Semantic Cut Elimination in Sequent Calculus

Olivier Hermant

April 20, 2005

Olivier Hermant Semantic Cut Elimination in Sequent Calculus

・ロン ・回と ・ヨン・

Outline

Introduction Semantic approach Kripke Structures The completeness theorem Deduction Modulo

Introduction

Semantic approach

Kripke Structures

The completeness theorem

Deduction Modulo

・ロン ・回 と ・ ヨ と ・ ヨ と

Cut elimination in Intuitionnistic Sequent Calculus

Cut elimination is a central result.

・ロン ・回と ・ヨン・

Cut elimination in Intuitionnistic Sequent Calculus

- Cut elimination is a central result.
- It is sufficient in many cases.

イロト イヨト イヨト イヨト

Cut elimination in Intuitionnistic Sequent Calculus

- Cut elimination is a central result.
- It is sufficient in many cases.
- We will prove cut elimination:
 - in the Intuitionnistic Sequent Calculus
 - by semantic means, extending results for classical logic
 - and extend it to deduction modulo

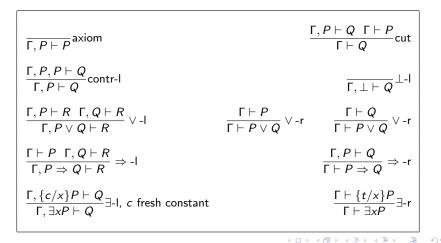
・ 同 ト ・ ヨ ト ・ ヨ ト

Cut elimination in Intuitionnistic Sequent Calculus

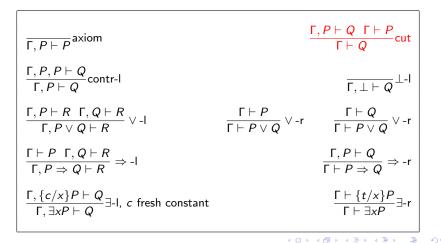
- Cut elimination is a central result.
- It is sufficient in many cases.
- We will prove cut elimination:
 - in the Intuitionnistic Sequent Calculus
 - by semantic means, extending results for classical logic
 - and extend it to deduction modulo
- Is there a link with normalisation method ?

・ 同 ト ・ ヨ ト ・ ヨ ト

The Intuitionnistic Sequent Calculus



The Intuitionnistic Sequent Calculus



Semantic Approach

Soundness and Completeness

・ロン ・回と ・ヨン・

Semantic Approach

Soundness and Completeness

Soundness: If $\Gamma \vdash P$ then $\Gamma \models P$.

・ロン ・回と ・ヨン・

Semantic Approach

Soundness and Completeness

- Soundness: If $\Gamma \vdash P$ then $\Gamma \models P$.
- Completeness: If $\Gamma \models P$ then $\Gamma \vdash P$.

イロン イヨン イヨン イヨン

Semantic Approach

Soundness and Completeness

- Soundness: If $\Gamma \vdash P$ then $\Gamma \models P$.
- Cut-free Completeness: If $\Gamma \models P$ then $\Gamma \vdash^{cf} P$.

イロン 不同と 不同と 不同と

Semantic Approach

Soundness and Completeness

- Soundness: If $\Gamma \vdash P$ then $\Gamma \models P$.
- Cut-free Completeness: If $\Gamma \models P$ then $\Gamma \vdash^{cf} P$.

Semantics for the Intuitionnistic Sequent Calculus

イロン 不同と 不同と 不同と

Semantic Approach

Soundness and Completeness

- Soundness: If $\Gamma \vdash P$ then $\Gamma \models P$.
- Cut-free Completeness: If $\Gamma \models P$ then $\Gamma \vdash^{cf} P$.
- Semantics for the Intuitionnistic Sequent Calculus
 - Heyting Algebras [Lipton,Okada]

イロト イポト イヨト イヨト

Semantic Approach

Soundness and Completeness

- Soundness: If $\Gamma \vdash P$ then $\Gamma \models P$.
- Cut-free Completeness: If $\Gamma \models P$ then $\Gamma \vdash^{cf} P$.
- Semantics for the Intuitionnistic Sequent Calculus
 - Heyting Algebras [Lipton,Okada]
 - Kripke Structures

イロト イポト イヨト イヨト

Kripke Structures

- A Kripke Structure is a quadruple $\langle K,\leq,D,\Vdash\rangle$
 - K is a set of worlds, partially ordered by \leq

イロト イポト イヨト イヨト

Kripke Structures

- A Kripke Structure is a quadruple $\langle K, \leq, D, \Vdash \rangle$
 - K is a set of worlds, partially ordered by \leq
 - $D: \alpha \rightarrow Set$ is a monotone function. It interprets the terms.

