Deduction Modulo

Olivier Hermant

Tuesday, December 12, 2006

Introduction
An example Cut elimination

Deduction and Computation

Deduction system: Gentzen's sequent calculus

$$
\begin{array}{lc}
\overline{\Gamma, P \vdash P} \text { axiom } & \frac{\Gamma, P \vdash Q \Gamma \vdash P}{\Gamma \vdash Q} \mathrm{cut} \\
\frac{\Gamma, P, P \vdash Q}{\Gamma, P \vdash Q} \text { contr-l } & \frac{\Gamma, \perp \vdash Q}{}+\mathrm{g} \\
\frac{\Gamma, P \vdash R \Gamma, Q \vdash R}{\Gamma, P \vee Q \vdash R} \vee-\mathrm{g} & \frac{\Gamma \vdash P}{\Gamma \vdash P \vee Q} \vee-\mathrm{d} \\
\frac{\Gamma \vdash P \Gamma, Q \vdash R}{\Gamma, P \Rightarrow Q \vdash R} \Rightarrow-\mathrm{g} & \frac{\Gamma \vdash Q}{\Gamma \vdash P \vee Q} \vee-\mathrm{d} \\
\frac{\Gamma,\{c / x\} P \vdash Q}{\Gamma, \exists x P \vdash Q} \exists-\mathrm{g}, c \text { fresh } & \frac{\Gamma, P \vdash Q}{\Gamma \vdash P \Rightarrow Q} \Rightarrow-\mathrm{d} \\
\hline
\end{array}
$$

The cut rule: a detour

$$
\frac{\Gamma, P \vdash Q \Gamma \vdash P}{\Gamma \vdash Q} \mathrm{cut}
$$

- we prove $\Gamma \vdash P$
- we assume P and prove $\Gamma, P \vdash Q$
- it is a proof of $\Gamma \vdash Q$

The cut rule: a detour

$$
\frac{\Gamma, P \vdash Q \Gamma \vdash P}{\Gamma \vdash Q} \mathrm{cut}
$$

- we prove $\Gamma \vdash P$
- we assume P and prove $\Gamma, P \vdash Q$
- it is a proof of $\Gamma \vdash Q$
- lemma application.

Deduction system: sequent calculus

$$
\begin{array}{lc}
\overline{\Gamma, P \vdash P} \text { axiom } & \frac{\Gamma, P \vdash Q \Gamma \vdash P}{\Gamma \vdash Q} \mathrm{cut} \\
\frac{\Gamma, P, P \vdash Q}{\Gamma, P \vdash Q} \text { contr-l } & \frac{\Gamma, \perp \vdash Q}{}+\mathrm{g} \\
\frac{\Gamma, P \vdash R\ulcorner, Q \vdash R}{\Gamma, P \vee Q \vdash R} \vee-\mathrm{g} & \frac{\Gamma \vdash P}{\Gamma \vdash P \vee Q} \vee-\mathrm{d} \\
\frac{\Gamma \vdash P \Gamma, Q \vdash R}{\Gamma, P \Rightarrow Q \vdash R} \Rightarrow-\mathrm{g} & \frac{\Gamma \vdash Q}{\Gamma \vdash P \vee Q} \vee-\mathrm{d} \\
\frac{\Gamma,\{c / x\} P \vdash Q}{\Gamma, \exists x P \vdash Q} \exists-\mathrm{g}, \mathrm{c} \text { fresh } & \frac{\Gamma, P \vdash Q}{\Gamma \vdash P \Rightarrow Q} \Rightarrow-\mathrm{d} \\
\hline
\end{array}
$$

Axioms vs. rewriting

Axioms	Rewriting
$x+S(y)=S(x+y)$	$x+S(y) \rightarrow S(x+y)$
$x+0=x$	$x+0 \rightarrow x$
$x * 0=0$	$x * 0 \rightarrow 0$
$x * S(y)=x+x * y$	$x * S(y) \rightarrow x+x * y$
$(x * y=0) \Leftrightarrow(x=0 \vee y=0)$	$(x * y=0) \rightarrow(x=0 \vee y=0)$
\vdots	$\frac{\vdash_{\mathcal{R}} 4=4}{\vdash_{\mathcal{R}} \exists x(2 * x=4)}$
$\frac{\mathcal{T} \vdash 2 * 2=4}{\mathcal{T} \vdash \exists x(2 * x=4)}$	

