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ABSTRACT
At Rice University, we have undertaken a project to construct a
framework for generating high-level problem solving languages
that can achieve high performance on a variety of platforms. The
underlying strategy, calledtelescoping languages, builds problem-
solving systems from domain-specific libraries and scripting lan-
gauges. To accomplish this it extensively preanalyzes and trans-
forms the library to produce a scripting language precompiler that
optimizes library calls within the scripts as if they were primitives
in the underlying language.

A major technical issue is how to preoptimize a library for use in
applications that are yet to be seen. To address this issue, we have
conducted a study of applications written in Matlab by the signal
processing group at Rice University. This has identified a collec-
tion of old and new optimizations that show promise for this par-
ticular domain. Two promising new optimizations areprocedure
vectorizationandprocedure strength reduction. The latter of these
is particularly useful in this problem domain and we expect it to be
just as applicable in other contexts as well.

We report on the results of an exploration of the effectiveness of
procedure strength reduction on three real Digital Signal Process-
ing (DSP) applications. By transforming these programs according
to the strategies described in this paper, we were able to achieve
speedups ranging from 10 to 40 percent over the entire application
– speedups for individual functions were even more dramatic.
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1. INTRODUCTION
As high-performance computers have become more complex, ap-
plication development in traditional programming languages has
become more difficult because of the need to structure programs to
achieve high performance on specific architectures. As a result, sci-
entific application development in such languages is becoming the
exclusive domain of experts. This has the unfortunate side effect of
limiting the rate of scientific progress. One strategy for overcoming
this problem is to make it possible for end users to develop applica-
tions in very high level domain-specific programming systems. The
popularity of MatlabTM is evidence of the promise of this approach.
However, such systems typically do not achieve performance levels
that are sufficient to support many application domains, so many
programs written in Matlab and other such languages are rewrit-
ten in traditional languages by professional programmers for better
performance.

At Rice University, we have undertaken a project to construct a
framework for generating high-level problem solving languages
that can achieve high performance on a variety of platforms. The
underlying strategy in this framework is to use advanced compiler
technology to construct such systems from domain-specific libraries
that are specifically programmed to be invoked from flexible script-
ing languages. This is similar to the way such systems are con-
structed today. However, because existing scripting languages typ-
ically treat libraries as black boxes, they fail to achieve acceptable
performance levels for compute-intensive applications. Previous
research has shown that this problem can be ameliorated by trans-
lating scripts to a conventional programming language and using
whole-program analysis and optimization to improve performance.

This approach suffers from the disadvantage that script compila-
tion times can be long and there is no provision to take advantage
of the specific knowledge of the library developer on how to im-
prove code involving multiple calls to the library. To overcome
these disadvantages, we propose a new approach calledtelescoping
languages[20, 7], in which the libraries that provide component
operations accessible from scripts are extensively analyzed and op-
timized in advance for use in a smart script compiler. By using the
knowledge gained from this analysis and preliminary compilation
and from annotations provided by the library designer, the compiler
will be able to process scripts containing references to the library
components as rapidly and effectively as if they were primitive op-

1Matlab is a registered trademark of MathWorks Inc.



Domain

Library

Language-

Building

Compiler

Enhanced

Language

Compiler

Script
Script


Translator

Optimized

Object


Program

Figure 1: Telescoping Languages

erations in the base language. The telescoping languages approach
is diagrammed in Figure1.

In this strategy, the translator generator (language building com-
piler), which could run for many hours, would analyze and opti-
mize the domain library under a variety of assumptions about the
calling program, many of which are generated from advice and
sample calling sequences provided by the library developer. The
result would be an “enhanced language compiler” which would op-
timize and specialize calls to the domain library to produce code
that would feed into the vendor optimizing compiler.

The basic idea of this approach is to invest substantive time in li-
brary analysis and optimization, on the assumption that the domain
libraries will be recompiled far less often than scripts that invoke
them. By exhaustively exploring the implementation space for li-
brary modules in advance, it will be possible to automatically build
a powerful framework for transforming and optimizing uses of li-
brary primitives. The preliminary analysis and optimization pass
may take hours, but it would be worth the cost if the libraries were
reused in many different scripts.