イロト イヨト イヨト イヨト

Kripke Structures

A Kripke Structure is a quadruple $\langle K, \leq, D, \Vdash
angle$

- K is a set of worlds, partially ordered by \leq
- $D: \alpha \rightarrow Set$ is a monotone function. It interprets the terms.
- ► IF is a relation between worlds and propositions, verifying certain condition, among which:

イロト イポト イヨト イヨト

Kripke Structures

- A Kripke Structure is a quadruple $\langle K, \leq, D, \Vdash
 angle$
 - K is a set of worlds, partially ordered by \leq
 - $D: \alpha \rightarrow Set$ is a monotone function. It interprets the terms.
 - ► IF is a relation between worlds and propositions, verifying certain condition, among which:
 - A is an atom: if $\alpha \leq \beta$ and $\alpha \Vdash A$, then $\beta \Vdash A$.
 - $\alpha \Vdash P \Rightarrow Q$ iff for any $\beta \ge \alpha$ we have $\beta \Vdash P$ implies $\beta \Vdash Q$.

Another formulation of the completeness theorem: if Γ ⊭^{cf} P there exists a K.S. that is a model for Γ and that is not a model for P.
 Given such Γ qnd P, we have to construct a world α of some KS K, s.t. α ⊩ Γ and α ⊮ P.

イロン イヨン イヨン イヨン

- Another formulation of the completeness theorem: if Γ ⊭^{cf} P there exists a K.S. that is a model for Γ and that is not a model for P.
 Given such Γ qnd P, we have to construct a world α of some KS K, s.t. α ⊩ Γ and α ⊮ P.
- We can no more use usual definitions (e.g. completeness or saturation), because we can't no more ensure that Γ ⊢^{cf} P implies P ∈ Γ, without having inconsitency.
 We could have: Γ, P ⊢^{cf} and Γ ⊢^{cf} P at the same time.

イロト イポト イヨト イヨト

- Another formulation of the completeness theorem: if Γ ⊭^{cf} P there exists a K.S. that is a model for Γ and that is not a model for P.
 Given such Γ qnd P, we have to construct a world α of some
 - KS \mathcal{K} , s.t. $\alpha \Vdash \Gamma$ and $\alpha \nvDash P$.
- We can no more use usual definitions (e.g. completeness or saturation), because we can't no more ensure that Γ ⊢^{cf} P implies P ∈ Γ, without having inconsitency.
 We could have: Γ, P ⊢^{cf} and Γ ⊢^{cf} P at the same time.
- Adding the fact that we are in an intuitionnistic framework, they become:
 - A-Consistency: $\Gamma \nvDash^{cf} A$
 - A-Completeness (saturation): $\Gamma, P \vdash^{cf} A$ or $P \in \Gamma$
 - A-Henkin witnesses: Γ, ∃xP ⊭^{cf} A implies {c/x}P ∈ Γ for some constant c.

Model Construction

Given an A-consistent theory Γ_0 , we sature it:

• Let C be a set of fresh constants w.r.t. Γ_0

$\Gamma_0 \subseteq \Gamma$ and Γ is A-consistent, A-complete, and admits A-witnesses.

・ロン ・回と ・ヨン・

Model Construction

Given an A-consistent theory Γ_0 , we sature it:

- Let C be a set of fresh constants w.r.t. Γ_0
- Let $P_0, ..., P_n, ...$ be an enumeration of the propositions.

$\Gamma_0 \subseteq \Gamma$ and Γ is A-consistent, A-complete, and admits A-witnesses.