Deduction Modulo: rewrite rules allowed

- Shape:

$$
I \rightarrow r
$$

- we use them through an equivalence relation \equiv_{R}

Deduction Modulo: rewrite rules allowed

- Shape:

$$
I \rightarrow r
$$

- Using: If $t=I_{\sigma}$ then we replace it by r_{σ}
- we use them through an equivalence relation \equiv_{R}

Deduction Modulo: rewrite rules allowed

- Shape:

$$
I \rightarrow r
$$

- Using: If $t=I_{\sigma}$ then we replace it by r_{σ}
- rewrite rules on terms:

$$
x+S(y) \rightarrow S(x+y)
$$

- we use them through an equivalence relation \equiv_{R}

Deduction Modulo: rewrite rules allowed

- Shape:

$$
I \rightarrow r
$$

- Using: If $t=I_{\sigma}$ then we replace it by r_{σ}
- rewrite rules on terms:

$$
x+S(y) \rightarrow S(x+y)
$$

- and on propositions :

$$
x * y=0 \rightarrow x=0 \vee y=0
$$

- we use them through an equivalence relation \equiv_{R}

Sequent calculus modulo

$$
\begin{array}{lc}
\overline{\Gamma, P \vdash Q} \text { axiom } P \equiv_{\mathcal{R}} Q & \frac{\Gamma, P \vdash R \Gamma \vdash Q}{\Gamma \vdash R} \operatorname{cut} P \equiv_{\mathcal{R}} Q \\
\frac{\Gamma, P, Q \vdash R}{\Gamma, P \vdash R} \operatorname{contr-\mathrm {g}} P \equiv_{\mathcal{R}} Q & \frac{\Gamma, P \vdash Q}{\perp-\mathrm{g} P} \equiv_{\mathcal{R}} \perp \\
\frac{\Gamma \vdash P \Gamma, Q \vdash R}{\Gamma, S \vdash R} \Rightarrow-\mathrm{g} P \Rightarrow Q \equiv_{\mathcal{R}} S & \frac{\Gamma, P \vdash Q}{\Gamma \vdash S} \Rightarrow-\mathrm{d} P \Rightarrow Q \equiv_{\mathcal{R}} S \\
\frac{\Gamma,\{c / x\} P \vdash Q}{\Gamma, R \vdash Q} \exists-\mathrm{g}^{*} \exists x P \equiv_{\mathcal{R}} R & \frac{\Gamma \vdash\{t / x\} P}{\Gamma \vdash R} \exists-\mathrm{d} \exists x P \equiv_{\mathcal{R}} R
\end{array}
$$

An example of rewriting theory: Peano/Heyting Arithmetic

As an axiomatic theory:

$$
\begin{gathered}
\forall(x) \forall(y)(S(x)=S(y) \Rightarrow x=y) \\
\forall x \neg(0=S(x)) \\
\{0 / x\} P \Rightarrow \forall y(\{y / x\} P \Rightarrow\{S(y) / x\} P) \Rightarrow \forall n\{n / x\} P \\
\forall y(O+y=y) \quad \forall x \forall y(S(x)+y=S(x+y)) \\
\forall y(0 \times y=0) \quad \forall x \forall y(S(x) \times y=x \times y+y)
\end{gathered}
$$

An example of rewriting theory: Peano/Heyting Arithmetic

As an axiomatic theory:

$$
\begin{gathered}
\forall(x) \forall(y)(S(x)=S(y) \Rightarrow x=y) \\
\forall x \neg(0=S(x)) \\
\{0 / x\} P \Rightarrow \forall y(\{y / x\} P \Rightarrow\{S(y) / x\} P) \Rightarrow \forall n\{n / x\} P \\
\forall y(O+y=y) \quad \forall x \forall y(S(x)+y=S(x+y)) \\
\forall y(0 \times y=0) \quad \forall x \forall y(S(x) \times y=x \times y+y)
\end{gathered}
$$