A critical technical challenge is how to use computation power to
support speculative optimizations of library routines that will yield
high enough performance benefits to make the scripting language
efficient enough for developing real applications. To address this
challenge we will need to develop new optimizations that can be
systematically applied to the procedures of a domain library. With
this in mind, we have entered into a collaboration with signal-
processing researchers at Rice who are engaged in the development
of a number of different applications in Matlab. These users are un-
willing to give up Matlab for a lower-level programming language,
but they need much higher performance and efficiency levels in the
final applications, particularly if these applications are to run effi-
cently on embedded computers in hand-held wireless devices.

Our study of their applications has led to the development of two
new optimizations:procedure vectorizationandprocedure strength
reduction. Our preliminary investigations indicate that these op-
timizations can dramatically improve the performance of Matlab
applications. Specifically, our experiments show that procedure
strength reduction alone yields performance improvements of 10
to 40 percent on whole applications, with much higher local gains.

The remainder of this paper is organized as follows. In the next
section, we survey some of the conventional optimizations that can

have high benefit on library routines written in a language like Mat-
lab and describe how they might be useful in the telescoping lan-
gauges framework. We, then, introduce procedure strength reduc-
tion and procedure vectorization. In Section3 and Section4, we
discuss these two optimizations in details. Section5 presents the
results of our preliminary experiments with these optimizations.
Related work is surveyed in Section6. Finally, we discuss the on-
going development and future research in Section7.

2. STRATEGIES FOR ANALYSIS AND OP-
TIMIZATION

The telescoping languages framework requires that decisions about
which optimizations are to be applied to libraries must be made far
in advance of compilation of a program that invokes these libraries.
Fortunately, because it can expend enormous computing power on
the library processing phase, the langauge generation system can
overcome this problem by generating many different specialized
variants of the same routine, each optimized for different potential
contexts. Then, at application compile time, the right specialized
version of a library component can be rapidly selected based on
compile-time approximations of the types and properties of the pa-
rameters passed to that libarary procedure.

For this strategy to work, we need to incorporate three types of
compilation technologies:

• Library analysis strategiesare used to constructjump func-
tions that can quickly summarize the side-effects to parame-
ters passed from the script to the library, making it possible
to instantly propagate parameter properties (e.g., type and
value) through procedure calls at script compilation time [16].
In addition, the analysis phase identifies promising optimiza-
tion points in the library and reasons backward from those
points to the preconditions at the call that are needed to make
the optimizations feasible.

• Recognition and exploitation of identitiesis a critical compo-
nent that makes it possible to translate sequences of calls to
library routines into equivalent sequences that are more effi-
cient. In addition, library annotations can be used to help the
language generation system to identify opportunities for spe-
cialized optimizations, such as reduction in strength. derived
from annotations provided by the library designer.

• Procedure specializationis used to produce variants of the
library routines optimized in advance to different potential



function z = jakes mp1 (blength, speed, bnumber, N Paths)
....
for k = 1:N Paths

....
xc = sqrt(2)*cos(omega*t step*j’) ...

+ 2*sum(cos( pi*np/Num osc).*cos(omega*cos(2*pi*np/N)*t step.*jp));
xs = 2*sum(sin( pi*np/Num osc).*cos(omega*cos(2*pi*np/N)*t step.*jp));
....

end

Figure 2: Code fragment from a DSP application showing opportunity for replacing an expensive library call by a simpler expression.

calling contexts. At script compilation time, the compiler
first uses a property-propagation procedure, which invokes
jump functions at library invocation points, and produces as
precise an estimate as possible of the run-time properties of
each parameter at each library call in the program being com-
piled. Then the compiler selects the best variant for the called
procedure using a fast matching procedure similar to unifica-
tion (from theorem proving) [27].

In our exploration of Matlab programs for signal processing, we
have discovered several important opportunities for using each of
these. Because Jump functions have been dealt with extensively in
the literature, we will concentrate on exploitation of identities and
code specialization here.

2.1 Recognition and Exploitation of Identities
In the telescoping languages framework, library designers will be
able to provide annotations that help the language generation sys-
tem produce fast, effective optimizing compilers for the target lan-
guage. These annotations can be used for two purposes – to help
the language generation system focus on producing the right spe-
cialized variants and as a basis for a high-level optimization sys-
tem that improves performance by replacing sequences of library
calls with equivalent, but more efficient sequences. To support the
first purpose, the annotations will need to provide hints as to how
a given library routine is likely to be used. These hints might in-
dicate which parameters are likely to be constant from call to call,
and which procedures might be called in a loop with the loop index
passed as one parameter (this will become important later). Many
of these annotations can be derived from a well-designed collection
of sample calling sequences.

