPFC EXPAND COMPUTE COMPUTER,

124

275

HPFC EXPAND COMPUTE LOCAL INDEX,
124

HPFC EXPAND COMPUTE OWNER,
124

HPFC EXTRACT EQUALITIES, 124
HPFC EXTRACT LATTICE, 124
HPFC FILTER CALLEES, 124
HPFC GUARDED TWINS, 124
HPFC IGNORE FCD SET, 124
HPFC IGNORE FCD SYNCHRO, 124
HPFC IGNORE FCD TIME, 124
HPFC IGNORE IN OUT REGIONS, 124
HPFC IGNORE MAY IN IO, 124
HPFC LAZY MESSAGES, 124
HPFC NO WARNING, 124
HPFC OPTIMIZE REMAPPINGS, 124
HPFC REDUNDANT SYSTEMS FOR REMAPS,

124
HPFC SYNCHRONIZE IO, 124
HPFC TIME REMAPPINGS, 124
HPFC USE BUFFERS, 124
Hyperplane Method, 155

ICFG, 236
ICFG CALLEES TOPO SORT, 236
ICFG DEBUG, 236
ICFG DECOR, 236
ICFG DOs, 236
ICFG DRAW, 236
ICFG DV, 236
ICFG IFs, 236
ICFG INDENTATION, 236
Identity elimination, 159
If Conversion, 118
If Simplification, 159
Implicit None, 25
IN Effects, 51
IN Regions, 91
IN Summary Regions, 92
Include, 24, 25
Index Set Splitting, 152
Initial Points-to, 98
Initial Precondition, 69
Initialize Variable Length Array, 208
Inlining, 186
INLINING CALLERS, 186
Input File, 23
Integer Division, 78
Interprocedural, 79
Interprocedural Points to Analysis, 97

Interprocedural Points-to Analysis, 97
Intraprocedural Points-to Analysis, 97
Intraprocedural Summary Precondition,

69
Invariant code motion, 174
invariant code motion, 158
IR, 30

Kaapi, 128
KEEP READ READ DEPENDENCE,

59

Live In Effects, 95
Live In Paths, 94
Live Out Effects, 95
Live Out Paths, 94
Live Out Regions, 95
Live Paths, 94
Live variables, 55, 94
Logging, 17, 19
Loop bound minimization, 163
Loop Distribution, 149
Loop fusion, 151
Loop Interchange, 155
Loop Normalize, 157
Loop Simplification, 159
Loop Tiling, 116
Loop Unroll, 116
Loop Unrolling, 152
LOOP LABEL, 148

MAXIMAL EFFECTS FOR UNKNOWN FUNCTIONS,
54

MAXIMAL PARAMETER EFFECTS FOR UNKNOWN FUNCTIONS,
54

MAY Region, 89
Memory Effect, 48
Memory Effects, 52
MEMORY EFFECTS ONLY, 54
Missing Code, 27
Missing file, 24
Module, 30
MPI, 126
MUST Region, 90
MUST REGIONS, 93

NewGen, 18
NO USER WARNING, 21

OpenGPU, 258
OpenMP, 126, 211

276

OUT Effects, 51
OUT Regions, 92
OUT Summary Regions, 92
Outlining, 188

Parallelization, 110–112
PARALLELIZATION STATISTICS, 111
Parsed Code, 31
PARSER ACCEPT ANSI EXTENSIONS,

33
PARSER ACCEPT ARRAY RANGE EXTENSION,

33
PARSER EXPAND STATEMENT FUNCTIONS,

36
PARSER FORMAL LABEL SUBSTITUTE PREFIX,

34
PARSER LINEARIZE LOOP BOUNDS,

34
PARSER RETURN CODE VARIABLE,

34
PARSER SIMPLIFY LABELLED LOOPS,

34
PARSER SUBSTITUTE ALTERNATE RETURNS,

34
PARSER SUBSTITUTE ASSIGNED GOTO,

36
PARSER SUBSTITUTE ENTRIES, 34
PARSER TYPE CHECK CALL SITES,

33
PARSER WARN FOR COLUMNS 73 80,

32
Partial Evaluation, 172
PARTIAL DISTRIBUTION, 149
PHRASE, 127, 169, 258
Phrase comEngine Distributor, 129
Phrase Distributor, 128
Phrase Distributor Control Code, 128
Phrase Distributor Initialisation, 128
Phrase Remove Dependences, 129
Pipsdbm, 19
PIPSDBM NO FREE ON QUIT, 19
Pipsmake, 18
PoCC, 258
Pointer Values Analyses, 99
Points-to (Initial), 98
Postcondition (Final), 75
Precondition, 68, 75
Precondition (Initial), 69
Precondition (Summary), 69, 70
Preprocessing, 24, 25