・ロン ・回と ・ヨン・

Model Construction

Given an A-consistent theory Γ_0 , we sature it:

- Let C be a set of fresh constants w.r.t. Γ₀
 Let P₀, ..., P_n, ... be an enumeration of the propositions.
 - if $\Gamma_n, P_n \nvDash^{cf} A$ then $\Gamma_{n+1} = \Gamma_n \cup \{P_n\}$

$\Gamma_0 \subseteq \Gamma$ and Γ is A-consistent, A-complete, and admits A-witnesses.

Model Construction

Given an A-consistent theory Γ_0 , we sature it:

- Let \mathcal{C} be a set of fresh constants w.r.t. Γ_0
- Let $P_0, ..., P_n, ...$ be an enumeration of the propositions.
 - if $\Gamma_n, P_n \nvDash^{cf} A$ then $\Gamma_{n+1} = \Gamma_n \cup \{P_n\}$
 - ► if, moreover, P_n is an existential formula $\exists xQ$, let $\Gamma_{n+1} = \Gamma_n \cup \{P_n, \{c/x\}Q\}$

 $\Gamma_0 \subseteq \Gamma$ and Γ is A-consistent, A-complete, and admits A-witnesses.

Model Construction

Given an A-consistent theory Γ_0 , we sature it:

- \blacktriangleright Let ${\mathcal C}$ be a set of fresh constants w.r.t. Γ_0
- Let $P_0, ..., P_n, ...$ be an enumeration of the propositions.
 - if $\Gamma_n, P_n \nvDash^{cf} A$ then $\Gamma_{n+1} = \Gamma_n \cup \{P_n\}$
 - ► if, moreover, P_n is an existential formula $\exists xQ$, let $\Gamma_{n+1} = \Gamma_n \cup \{P_n, \{c/x\}Q\}$
 - Else, $\Gamma_{n+1} = \Gamma_n$

 $\Gamma_0 \subseteq \Gamma$ and Γ is A-consistent, A-complete, and admits A-witnesses.

イロト イポト イヨト イヨト

Model Construction

Given an A-consistent theory Γ_0 , we sature it:

- \blacktriangleright Let ${\mathcal C}$ be a set of fresh constants w.r.t. Γ_0
- Let $P_0, ..., P_n, ...$ be an enumeration of the propositions.
 - if $\Gamma_n, P_n \nvDash^{cf} A$ then $\Gamma_{n+1} = \Gamma_n \cup \{P_n\}$
 - ▶ if, moreover, P_n is an existential formula $\exists xQ$, let $\Gamma_{n+1} = \Gamma_n \cup \{P_n, \{c/x\}Q\}$

• Else,
$$\Gamma_{n+1} = \Gamma_n$$

• Let $\Gamma = \bigcup \Gamma_n$

 $\Gamma_0 \subseteq \Gamma$ and Γ is A-consistent, A-complete, and admits A-witnesses.

イロト イポト イヨト イヨト

Model Construction

construction of the Kripke Structure : as usual.

イロン イヨン イヨン イヨン

Model Construction

- construction of the Kripke Structure : as usual.
- The set of worlds K is the set of B-complete, B-consitent theories admitting B-Henkin witnesses, for some (variable) proposition B, over sets of languages L₀ ⊂ L₁ = L₀ ∪ C₀ ⊂ ... ⊂ L_n...).

・ロン ・回と ・ヨン・

Model Construction

- construction of the Kripke Structure : as usual.
- The set of worlds K is the set of B-complete, B-consitent theories admitting B-Henkin witnesses, for some (variable) proposition B, over sets of languages L₀ ⊂ L₁ = L₀ ∪ C₀ ⊂ ... ⊂ L_n...).
- The order is inclusion

・ロン ・回と ・ヨン・

Model Construction

- construction of the Kripke Structure : as usual.
- The set of worlds K is the set of B-complete, B-consitent theories admitting B-Henkin witnesses, for some (variable) proposition B, over sets of languages L₀ ⊂ L₁ = L₀ ∪ C₀ ⊂ ... ⊂ L_n...).
- The order is inclusion
- The domain of Γ is the set of closed terms.