To illustrate how the compiler can make use of library annotations,
consider figure2 that shows a code fragment from a real Digital
Signal Processing (DSP) application. The expression in bold face
is a common argument tosin andcos and does not change be-
tween the calls. Computing trigonometric functions can be expen-
sive. If the compiler knows that thesin or cos are both used on
the same argument, it can replace the two calls with a single call
to a routine that computes both sin and cos of a single argument in
time only slightly greater than the time to compute thesin alone.
Such a relationship among trigonometric functions may be com-
mon knowledge, but a similar relationship between library routines
can only be known through user annotations.

Another case where user annotations can be valuable is in identi-
fying sequences of library routines that tend to be called in certain
ways and, possibly, an equivalent less expensive call that can re-
place such a sequence in certain situations. Figure3 shows an ex-
ample of such a case that occurs in another real DSP code. This

example shows that the function callschange form inv and
change form always occur in pairs. Moreover, the input to the
latter is always the direct output ofchange form inv , or a sim-
ple modification of it. This can lead to opportunities for optimiza-
tion by combining the two functions. In the very least, it will elim-
inate a copy operation and a function call overhead which can be
significant in Matlab.

function [s,r,j hist] = min sr1(xt,h,m,alpha)
....
while ˜ok

....
invsr = changeform inv(sr0,h,m,low rp);
big f = changeform (xt-invsr,h,m);
....
while iter s < 3*m

....
invdr0 = changeform inv(sr0,h,m,low rp);
sssdr = changeform (invdr0,h,m);
....

end
....
invsr = changeform inv(sr0,h,m,low rp);
big f = changeform (xt-invsr,h,m);
....
while iter r < n1*n2

....
invdr0 = changeform inv(sr0,h,m,low rp);
sssdr = changeform (invdr0,h,m);
....
end

....
end

Figure 3: Code fragment from a DSP application showing pat-
tern of library call sequences.

2.2 Procedure Specialization
One way to think of specialization is as a kind of procedure cloning,
which is a well known compiler technique [10]. In Matlab pro-
grams for DSP there are many specializations that will yield sig-
nificant benefits. Before coming to those, however, we will survey
some of the high-payoff optimizations for these programs.

2.2.1 Useful Optimizations for Matlab
This section describes some source level transformation techniques
that are highly relevant from the perspective of compiling high-
level languages like Matlab.

Vectorizationis a technique that has traditionally been used in com-
piling for vector machines [3, 4]. It turns out that it is also a
very effective source transformation technique to improve Matlab
programs. The reason for this is that loops in Matlab have very
high overheads and often library procedure calls inside vectoriz-
able loops can be replaced by their vector counterparts. Consider



function z = jakes mp1 (blength, speed, bnumber, N Paths)
....
for k = 1:N Paths

....
xc = sqrt(2)*cos(omega*t step*j’) ...

+ 2*sum(cos(pi*np/Num osc).*cos(omega*cos(2*pi*np/N)*t step.*jp));
xs = 2*sum(sin(pi*np/Num osc).*cos(omega*cos(2*pi*np/N)*t step.*jp));

% for j = 1 : Num
% xc(j) = sqrt(2) * cos (omega * t step * j);
% xs(j) = 0;
% for n = 1 : Num osc
% cosine = cos(omega * cos(2 * pi * n / N) * t step * j);
% xc(j) = xc(j) + 2 * cos(pi * n / Num osc) * cosine;
% xs(j) = xs(j) + 2 * sin(pi * n / Num osc) * cosine;
% end
% end
....

end

Figure 4: Code fragment from a DSP application showing opportunity for vectorization.

figure4 that shows an example. This is the procedurejakes mp1
that was also shown in figure2. The complicated looking expres-
sions that computexc andxs are, in fact, equivalent to the com-
mented loop nest that occurs just below the statements. This trans-
lation from a nested loop to vector statements was done by hand by
the end users, but it is something that a compiler can easily handle
with current vectorization technology. In this case, the vectoriza-
tion reduces the total running time of the procedure from about
50 seconds to about 1.5 seconds on a 336 MHz SPARC processor
– a speedup of more than 33!