PRETTYPRINT ADD EMACS PROPERTIES,
233

PRETTYPRINT ALL C BLOCKS, 229
PRETTYPRINT ALL DECLARATIONS,

231
PRETTYPRINT ALL EFFECTS, 229
PRETTYPRINT ALL LABELS, 229
PRETTYPRINT ALL PARENTHESES,

229
PRETTYPRINT ALL PRIVATE VARIABLES,

229
PRETTYPRINT ANALYSES WITH LF,

226
PRETTYPRINT BLOCK IF ONLY, 229
PRETTYPRINT BLOCKS, 229
PRETTYPRINT C CODE, 225
PRETTYPRINT CHECK IO STATEMENTS,

229
PRETTYPRINT COMMONS, 231
PRETTYPRINT DO LABEL AS COMMENT,

229
PRETTYPRINT EFFECTS, 228
PRETTYPRINT EMPTY BLOCKS, 229
PRETTYPRINT EXECUTION CONTEXT,

228
PRETTYPRINT FINAL RETURN, 229
PRETTYPRINT FOR FORESYS, 232
PRETTYPRINT HEADER COMMENTS,

231
PRETTYPRINT HPFC, 232
PRETTYPRINT INDENTATION, 226
PRETTYPRINT INTERNAL RETURN,

229
PRETTYPRINT IO EFFECTS, 228
PRETTYPRINT LISTS WITH SPACES,

226
PRETTYPRINT LOOSE, 226
PRETTYPRINT MEMORY EFFECTS ONLY,

228
PRETTYPRINT PARALLEL, 228
PRETTYPRINT REGENERATE ALTERNATE RETURNS,

34
PRETTYPRINT REGION, 228
PRETTYPRINT REVERSE DOALL,

228
PRETTYPRINT SCALAR REGIONS,

228
PRETTYPRINT STATEMENT NUMBER,

226

277

PRETTYPRINT STATEMENT ORDERING,
229

PRETTYPRINT TRANSFORMER, 228
PRETTYPRINT UNSTRUCTURED,

229
PRETTYPRINT UNSTRUCTURED AS A GRAPH,

237
PRETTYPRINT UNSTRUCTURED AS A GRAPH VERBOSE,

237
PRETTYPRINT VARIABLE DIMENSIONS,

231
PRETTYPRINT WITH COMMON NAMES,

229
Prettyprinter, 213
Prettyprinter (Code), 225
Prettyprinter (DDG), 253
Prettyprinter (HPF), 232
Prettyprinter Claire, 259
Prettyprinter PoCC, 258
Prettyprinters Smalltalk, 258
PRINT DEPENDENCE GRAPH, 253
PRINT DEPENDENCE GRAPH USING SRU FORMAT,

253
PRINT DEPENDENCE GRAPH WITH DEPENDENCE CONES,

253
PRINT DEPENDENCE GRAPH WITHOUT NOLOOPCARRIED DEPS,

253
PRINT DEPENDENCE GRAPH WITHOUT PRIVATIZED DEPS,

253
Privationzation (Array), 204
Privatization, 202, 204
Program Transformation, 148
Proper Effects, 48

Reduction, 117
Reduction Detection, 173
Reduction Parallelization, 206
Redudant Load-Store Elimination, 117
Region, 87
Region (Array), 93
Region (Summary), 91
Regions (IN), 91
Regions (Live Out), 95
Regions (OUT), 92
REGIONS OP STATISTICS, 93
REGIONS TRANSLATION STATISTICS,

