Generalizing Boolean Algebras for Deduction Modulo

Aloïs Brunel Olivier Hermant Clément Houtmann

ENS Lyon/Paris 13 ISEP INRIA Saclay - EPI Parsifal

June 1, 2011

Credits: all the people from INRIA ARC CORIAS http://www.lix.polytechnique.fr/corias/

Deduction modulo [Dowek, Hardin & Kirchner]

Original idea: combine automated theorem proving with rewriting Generalized to: combine any deduction process with rewriting

Deduction modulo [Dowek, Hardin & Kirchner]

Original idea: combine automated theorem proving with rewriting Generalized to: combine any deduction process with rewriting

Example: Classical Sequent Calculus Modulo

$$\mathsf{LK} + \frac{\begin{array}{c} \mathsf{Conversion} \ \mathsf{Right}}{\Gamma \vdash A, \Delta \quad A \equiv B} \\ \Gamma \vdash B, \Delta \end{array} + \frac{\begin{array}{c} \mathsf{Conversion} \ \mathsf{Left}}{\Gamma, A \vdash \Delta \quad A \equiv B} \\ \overline{\Gamma, B \vdash \Delta} \end{array}$$

Examples of theories expressed in Deduction Modulo

- arithmetic
- simple type theory (HOL)
- confluent, terminating and quantifier free rewrite systems
- confluent, terminating and positive rewrite systems
- positive rewrite system such that each atomic formula has at most one one-step reduct

What about cut-elimination ?

$$\begin{cases} \vdash even(0) \\ even(n) \vdash even(n+2) \end{cases}$$

$$\mathsf{Cut} \; \frac{\vdash \mathsf{even}(0) \qquad \mathsf{even}(0) \vdash \mathsf{even}(2)}{\vdash \mathsf{even}(2)}$$

A. Brunel, O. Hermant, C. Houtmann (INRIA)

- ∢ ≣ ▶

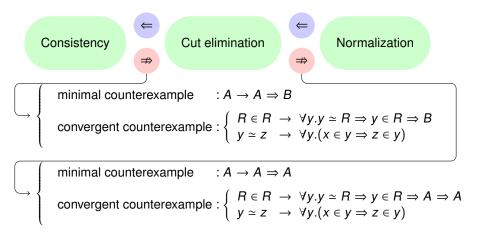
What about cut-elimination ?

even(0)
$$\rightarrow \top$$

even(x + 2) \rightarrow even(x)
 $\overline{\vdash \top}$ even(2) $\equiv \top$
 \vdash even(2)

A. Brunel, O. Hermant, C. Houtmann (INRIA)

Cut-elimination implies consistency... and we must pay the prize



Superconsistency (SC): A generic criterion

Dowek & Werner: *Proof normalization modulo* Dowek: *Truth values algebras and proof normalization*

Consistency

A theory ${\mathcal T}$ is consistent if it can be interpreted in **one** model not reduced to \bot

Super-consistency

A theory ${\mathcal T}$ is super-consistent if it can be interpreted in all models

What is the notion of model ?

Pre-Heyting Algebras

... are Heyting algebras generalized to *pre-ordered sets*

Pre-Heyting algebras take into account two distinct notion of equivalence: Computational equivalence : strong, corresponds to equality in the model Logical equivalence : loose corresponds to $\geq \cap \leq$

Superconsistency (SC): characterizing analytical theories

Dowek's remark

The set of reducibility candidates for NJ modulo is a pre-Heyting Algebra.

Superconsistency (SC): characterizing analytical theories

Dowek's remark

The set of reducibility candidates for NJ modulo is a pre-Heyting Algebra.

Consistency The theory can be interpreted in a non-trivial model Superconsistency The theory can be interpreted in any model

Any superconsistent theory can then be interpreted in the pre-Heyting algebra of reducibility candidates.

Any superconsistent theory is strongly normalizable (for NJ)

Conclusion

Examples of theories proved to be superconsistent

- arithmetic
- simple type theory
- confluent, terminating and quantifier free rewrite systems
- confluent, terminating and positive rewrite systems
- positive rewrite system such that each atomic formula has at most one one-step reduct

Now what about classical sequent calculi ?

- the framework:
 - monosided classical sequent calculus
 - deduction modulo with explicit conversion
 - negation is an operation and not a connective
- ► the aim: direct proof that SC implies cut elimination in LK₌
- the method: sequent reducibility candidates [Dowek, Hermant].

Now what about classical sequent calculi ?