The same example also demonstrates the opportunities forcommon
subexpression elimination[6]. The common subexpressions that
occur in Matlab programs are often vector expressions, therefore,
eliminating them can lead to significant performance gains.

Dynamic array re-shaping can be expected to occur frequently in
programs written in scripting languages like Matlab. This is con-
firmed by our study of several DSP simulation applications. Ar-
ray re-shaping can occur either implicitly when a column or row
is added to a matrix, or it can be explicit through thereshape
library call. A classic technique to optimize array re-shaping is
beating and dragging along[1]. This technique defers data move-
ment as much as possible and re-computes array indexes, when-
ever possible, in terms of the original shape. Another, source level,
technique for Matlab is to compute the largest possible size for a
dynamic array and allocate all of it in the beginning through the
zeros call. This approach has been reported to result in signifi-
cant performance improvement in some cases [23].

2.2.2 New Specializing Transformations
Based on our experience we have identified two types of special-
ization transformations that offer high promise for improvements
in Matlab programs for DSP. Our study revealed that frequently a
procedure is called within a loop in which the only thing that varies
from call to call is the loop index (or a simple function thereof)
which is passed as a parameter. This presents two opportunities for
optimization.

First, if the loop containing the call to the library can be distributed
around that call so that the call is the only thing in the resulting
loop, it may be feasible to interchange the loop and the call and

then vectorize statements in the procedure body with respect to the
loop [18]. To use this strategy, which we callprocedure vector-
ization, in the telescoping language framework, we would need to
generate a variant of the procedure in which the loop is already
interchanged to the inside and vectorized. (This variant would
have extra parameters for the loop bounds.) In addition, the pro-
cedure would need to have jump functions that can be used to de-
termine whether loop distribution around the call is possible. How-
ever, given the value of vectorization in Matlab, we expect that this
would be a high-payoff optimization on many applications. Sec-
tion 4 discusses this strategy in more details.

Second, we could break the procedure into two component pro-
cedures, one that computes and saves the values of variables that
do not change when only the single parameter (a function of the
loop index) is changing from call to call. The other computes the
next value on each call from the previous one. Once these two pro-
cedures are available, the first can be called outside the loop and
the second, which is presumably much more efficient, inside the
loop. This optimization, which we callprocedure strength reduc-
tion is discussed in section3. For this transformation to be applied
in telescoping languages, we need some mechanism for determin-
ing which parameters might be the only ones to vary during a loop.
Otherwise the number of variants needed will be large. Program-
mer annotations or sample calling sequences can be very helpful
here.

3. PROCEDURE STRENGTH REDUCTION
Our approach of procedure strength reduction is reminiscent of op-
erator strength reduction [2], hence the name. In our case, however,
thestrength reductionis applied to library procedures that are the
operations.

It is often the case that library routines are called in a loop with
a number of arguments remaining loop invariant. The computa-
tions that depend only on these loop invariant arguments can be
abstracted away into aninitialization part that can be moved out-
side the loop. The part that is called inside the loop depends on
the loop index and performs theincrementalcomputation. Figure5
illustrates this in a simple abstract case. Functionf is called inside
a for loop in which the argumentsc1, c2, andc3 remain invariant.
Thus,f can be split into an initialization functionfµ that computes



for i = 1:N
x = f (c1, c2, i, c3);

end
⇓

fµ(c1, c2, c3);
for i = 1:N

x = f∆(i);
end

Figure 5: Example of Procedure Strength Reduction. Argu-
ments ci are invariant in the for loop.

the invariant part andf∆ that computes the iteration dependent part.

Figure6 illustrates this idea with concrete example of a real DSP
application. The upper part of the figure shows the original code
and the lower part shows the code after applying procedure strength
reduction. In this case, procedure strength reduction can be applied
to all the three procedures that are called inside the loops. The argu-
ments in bold are the only ones that vary across loop iterations. As
a result, computations performed on all the remaining arguments
can be moved out of the procedures.

% Initialization
....
for ii = 1:200

chan = jakes mp1(16500,160, ii ,num paths);
....
for snr = 2:2:4

....
[s,x,ci,h,L,a,y,n0] = ...
newcodesig(NO,l,num paths,M, snr,chan,sig pow paths);
....
[o1,d1,d2,d3,mf,m] =
codesdhd( y,a,h,NO,Tm,Bd,M,B,n0);
....

end
end
....