93
REGIONS WITH ARRAY BOUNDS,

93

RESTRUCTURE WHILE RECOVER,
164

Restructurer, 163
Return (Alternate), 34
RI, 30
RICE DATAFLOW DEPENDENCE ONLY,

63
RICEDG PROVIDE STATISTICS FALSE,

62
RICEDG STATISTICS ALL ARRAYS,

62

Safescale, 128
Scalar Expansion, 206
Scalar Privatization, 203
Scalar Renaming, 115
Scalarization, 195
Scheduling, 262
SDFI, 51
Semantics, 75
Semantics Analysis, 65
SEMANTICS ANALYZE CONSTANT PATH,

75
SEMANTICS ANALYZE SCALAR BOOLEAN VARIABLES,

75
SEMANTICS ANALYZE SCALAR COMPLEX VARIABLES,

75
SEMANTICS ANALYZE SCALAR FLOAT VARIABLES,

75
SEMANTICS ANALYZE SCALAR INTEGER VARIABLES,

75
SEMANTICS ANALYZE SCALAR POINTER VARIABLES,

75
SEMANTICS ANALYZE SCALAR STRING VARIABLES,

75
SEMANTICS ANALYZE UNSTRUCTURED,

78
SEMANTICS FILTERED PRECONDITIONS,

82
SEMANTICS FIX POINT, 79
SEMANTICS FIX POINT OPERATOR,

79
SEMANTICS FLOW SENSITIVE, 78
SEMANTICS INEQUALITY INVARIANT,

79
SEMANTICS INTERPROCEDURAL,

79
SEMANTICS NORMALIZATION LEVEL BEFORE STORAGE,

81

278

SEMANTICS RECOMPUTE FIX POINTS WITH PRECONDITIONS,
79

SEMANTICS STDOUT, 82
SEMANTICS TRUST ARRAY DECLARATIONS,

76
SEMANTICS TRUST ARRAY REFERENCES,

76
SEMANTICS USE TYPE INFORMATION,

76
Sequential View, 218
Simplify Control, 159
Slicing, 190
SLP, 115
Software Caching, 121
Source File, 27
Spaghettifier, 167
Specialize, 209
Splitting, 24
SSE, 115
Statement externalization, 129
Statement Function, 36
Statement number, 226
Statistics (Dependence test), 62
STF, 168
Strip-Mining, 154
Summary Complementary Sections, 104
Summary Complexity, 84
Summary Precondition, 70
Summary Region, 91
Summary Regions (IN), 92
Summary Regions (OUT), 92
Summary Total Postcondition, 74
Summary Total Precondition, 74
Summary Transformer, 68
Superword parallelism, 115
Symbol table, 32

Terapix, 130
Thread-safe library, 111
Three Address Code, 172
Three-Address Code, 171
Tiling, 116, 155
TIME EFFECTS USED, 54
Top Level, 19
Total Postcondition (Summary), 74
Total Precondition, 72
Total Precondition (Summary), 74
Tpips, 22
TPIPS IS A SHELL, 22
Transformation, 148

TRANSFORMATION CLONE ON ARGUMENT,
190

Transformer, 65, 75, 79
Transformer (Summary), 68
Trivial Test Elimination, 168
TRUST CONSTANT PATH EFFECTS IN CONFLICTS,

53
Type Checking, 27, 33
TypeChecker, 210

Uniform Complexity, 84
Unreachable Code Elimination, 159
Unspaghettify, 164
UNSPAGHETTIFY DISPLAY STATISTICS,

164
UNSPAGHETTIFY RECURSIVE DECOMPOSITION,

164
UNSPAGHETTIFY TEST RESTRUCTURING,

164
Use-Def Chains, 56, 57
Use-Def Elimination, 161
Use-Use Chains, 56
User File, 23
USER EFFECTS ON STD FILES, 52

Variable, 30
Variable Length Array, 206
Vectorization, 112
VLA EFFECT READ, 53

WARN ABOUT EMPTY SEQUENCES,
21

Warning, 21
WARNING ON STAT ERROR, 21
WP65, 121

279

	Introduction
	Informal Pipsmake Syntax
	Example
	Pipsmake variables

	Properties and Environment Variables
	Outline

	Global Options
	Fortran Loops
	Logging
	PIPS Infrastructure
	Newgen
	C3 Linear Library
	PipsMake Library
	PipsDBM Library
	Top Level Library
	Warning Management
	Option for C Code Generation