Orienting the last four equations is not hard:

$$
\begin{array}{ll}
0+y \rightarrow y & S(x)+y \rightarrow S(x+y) \\
0 \times y \rightarrow 0 & S(x) \times y \rightarrow x \times y+y
\end{array}
$$

Adding symbols

We define:

- a symbol Pred (for predecessor) and the axioms:

$$
\begin{gathered}
\operatorname{Pred}(0)=0 \quad \operatorname{Pred}(S(x))=x \\
\forall x \forall y(x=y \Rightarrow \operatorname{Pred}(x)=\operatorname{Pred}(y))
\end{gathered}
$$

Adding symbols

We define:

- a symbol Pred (for predecessor) and the axioms:

$$
\operatorname{Pred}(0)=0 \quad \operatorname{Pred}(S(x))=x
$$

$$
\forall x \forall y(x=y \Rightarrow \operatorname{Pred}(x)=\operatorname{Pred}(y))
$$

- two predicate symbols N and Null, and the axioms:

$$
N(0)
$$

$$
\forall x(N(x) \Rightarrow N(S(x)))
$$

Null(0)
$\forall x(\neg \operatorname{Null}(S(x)))$
$\{0 / x\} P \Rightarrow \forall y(N(y) \Rightarrow\{y / x\} P \Rightarrow\{S(y) / x\} P) \Rightarrow \forall n(N(n) \Rightarrow\{n / x\} P)$

Adding symbols

We define:

- a symbol Pred (for predecessor) and the axioms:

$$
\begin{gathered}
\operatorname{Pred}(0)=0 \quad \operatorname{Pred}(S(x))=x \\
\forall x \forall y(x=y \Rightarrow \operatorname{Pred}(x)=\operatorname{Pred}(y))
\end{gathered}
$$

- two predicate symbols N and $N u l l$, and the axioms:

$$
N(0)
$$

$$
\forall x(N(x) \Rightarrow N(S(x)))
$$

Null(0)

$$
\forall x(\neg \operatorname{Null}(S(x)))
$$

$$
\{0 / x\} P \Rightarrow \forall y(N(y) \Rightarrow\{y / x\} P \Rightarrow\{S(y) / x\} P) \Rightarrow \forall n(N(n) \Rightarrow\{n / x\} P)
$$

it is a conservative extension over PA/HA, up to a formulas traduction:

$$
|\forall x P|=\forall x(N(x) \Rightarrow P)
$$

Handling equality and induction

We still have to handle the equality symbol and the induction scheme. Introduce:

- two sorts: ι, κ (iota stands for integers)

Handling equality and induction

We still have to handle the equality symbol and the induction scheme. Introduce:

- two sorts: ι, κ (iota stands for integers)
- a symbol \in of $\operatorname{rank}\langle\iota, \kappa\rangle$

Handling equality and induction

We still have to handle the equality symbol and the induction scheme. Introduce:

- two sorts: ι, κ (iota stands for integers)
- a symbol \in of rank $\langle\iota, \kappa\rangle$
- for each proposition $P\left[x, y_{1}, \ldots, y_{n}\right]$, a function symbol $f_{x, y_{1}, \ldots, y_{n}, P}$ of $\operatorname{rank}\langle\underbrace{\iota, \ldots, \iota}_{\mathrm{n} \text { times }}, \kappa\rangle$

Handling equality and induction

We still have to handle the equality symbol and the induction scheme. Introduce:

- two sorts: ι, κ (iota stands for integers)
- a symbol \in of rank $\langle\iota, \kappa\rangle$
- for each proposition $P\left[x, y_{1}, \ldots, y_{n}\right]$, a function symbol $f_{x, y_{1}, \ldots, y_{n}, P}$ of $\operatorname{rank}\langle\underbrace{\iota, \ldots, \iota}_{\mathrm{n} \text { times }}, \kappa\rangle$
- Why all this?