⇓

% Initialization
....
jakes mp1 init(16500,160,num paths);
....
[h, L] =

newcodesig init 1(NO,l,num paths,M,sig pow paths);
m = codesdhd init(a,h,NO,Tm,Bd,M);
for ii = 1:200

chan = jakes mp1 iter(ii);
....
a = newcodesig init 2(chan);
....
for snr = 2:2:4

....
[s,x,ci,y,n0] = newcodesig iter(snr);
[o1,d1,d2,d3,mf] = codesdhd iter(y);
....

end
....
end
....

Figure 6: Applying Procedure Strength Reduction to proce-
dures called inctss .

Notice that in the case of the procedurenewcodesig not all the
arguments are invariant inside the second level of the enclosing
loop nest. Therefore, theinitialization part fornewcodesig can-
not be moved completely out of the loop nest, resulting in two ini-
tialization components –newcodesig init 1 andnewcode-

sig init 2.

In principle, for maximal benefit, a procedure should be split into
multiple components so that all the invariant computation is moved
outside of the loops. Thus, in telescoping languages model,new-
codesig would be a library routine that would have been spe-
cialized for a context in which only its fifth argument varies across
invocations. Such a specialization of procedures is clearly context
dependent. As mentioned before, example calling sequences and
annotations by the library writer would be used to guide the spe-
cialization.

for i1 = 1:N1

for i2 = 1:N2

....
for ik = 1:Nk

x = f (α0 α1 α2 ... αk);
end

....
end

end
⇓

fµ0 (α0);
for i1 = 1:N1

fµ1 (α1);
for i2 = 1:N2

....
fµk−1 (αk−1);
for ik = 1:Nk

x = fµk (αk);
end

....
end

end

Figure 7: Example of a general case of Procedure Strength Re-
duction. Argument sub-sequenceαi represents the arguments
that are invariant at level i but not at i− 1.

Figure 7 shows a general case for multi-level splitting of proce-
dures. In this caseα0 ... αk are argument sub-sequences where
the sub-sequenceαi is invariant at loop leveli but not ati− 1. In-
discriminate specialization can lead to a combinatorial explosion of
clones. The extent of reduction in strength must be weighed against
the extra overheads of calling the initialization (µ) procedures, the
extra space needed to store library clones, and the script compila-
tion time. AppendixA discusses some of the trade-offs involved.

Depending on the arguments that are invariant, one or more of the
return values of a procedure may also be invariant. This knowledge
is needed to be able to propagate the invariance property. The de-
cision about whether to reduce a procedure in strength may affect
the decision for other procedures whose arguments depend on the
first procedure.

4. PROCEDURE VECTORIZATION
Vectorization of statements inside loops turns out to be a big win
in Matlab programs. We can extend this idea to procedure calls,
where a call inside a loop (or a loop nest) can be replaced by a sin-
gle call to the vectorized version of the procedure. In the context of
telescoping languages this can be done by generating an appropri-
ate variant of the procedure.
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% Initialization
....
chan =
jakes mp1 vectorized(16500,160, [1:200],num paths);
for ii = 1:200

....
for snr = 2:2:4

....
[s,x,ci,h,L,a,y,n0] = ...
newcodesig(NO,l,num paths,M,snr, chan(ii,:,:), ...

sig pow paths);
....
[o1,d1,d2,d3,mf,m] =

codesdhd(y,a,h,NO,Tm,Bd,M,B,n0);
....

end
end
....

Figure 8: Applying Procedure Vectorization to jakes mp1.

Consider again the DSP programctss in figure 6. It turns out
that the loop enclosing the call tojakes mp1 can be distributed
around it, thus giving rise to an opportunity to vectorize the proce-
dure. If jakes mp1were to be vectorized, the call to it inside the
loop could be moved out as shown in figure8. This involves adding
one more dimension to the return valuechan .

To effectively apply this optimization in the telescoping languages
setting, it must be possible to distribute loops around the call to the

candidate for procedure vectorization. This requires an accurate
representation of the load-store side effects to array paramters of
the procedure, which would be encapsulated in specialized jump
functions that produce an approximation to the patterns accessed.
An example of such a representation is aregular section descriptor
(RSD)[8, 19]. Methods for computing these summaries are well-
known.