	User and Programming Interfaces
	Tpips Command Line Interface
	Pyps API

	Input Files
	User File
	Preprocessing and Splitting
	Fortran 77 Preprocessing and Splitting
	Fortran 77 Syntactic Verification
	Fortran 77 File Preprocessing
	Fortran 77 Split
	Fortran Syntactic Preprocessing

	C Preprocessing and Splitting
	C Syntactic Verification

	Fortran 90 Preprocessing and Splitting
	Source File Hierarchy

	Source Files
	Regeneration of User Source Files

	Building the Internal Representation
	Entities
	Parsed Code and Callees
	Fortran 77
	Fortran 77 Restrictions
	Some Additional Remarks
	Some Unfriendly Features
	Declaration of the Standard Fortran 77 Parser

	Declaration of HPFC Parser
	Declaration of the C Parsers
	Language parsed by the C Parsers
	Handling of C Code
	Compilation Unit Parser
	C Parser
	C Symbol Table
	Properties Used by the C Parsers

	Fortran 90

	Controlized Code (Hierarchical Control Flow Graph)
	Properties for Clean Up Sequences
	Symbol Table Related to a Module Code

	Parallel Code

	Pedagogical Phases
	Using XML backend
	Operating of gen_multi_recurse
	Prepending a comment
	Prepending a call
	Add a pragma to a module

	Static Analyses
	Call Graph
	Memory Effects
	Proper Memory Effects
	Filtered Proper Memory Effects
	Cumulated Memory Effects
	Summary Data Flow Information (SDFI)
	IN and OUT Effects
	Proper and Cumulated References
	Effect Properties
	Effects Filtering
	Checking Pointer Updates
	Dereferencing Effects
	Effects of References to a Variable Length Array (VLA)
	Memory Effects vs Environment Effects
	Time Effects
	Effects of Unknown Functions
	Other Properties Impacting EFfects

	Live Memory Access Paths
	Reductions
	Reduction Propagation
	Reduction Detection

	Chains (Use-Def Chains)
	Menu for Use-Def Chains
	Standard Use-Def Chains (a.k.a. Atomic Chains)
	READ/WRITE Region-Based Chains
	IN/OUT Region-Based Chains
	Chain Properties
	Add use-use Chains
	Remove Some Chains

	Dependence Graph (DG)
	Menu for Dependence Tests
	Fast Dependence Test
	Full Dependence Test
	Semantics Dependence Test
	Dependence Test with Convex Array Regions
	Dependence Properties (Ricedg)
	Dependence Test Selection
	Statistics
	Algorithmic Dependences
	Optimization

	Flinter
	Loop Statistics
	Semantics Analysis
	Transformers
	Menu for Transformers
	Fast Intraprocedural Transformers
	Full Intraprocedural Transformers
	Fast Interprocedural Transformers
	Full Interprocedural Transformers
	Full Interprocedural Transformers with points-to
	Refine Full Interprocedural Transformers
	Summary Transformer

	Preconditions
	Initial Precondition or Program Precondition
	Intraprocedural Summary Precondition
	Interprocedural Summary Precondition
	Menu for Preconditions
	Intra-Procedural Preconditions
	Fast Inter-Procedural Preconditions
	Full Inter-Procedural Preconditions

	Total Preconditions
	Status:
	Menu for Total Preconditions
	Intra-Procedural Total Preconditions
	Inter-Procedural Total Preconditions
	Summary Total Precondition
	Summary Total Postcondition
	Final Postcondition

	Semantic Analysis Properties
	Value types
	Array Declarations and Accesses
	Type Information
	Integer Division
	Flow Sensitivity
	Context for statement and expression transformers
	Interprocedural Semantics Analysis
	Fix Point and Transitive Closure Operators
	Normalization Level
	Evaluation of sizeof
	Prettyprint
	Debugging

	Reachability Analysis: The Path Transformer

	Continuation conditions
	Complexities
	Menu for Complexities
	Uniform Complexities
	Summary Complexity
	Floating Point Complexities
	Complexity properties
	Debugging
	Fine Tuning
	Target Machine and Compiler Selection
	Evaluation Strategy