- the framework:
 - monosided classical sequent calculus
 - deduction modulo with explicit conversion
 - negation is an operation and not a connective
- ► the aim: direct proof that SC implies cut elimination in LK₌
- the method: sequent reducibility candidates [Dowek, Hermant].

Pre-Boolean Algebras

similar as for Heyting's: weaken the order in Boolean Algebras into a pre-order (*i.e.* loose antisymmetry)

but stricter: $a^{\perp\perp} = a$ (and not $a^{\perp\perp} \leq a$)

A road map/recipe

Suppose you have an unspecified superconsistent theory

Step 1 Construct a set of reducibility candidates

Step 2 Prove that it is a pre-Boolean algebra you get an interpretation of sequents in the algebra for free thanks to superconsistency

Step 3 Prove adequacy: provable sequents are in their interpretations you get cut-elimination as a direct corollary

Inheritance from Linear Logic [Okada, Brunel]

identifying a site in sequents: pointed sequents

$$\vdash \Delta, A^{\circ}$$

interaction: a partial function \star

$$\vdash \Delta_1, A^{\circ} \star \vdash \Delta_2, B^{\circ} = \vdash \Delta_1, \Delta_2 \quad \text{if } A \equiv B^{\perp}$$
$$\vdash \Delta_1, A^{\circ} \star X = \{ \vdash \Delta_1, \Delta_2 \mid \vdash \Delta_2, B^{\circ} \in X \text{ and } A \equiv B^{\perp} \}$$

- ▶ define an object having good properties: ⊥
 the set of cut-free provable sequents in LK₌
- define an orthogonality operation on sets of sequents:

$$X^{\perp} = \{ \vdash \Delta, A^{\circ} \mid \vdash \Delta, A^{\circ} \star X \subseteq \mathbb{L} \}$$

* usual properties of an orthogonality operation:

$$X \subseteq X^{\perp \perp} \qquad X \subseteq Y \Rightarrow Y^{\perp} \subseteq X^{\perp} \qquad X^{\perp \perp \perp} = X^{\perp}$$

Step 1: construct the set of reducibility candidates

the domain of interpretation D: set of sequents

 $Ax^{\circ} \subseteq X \subseteq \mathbb{L}^{\circ}$

which are behaviours: $X^{\perp\perp} = X$

- reducibility candidates analogy:
 - **CR1** $X \subseteq \bot$ (SN proofterms)
 - CR2 none (no reduction)
 - **CR3** $Ax^{\circ} \subseteq X$ (neutral proofterms)
- core operation + orthogonality:

$$X.Y = \{ \vdash \Delta_A, \Delta_B, (A \land B)^\circ \mid (\vdash \Delta_A, A^\circ) \in X \\ \text{and} (\vdash \Delta_B, B^\circ) \in Y \}$$

Step 2: prove that it is a pre-Boolean algebra

D forms a pre-Boolean algebra:

- ► cheat on ≤: take the trivial pre-order
 - * we can even drop it in the definition (see the paper)
- stability of *D* under $(.)^{\perp}$, \wedge
- ▶ stability of elements of D under =

Step 3: prove adequacy

Super-consistency:

• give us an interpretation such that $A \equiv B$ implies $A^* = B^*$

Adequacy:

- takes a proof of $\vdash A_1, ..., A_n$
- assumes $\vdash \Delta_i, (A_i^{\perp})^{\circ} \in A_i^{*\perp}$
- ensures $\vdash \Delta_1, ..., \Delta_n \in \mathbb{L}$

Features of the theorem:

conversion rule: processed by the SC condition

Directly implies cut-elimination:

- ▶ because $Ax^{\circ} \subseteq A_i^{*\perp}$, we have $\vdash A, (A^{\perp})^{\circ} \in A_i^{*\perp}$
- ▶ because of the definition of ⊥ (cut-free provable sequents)

As a conclusion...

- Deduction modulo defines a notion of analytic theories
- \blacktriangleright SC for pre-Heyting algebras implies normalization in NJ_=
- SC for pre-Boolean algebras implies cut-elimination in LK₌ using orthogonality
- SC for Heyting implies SC for Boole

As a conclusion...

- Deduction modulo defines a notion of analytic theories
- \blacktriangleright SC for pre-Heyting algebras implies normalization in NJ_=
- SC for pre-Boolean algebras implies cut-elimination in LK₌ using orthogonality
- SC for Heyting implies SC for Boole

some perspectives:

- does SC for Boole imply SC for Heyting ?
- what about double negative translations ?
- ▶ what about normalization in LK₌ ?
- is SC complete w.r.t. normalization/cut-elimination ?