In practice, the benefit of vectorization will need to be balanced
against the cost of a larger memory footprint as well as the costs of
specialization as indicated in the previous section.

5. EXPERIMENTAL EVALUATION
We studied three different DSP applications to evaluate the idea of
procedure strength reduction. Procedure vectorization was appli-
cable in one of the cases. All these applications are part of real
simulation experiments being done by the wireless group in the
Electrical and Computer Engineering Department at Rice Univer-
sity.

In order to evaluate our idea we transformed the applications by
hand carefully applying only the transformations that a practical
compiler can be expected to perform and those that are relevant to
procedure strength reduction. The transformations included com-
mon subexpression elimination, constant propagation, loop distri-
bution, and procedure strength reduction. The transformations were
carried out at the source-to-source level and both the original as
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Figure 10: Performance improvement injakes mp1after ap-
plying Procedure Vectorization.

well as the transformed programs were run under the standard Mat-
lab interpreter, unless noted otherwise.

All timing results are from experiments conducted on a 336 MHz
SPARC based machine.

5.1 ctss
ctss is a program that simulates a digital communication system
where the data is encoded by a convolutional code and is then trans-
mitted over a wireless channel using a new modulation scheme that
exploits the characteristics of the channel to improve performance.
The top level program consists of a nested loop and procedure calls
inside those loops. While these procedures are written in Matlab
and are part of the program, some of these are actually being used
as domain-specific library routines since they are used by multiple
programs.

Figure9 shows the improvements resulting from our transforma-
tions applied by hand. The first part of the figure shows the per-
formance improvements achieved in various top-level procedures
relative to the original running time. Notice that the procedure
jakes mp1 achieved more than 3 fold speedup. These results
do not include the dramatic performance improvement that results
from vectorizing the loop inside the procedurejakes mp1 since
that vectorization had already been performed by the user.

The whole program achieved only a little less than 40% speed im-
provement since most of the time in the application was spent in the
procedurecodesdhd as shown in the second part of the figure9.
After applying reduction in strength to this procedure its execution
time falls from 23000 seconds to 14640 seconds, and accounts for
almost the entire performance gain for the whole application.

In all cases the initialization parts of the procedures were called
much less frequently than the iterative parts, effectively making the
time spent in the initialization parts comparatively insignificant.

Figure10 shows the timing results forjakes mp1upon applying
procedure vectorization. This procedure is fully vectorizable with
respect to the loop index of the loop inside which it is called in
the main program. The chart shows a performance improvement of
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Figure 11: Performance improvement insML chan est code
after applying Procedure Strength Reduction. This procedure
is called inside a complicated SimuLink application and is the
most time consuming component.

33% over the original code for a 100 iteration loop. This perfor-
mance gain was almost unchanged down to one iteration loop.

Vectorization resulted in a smaller improvement in performance
compared to strength reduction because of two possible reasons.
First, vectorization of the procedure necessitated an extra copy-
ing stage inside the procedure. Second, vectorization resulted in
a much higher memory usage giving rise to potential performance
bottlenecks due to memory hierarchy. For very large number of
loop iterations the effects of memory hierarchy can cause the vec-
torized loop to perform even poorer than the original code. How-
ever, these effects can be mitigated by strip-mining the loop.

5.2 sML chan est
This application computes the delay, phase, and amplitude of all
the echoes produced by the transmissions from a group of cell
phones in real world scenario. The application is written under
the SimulinkTM environment provided with Matlab. We studied a
particular procedure in the application calledsML chan est that
is the one where the application spends most of its time.

Figure11 shows the result of applying strength reduction to this
procedure. The chart shows the time taken by the initialization call
and the iterative call. The initialization call has a loop that resizes
an array in each iteration. If the entire array is preallocated (using
zeros ) then the time spent in initialization drops from 12 seconds
(init call) to 6.2 seconds (init with preallocation). This illustrates
the value of the techniques needed to handle array reshaping and
resizing.

5.3 outage lb fad
This application computes a lower bound on the probability of out-
age for a queue transmitting in a time varying wireless channel un-
der average power and delay constraints. It is a relatively small
application that spends almost all of its time in a single procedure
call. However, complex and deeply nested loops make the applica-
tion run time very long (several hours).