	Convex Array Regions
	Menu for Convex Array Regions
	MAY READ/WRITE Convex Array Regions
	MUST READ/WRITE Convex Array Regions
	Summary READ/WRITE Convex Array Regions
	IN Convex Array Regions
	IN Summary Convex Array Regions
	OUT Summary Convex Array Regions
	OUT Convex Array Regions
	Properties for Convex Array Regions

	Live Memory Access Paths
	Live Paths
	Live Out Regions
	Live In/Out Effect

	Alias Analysis
	Dynamic Aliases
	Init Points-to Analysis
	Interprocedural Points to Analysis
	Fast Interprocedural Points to Analysis
	Intraprocedural Points to Analysis
	Initial Points-to or Program Points-to
	Pointer Values Analyses
	Properties for pointer analyses
	Impact of Types
	Heap Modeling
	Type Handling
	Dereferenceing of Null and Undefined Pointers
	Limits of Points-to Analyses

	Menu for Alias Views

	Complementary Sections
	READ/WRITE Complementary Sections
	Summary READ/WRITE Complementary Sections

	Dynamic Analyses (Instrumentation)
	Array Bound Checking
	Elimination of Redundant Tests: Bottom-Up Approach
	Insertion of Unavoidable Tests
	Interprocedural Array Bound Checking
	Array Bound Checking Instrumentation

	Alias Verification
	Alias Propagation
	Alias Checking

	Used Before Set

	Parallelization, Distribution and Code Generation
	Code Parallelization
	Parallelization properties
	Properties controlling Rice parallelization

	Menu for Parallelization Algorithm Selection
	Allen & Kennedy's Parallelization Algorithm
	Def-Use Based Parallelization Algorithm
	Parallelization and Vectorization for Cray Multiprocessors
	Coarse Grain Parallelization
	Global Loop Nest Parallelization
	Coerce Parallel Code into Sequential Code
	Detect Computation Intensive Loops
	Limit parallelism using complexity
	Limit Parallelism in Parallel Loop Nests

	SIMDizer for SIMD Multimedia Instruction Set
	SIMD Atomizer
	Loop Unrollling for SIMD Code Generation
	Tiling for SIMD Code Generation
	Preprocessing of Reductions for SIMD Code Generation
	Redundant Load-Store Elimination
	Undo Some Atomizer Transformations (?)
	If Conversion
	Loop Unswitching
	Scalar Renaming
	Tree Matching for SIMD Code Generation
	SIMD properties
	Auto-Unroll
	Memory Organisation
	Pattern file

	Code Distribution
	Shared-Memory Emulation
	HPF Compiler
	HPFC Filter
	HPFC Initialization
	HPF Directive removal
	HPFC actual compilation
	HPFC completion
	HPFC install
	HPFC High Performance Fortran Compiler properties

	STEP: MPI code generation from OpenMP programs
	STEP Directives
	STEP Analysis
	STEP code generation

	PHRASE: high-level language transformation for partial evaluation in reconfigurable logic
	Phrase Distributor Initialisation
	Phrase Distributor
	Phrase Distributor Control Code

	Safescale
	Distribution init
	Statement Externalization

	CoMap: Code Generation for Accelerators with DMA
	Phrase Remove Dependences
	Phrase comEngine Distributor
	PHRASE ComEngine properties

	Parallelization for Terapix architecture
	Isolate Statement
	GPU XML Output
	Delay Communications
	Hardware Constraints Solver
	kernelize
	Communication Generation

	Code Distribution on GPU
	Task code generation for StarPU runtime
	SCALOPES: task code generation for the SCMP architecture with SESAM HAL
	First approach
	General Solution

	Automatic Resource-Constrained Static Task Parallelization
	Sequence Dependence DAG (SDG)
	BDSC-Based Hierarchical Task Parallelization (HBDSC)
	SPIRE(PIPS) generation
	SPIRE-Based Parallel Code Generation
	MPI Code Generation

	Program Transformations
	Loop Transformations
	Introduction
	Loop range Normalization
	Label Elimination
	Loop Distribution
	Statement Insertion
	Loop Expansion
	Loop Fusion
	Index Set Splitting
	Loop Unrolling
	Regular Loop Unroll
	Full Loop Unroll