Arithmetic reformulated

$$
\begin{array}{cc}
\forall y \forall z(y=z \Leftrightarrow \forall p(y \in p \Rightarrow z \in p)) \\
\forall n(N(n) \Leftrightarrow \forall p(0 \in p \Rightarrow \forall y(N(y) \Rightarrow y \in p \Rightarrow S(y) \in p) \Rightarrow n \in p)) \\
\forall x \forall y_{1} \ldots \forall y_{n}\left(x \in f_{\left.x, y_{1}, \ldots, y_{n}, P\left(y_{1}, \ldots, y_{n}\right) \Leftrightarrow P\right)}\right. \\
\begin{array}{cc}
\operatorname{Pred}(0)=0 & \forall x(\operatorname{Pred}(S(x))=x) \\
N u l l(0) & \forall x(\neg \operatorname{Null}(S(x))) \\
& \\
\forall y(0+y)=y & \forall x \forall y(S(x)+y=S(x+y)) \\
\forall y(0 \times y=0) & \forall x \forall y(S(x) \times y=x \times y+y)
\end{array}
\end{array}
$$

This formulation is conservative over PA

Arithmetic modulo

$$
\begin{gathered}
y=z \rightarrow \forall p(y \in p \Rightarrow z \in p) \\
N(n) \rightarrow \forall p(0 \in p \Rightarrow \forall y(N(y) \Rightarrow y \in p \Rightarrow S(y) \in p) \Rightarrow n \in p) \\
x \in f_{x, y_{1}, \ldots, y_{n}, P\left(y_{1}, \ldots, y_{n}\right) \rightarrow P}
\end{gathered}
$$

$\operatorname{Pred}(0) \rightarrow 0$
$\mathrm{NuII}(0) \rightarrow \top$
$\operatorname{Pred}(S(x)) \rightarrow x$
$\operatorname{Null}(S(x)) \rightarrow \perp$

$$
\begin{aligned}
& 0+y \rightarrow y \\
& 0 \times y \rightarrow 0
\end{aligned}
$$

$$
S(x)+y \rightarrow S(x+y)
$$

$$
S(x) \times y \rightarrow x \times y+y
$$

This forms a rewrite system $\mathcal{R}_{H A}$

- One can express other axiomatic theories in deduction modulo: higher-order logic, Zermelo's Set theory for instance.
- One can express other axiomatic theories in deduction modulo: higher-order logic, Zermelo's Set theory for instance.
- the problem of cut elimination in presence of rewrite rules in presence of arbitrary \mathcal{R} is no more trivial:

$$
A \rightarrow \neg A \wedge B
$$

can prove: $\vdash \neg B$ with a cut on A

- One can express other axiomatic theories in deduction modulo: higher-order logic, Zermelo's Set theory for instance.
- the problem of cut elimination in presence of rewrite rules in presence of arbitrary \mathcal{R} is no more trivial:

$$
A \rightarrow \neg A \wedge B
$$

can prove: $\vdash \neg B$ with a cut on A

- even in presence of confluence/termination of \mathcal{R}, this can fail:

$$
R \in R \rightarrow \forall y(y \simeq R \Rightarrow \neg y \in R)
$$

- One can express other axiomatic theories in deduction modulo: higher-order logic, Zermelo's Set theory for instance.
- the problem of cut elimination in presence of rewrite rules in presence of arbitrary \mathcal{R} is no more trivial:

$$
A \rightarrow \neg A \wedge B
$$

can prove: $\vdash \neg B$ with a cut on A

- even in presence of confluence/termination of \mathcal{R}, this can fail:

$$
R \in R \rightarrow \forall y(y \simeq R \Rightarrow \neg y \in R)
$$

- a cut in deduction modulo corresponds to ad hoc axiomatic cuts of axiomatic theories.

How to eliminate cut

- need for new definitions. In particular for models.
- need for new definitions. In particular for models.
- we construct Hintikka sets/ complete tableaux.
- need for new definitions. In particular for models.
- we construct Hintikka sets/ complete tableaux.
- we have to go further: the obtained Hintikka set has to be transformed into a model of \mathcal{R} (most tedious part).

Results with the semantic method

Cut elimination for:

- a w.f.o. condition on \mathcal{R}
- a positivity condition on \mathcal{R}
- a mix of the two previous conditions
- HOL formulation in Deduction Modulo
- the rule:

$$
R \in R \rightarrow \forall y(y \simeq R \Rightarrow(y \in R \Rightarrow(A \Rightarrow \neg A)))
$$

does not have proof normalization, but has cut admissibility.

- both approach are not equivalent.

- both approach are not equivalent.
- this is still a field of investigations.