2Simulink is a registered trademark of Mathworks Inc.
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Figure 12: Performance improvement inoutage lb fad af-
ter applying Procedures Strength Reduction. This is a stand-
alone simulation application that spends almost the entire time
in one procedure. This improvement is for the entire applica-
tion all of which comes from optimizing the single procedure.

A straight forward application of procedure strength reduction re-
duces the run-time of this application by 13.5%. This indicates the
power of our approach in benefiting even relatively tightly written
code.

5.4 Effect of Compilation
Matlab has a compiler calledmcc. The benefit of the compiler can
be expected to be maximum when interpretive overheads are high.
This would be the case when the application spends considerable
time in deeply nested loops.
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Figure 13: Effect of compilation on ser test fad that is
called from the application outage lb fad and where the ap-
plication spends almost all of its running time.

We studied the effects of compilation on procedure strength reduc-
tion for outage lb fad . The procedureser test fad , that
accounts for almost the entire running time for the application, has
a 5-level deep loop. Figure13 shows the results. While the per-

formance improvement due to procedure strength reduction falls a
little for the compiled code, it is still significant at more than 11%.
Combining procedure strength reduction and compilation results in
a performance improvement of 23.4%.

It should be observed here that this application has very high in-
terpretive overheads due to deep loop nesting and, therefore, rep-
resents a best-case scenario for compilation. Other applications
showed no significant performance gains due to compilation.

The “stand-alone” column indicates run-times for the code that was
compiled to run as a stand-alone application. It is not clear why the
stand-alone version of the code is slower than the compiled version
that runs under the Matlab environment.

6. RELATED WORK
As mentioned before, Matlab package comes with a Matlab com-
piler, calledmcc, by The Mathworks, Inc [22]. Themcc compiler
works by translating Matlab into C or C++. Since the source of the
compiler is not publicly available, the analysis it performs is not
known. However, it does not seem to perform the type of advanced
inter-procedural analysis proposed for Telescoping Languages.

Type inferencing for Matlab has been addressed in DeRose’s PhD
thesis [12] in details. Their approach is to translate Matlab pro-
grams into Fortran 90. The biggest drawback of their approach is
that they handle all function calls through inlining. This, clearly,
leads to a potential blowup in compilation time if library routines
have to be optimized. Moreover, recursive functions can not be
handled with this approach.

Building on the FALCON system based on DeRose’s work, Uni-
versity of Illinois and Cornell University are developing a Just In
Time (JIT) compiler for Matlab under their joint project called MA-
JIC [21]. In this context, some recent work by Menon and Pin-
gali has explored source level transformations for Matlab [23, 24].
Their approach is based on using formal specifications for relation-
ships between various operations and trying to use an axiom based
approach to determine an optimal evaluation order. They evaluated
their approach for matrix multiplication.

Currying in functional programming languages is a concept related
to our idea of procedure strength reduction [11]. In the functional
programming world, partial evaluation has been well studied [26].
However, many ideas from functional languages do not carry over
well into languages like Matlab where functions (procedures) have
side-effects.

A technique called “automatic differentiation” of programs has been
successfully used in replacing high-cost procedure calls inside loops
by incremental computation [15]. This technique is mainly em-
ployed in numerical codes for replacing the original computation
by a less expensive, but often approximate, computation. The code
to compute the increments is generated automatically from the orig-
inal code through automatic differentiation [5]. While our focus is
on moving strictly invariant code outside procedures, user directed
automatic differentiation could complement our approach in spe-
cific contexts.

APL programming language is theoriginal matrix manipulation
language. Several techniques developed for APL can be useful in
Matlab compilation, for example, the techniques to handle array
re-shaping [1].
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Figure 14: Compilation Framework.

Designing annotation languages for optimizing libraries is a subject
of ongoing research [17].

There are many projects underway to translate Matlab into lower
level languages like C, C++, or Fortran. Some of these target par-
allel machines using standard message passing libraries. These in-
clude the Otter system at Oregon State University, the CONLAB
compiler from University of Umea in Sweden, and Menhir from
Irisa in France [28, 13, 9]. The MATCH project at Northwestern
University attempts to compile Matlab directly to special purpose
hardware [25].