	Loop Fusion
	Strip-mining
	Loop Interchange
	Hyperplane Method
	Loop Nest Tiling
	Symbolic Tiling
	Loop Normalize
	Guard Elimination and Loop Transformations
	Tiling for sequences of loop nests

	Redundancy Elimination
	Loop Invariant Code Motion
	Partial Redundancy Elimination
	Identity Elimination

	Control-Flow Optimizations
	Control Simplification (a.k.a. Dead Code Elimination)
	Properties for Control Simplification

	Dead Code Elimination (a.k.a. Use-Def Elimination)
	Loop bound minimization
	Control Restructurers
	Unspaghettify
	Restructure Control
	DO Loop Recovery
	For Loop to DO Loop Conversion
	For Loop to While Loop Conversion
	Do While to While Loop Conversion
	Spaghettify
	Full Spaghettify

	Control Flow Normalisation (STF)
	Trivial Test Elimination
	Finite State Machine Generation
	FSM Generation
	Full FSM Generation
	FSM Split State
	FSM Merge States
	FSM Properties

	Control Counters

	Expression Transformations
	Atomizers
	General Atomizer
	Limited Atomizer
	Atomizer Properties

	Partial Evaluation
	Reduction Detection
	Reduction Replacement
	Forward Substitution
	Expression Substitution
	Rename Operators
	Array to Pointer Conversion
	Expression Optimization Using Algebraic Properties
	Common Subexpression Elimination

	Hardware Accelerator
	FREIA Software
	FREIA SPoC
	FREIA Terapix
	FREIA OpenCL
	FREIA Sigma-C for Kalray MPPA-256
	FREIA OpenMP + Async communications for Kalray MPPA-256

	Function Level Transformations
	Inlining
	Unfolding
	Outlining
	Cloning

	Declaration Transformations
	Declarations Cleaning
	Array Resizing
	Top Down Array Resizing
	Bottom Up Array Resizing
	Full Bottom Up Array Resizing
	Array Resizing Statistic
	Array Resizing Properties

	Scalarization
	Scalarization Based on Convex Array Regions
	Scalarization Based on Constant Array References
	Scalarization Based on Memory Effects and Dependence Graph

	Induction Variable Substitution
	Strength Reduction
	Flatten Code
	Split Update Operators
	Split Initializations (C Code)
	Set Return Type
	Cast Actual Parameters at Call Sites
	Scalar and Array Privatization
	Scalar Privatization
	Declaration Localization
	Array Privatization

	Scalar and Array Expansion
	Scalar Expansion
	Array Expansion

	Variable Length Array
	Check Initialize Variable Length Array
	Initialize Variable Length Array

	Freeze variables

	Miscellaneous transformations
	Type Checker
	Manual Editing
	Transformation Test

	Extensions Transformations
	OpenMP Pragma

	Output Files (Prettyprinted Files)
	Parsed Printed Files (User View)
	Menu for User Views
	Standard User View
	User View with Transformers
	User View with Preconditions
	User View with Total Preconditions
	User View with Continuation Conditions
	User View with Convex Array Regions
	User View with Invariant Convex Array Regions
	User View with IN Convex Array Regions
	User View with OUT Convex Array Regions
	User View with Complexities
	User View with Proper Effects
	User View with Cumulated Effects
	User View with IN Effects
	User View with OUT Effects

	Printed File (Sequential Views)
	Html output
	Menu for Sequential Views
	Standard Sequential View
	Sequential View with Transformers
	Sequential View with Initial Preconditions
	Sequential View with Complexities
	Sequential View with Preconditions
	Sequential View with Total Preconditions
	Sequential View with Continuation Conditions
	Sequential View with Convex Array Regions
	Sequential View with Plain Pointer Regions
	Sequential View with Proper Pointer Regions
	Sequential View with Invariant Pointer Regions
	Sequential View with Plain Convex Array Regions
	Sequential View with Proper Convex Array Regions
	Sequential View with Invariant Convex Array Regions
	Sequential View with IN Convex Array Regions
	Sequential View with OUT Convex Array Regions
	Sequential View with Privatized Convex Array Regions