7. CONCLUSION AND FUTURE WORK
We described a compilation framework for Scripting Languages
that we call Telescoping Languages. Figure14 depicts this frame-
work graphically. Our work focuses only on the library and script
compilation components. Type inferencing is needed since Matlab
programs do not have variable declarations and a smart run-time
system that includes dynamic or Just In Time (JIT) compilation
can be useful for Grid-computing scenarios [14].

Many existing compilation techniques are useful for compiling Tele-
scoping Languages, especially, vectorization, CSE (common sub-
expression elimination), and invariant code motion. We introduced
two new techniques, procedure strength reduction and procedure
vectorization. Both these techniques work within the telescoping
languages model by providing the benefits of inter-procedural anal-
ysis without incurring extra costs at script compilation time or re-
quiring library sources. We evaluated procedure strength reduction
by studying three real DSP applications. Application of procedure
strength reduction leads to up to 40% overall application perfor-
mance improvement and up to 300% procedure level performance
improvement through source level transformations. For a proce-
dure in one of the applications, applying procedure vectorization
leads to a 33% performance improvement.

The idea of procedure strength reduction can be extended to include
operator strength reduction. Thus, not only can the expressions that
depend only on the invariant arguments be extracted out of a pro-
cedure, the remaining expressions can also be reduced further. In
many cases there may not be an easy way of reducing these re-
maining expressions. In these cases, automatic differentiation can
be helpful.

We are in the process of implementing a compiler to do these source
level transformations automatically. Currently we have a front end
for Matlab and plan to leverage the existing compiler infrastructure

at Rice, developed for dHPF and Java.
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APPENDIX
A. PROCEDURE STRENGTH REDUCTION

FOR NESTED LOOPS AND ITS RELA-
TIVE GAIN

Suppose that we apply reduction in strength to a procedure that
is called inside a loop nestk levels deep. We associate execution
times with each reduction as shown in figure15.

for i1 = 1:N1

for i2 = 1:N2

....
for ik = 1:Nk

x = f (α0 α1 α2 ... αk);
end

....
end

end
⇓

fµ0 (α0); // Tµ0

for i1 = 1:N1

fµ1 (α1); // Tµ1

for i2 = 1:N2

....
fµk−1 (αk−1); // Tµk−1

for ik = 1:Nk
x = fµk (αk); // Tµk

end
....
end

end

Figure 15: Applying reduction in strength in a general case
along with the execution times of various components.

The original running time,Tθ is given by:

Tθ =

(
k∏
i=1

Ni

)
× T

whereT is the original running time of one call tof . The new
execution time,Tν , for the translated code is given by

Tν = Tµ0 + (N1)× Tµ1 + (N1.N2)× Tµ2 + ...+(
k−1∏
i=1

Ni

)
× Tµk−1 +

(
k∏
i=1

Ni

)
× Tµk

Thus, the difference in running time,T∆, is

T∆ = Tθ − Tν

and relative improvement in speed,T∆/Tθ, is given by

T∆

Tθ
= 1− Tν

Tθ

or

T∆

Tθ
= 1− 1

T
×
[
Tµk +

Tµk−1

Nk
+

Tµk−2

Nk−1.Nk
+ ...+

Tµ1∏k
i=2 Ni

+
Tµ0∏k
i=1 Ni

]

This clearly provides an upper bound on the amount of performance
improvement that can be achieved with this method, which is1 −
Tµk/T .

In addition, this equation also provides another useful insight. It is
usually the case that the sum of the running times of allfµs is equal
to the original running timeT of f , i.e.,T =

∑k
i=0 Tµi . Clearly,

to obtain maximum performance improvement the summing series
in the brackets must be minimized. It is minimized if we can make
all Tµ1 ...Tµk−1 values zero while maximizingTµ0 given the con-
straint that allTµi sum toT . This corresponds to the intuition that
computation should be moved out of the entire loop nest, if possi-
ble. However, notice that except the first term, all other terms in
the brackets have iteration range in thedenominator. Thus, for any
reasonably large loop the contribution from all those terms is in-
significant. For example ifNk is 100 the effect of all terms after
the first is of the order of only 1%. This leads to the conclusion
that except for the case when the innermost loop is very short (in
which case the compiler should consider loop unrolling) splitting
the proceduref more than once may not provide significant ben-
efits. From compiler’s perspective, it need not spend much time
attempting to reduce procedures multiple times for a multi-level
loop since the marginal benefits after the first split are minimal.
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