	Sequential View with Complementary Sections
	Sequential View with Proper Effects
	Sequential View with Cumulated Effects
	Sequential View with IN Effects
	Sequential View with OUT Effects
	Sequential View with Live Paths
	Sequential View with Proper Reductions
	Sequential View with Cumulated Reductions
	Sequential View with Static Control Information
	Sequential View with Points-To Information
	Sequential View with Simple Pointer Values
	Prettyprint Properties
	Language
	Layout
	Target Language Selection
	Parallel output style
	Default sequential output style

	Display Analysis Results
	Display Internals for Debugging
	Warning:

	Declarations
	FORESYS Interface
	HPFC Prettyprinter
	C Internal Prettyprinter
	Interface to Emacs

	Printed Files with the Intraprocedural Control Graph
	Menu for Graph Views
	Standard Graph View
	Graph View with Transformers
	Graph View with Complexities
	Graph View with Preconditions
	Graph View with Preconditions
	Graph View with Regions
	Graph View with IN Regions
	Graph View with OUT Regions
	Graph View with Proper Effects
	Graph View with Cumulated Effects
	ICFG Properties
	Graph Properties
	Interface to Graphics Prettyprinters

	Parallel Printed Files
	Menu for Parallel View
	Fortran 77 Parallel View
	HPF Directives Parallel View
	OpenMP Directives Parallel View
	Fortran 90 Parallel View
	Cray Fortran Parallel View

	Call Graph Files
	Menu for Call Graphs
	Standard Call Graphs
	Call Graphs with Complexities
	Call Graphs with Preconditions
	Call Graphs with Total Preconditions
	Call Graphs with Transformers
	Call Graphs with Proper Effects
	Call Graphs with Cumulated Effects
	Call Graphs with Regions
	Call Graphs with IN Regions
	Call Graphs with OUT Regions

	DrawGraph Interprocedural Control Flow Graph Files (DVICFG)
	Menu for DVICFG's
	Minimal ICFG with graphical filtered Proper Effects

	Interprocedural Control Flow Graph Files (ICFG)
	Menu for ICFG's
	Minimal ICFG
	Minimal ICFG with Complexities
	Minimal ICFG with Preconditions
	Minimal ICFG with Preconditions
	Minimal ICFG with Transformers
	Minimal ICFG with Proper Effects
	Minimal ICFG with filtered Proper Effects
	Minimal ICFG with Cumulated Effects
	Minimal ICFG with Regions
	Minimal ICFG with IN Regions
	Minimal ICFG with OUT Regions
	ICFG with Loops
	ICFG with Loops and Complexities
	ICFG with Loops and Preconditions
	ICFG with Loops and Total Preconditions
	ICFG with Loops and Transformers
	ICFG with Loops and Proper Effects
	ICFG with Loops and Cumulated Effects
	ICFG with Loops and Regions
	ICFG with Loops and IN Regions
	ICFG with Loops and OUT Regions
	ICFG with Control
	ICFG with Control and Complexities
	ICFG with Control and Preconditions
	ICFG with Control and Total Preconditions
	ICFG with Control and Transformers
	ICFG with Control and Proper Effects
	ICFG with Control and Cumulated Effects
	ICFG with Control and Regions
	ICFG with Control and IN Regions
	ICFG with Control and OUT Regions

	Data Dependence Graph File
	Menu For Dependence Graph Views
	Effective Dependence Graph View
	Loop-Carried Dependence Graph View
	Whole Dependence Graph View
	Filtered Dependence Graph View
	Filtered Dependence daVinci Graph View
	Impact Check
	Chains Graph View
	Chains Graph Graphviz Dot View
	Data Dependence Graph Graphviz Dot View
	Properties Used to Select Arcs to Display

	Properties for Dot output
	Loop Nest Dependence Cone

	Fortran to C prettyprinter
	Properties for Fortran to C prettyprinter

	Prettyprinters Smalltalk
	Prettyprinter for the Polyhderal Compiler Collection (PoCC)
	Rstream interface

	Regions to loops
	Prettyprinter for CLAIRE

	Feautrier Methods (a.k.a. Polyhedral Method)
	Static Control Detection
	Scheduling
	Code Generation for Affine Schedule
	Prettyprinters for CM Fortran

	User Interface Menu Layouts
	View Menu
	Transformation Menu

	Conclusion
	Known Problems