・ロン ・回と ・ヨン・

Model Construction

- construction of the Kripke Structure : as usual.
- The set of worlds K is the set of B-complete, B-consitent theories admitting B-Henkin witnesses, for some (variable) proposition B, over sets of languages L₀ ⊂ L₁ = L₀ ∪ C₀ ⊂ ... ⊂ L_n...).
- The order is inclusion
- The domain of Γ is the set of closed terms.
- the forcing relation on atoms: Γ ⊨ A iff A ∈ Γ. It is extended straightforwarly to propositions, by definition.

・ロン ・回と ・ヨン・

Model Construction

- construction of the Kripke Structure : as usual.
- The set of worlds K is the set of B-complete, B-consitent theories admitting B-Henkin witnesses, for some (variable) proposition B, over sets of languages L₀ ⊂ L₁ = L₀ ∪ C₀ ⊂ ... ⊂ L_n...).
- The order is inclusion
- The domain of Γ is the set of closed terms.
- the forcing relation on atoms: Γ ⊢ A iff A ∈ Γ. It is extended straightforwarly to propositions, by definition.
- This is a Kripke Structure. Moreover, it has the following properties:

・ロン ・回と ・ヨン・

Model Construction

- construction of the Kripke Structure : as usual.
- The set of worlds K is the set of B-complete, B-consitent theories admitting B-Henkin witnesses, for some (variable) proposition B, over sets of languages L₀ ⊂ L₁ = L₀ ∪ C₀ ⊂ ... ⊂ L_n...).
- The order is inclusion
- The domain of Γ is the set of closed terms.
- ► the forcing relation on atoms: Γ ⊢ A iff A ∈ Γ. It is extended straightforwarly to propositions, by definition.
- This is a Kripke Structure. Moreover, it has the following properties:
 - for any $P \in \Gamma$, $\Gamma \Vdash P$
 - if $\Gamma \nvDash^{cf} P$ then $\Gamma \nvDash P$

・ロン ・四 ・ ・ ヨン ・ ヨン

Model Construction

Turn back to the proof of the completeness theorem. Theorem: if *T* ⊮ *A*, then we can find α ⊩ *T* and α ⊮ *A*. Proof: We complete *T* into Γ, and in the KS previously defined, we get that Γ ⊩ *T*.

イロト イポト イヨト イヨト

Model Construction

- Turn back to the proof of the completeness theorem. Theorem: if *T* ⊮ *A*, then we can find α ⊩ *T* and α ⊮ *A*. Proof: We complete *T* into Γ, and in the KS previously defined, we get that Γ ⊩ *T*.
- As a corollary, we get the cut elimination theorem. Theorem: if Γ ⊢ P then Γ ⊢^{cf} P. Proof: We have Γ ⊩ P by soundness, and we conclude with cut-free completeness.

イロト イポト イヨト イヨト

The Deduction Modulo

Addition of rewrite rules on terms:

$$(x + y) + z \rightarrow x + (y + z)$$

 $x * 0 \rightarrow 0$

イロン イヨン イヨン イヨン

The Deduction Modulo

Addition of rewrite rules on terms:

$$(x+y)+z \rightarrow x+(y+z)$$

 $x*0 \rightarrow 0$

Addition of rewrite rules on atomic propositions:

$$x * y = 0 \quad \rightarrow x = 0 \lor y = 0$$

・ロン ・回と ・ヨン・

The Deduction Modulo

Addition of rewrite rules on terms:

$$(x+y)+z \rightarrow x+(y+z)$$

 $x*0 \rightarrow 0$

Addition of rewrite rules on atomic propositions:

$$x * y = 0 \quad \rightarrow x = 0 \lor y = 0$$

 Rewrite rules on propositions is the central paradigm of deduction modulo.

・ロト ・回ト ・ヨト ・ヨト

The Deduction Modulo

Replacing axiom with rewrite rule $x + S(y) \rightarrow S(x) + y$:

$$\frac{\text{Reflexivity}}{\vdash_{\mathcal{R}} 2 + 2 = 4}$$

・ロン ・回と ・ヨン・

The Intuitionnistic Sequent Calculus Modulo

$$\frac{\Gamma, P \vdash Q}{\Gamma, P \vdash Q} \operatorname{axiom} P \equiv_{\mathcal{R}} Q \qquad \qquad \frac{\Gamma, P \vdash Q}{\Gamma \vdash Q} \operatorname{cut} P \equiv_{\mathcal{R}} Q$$

$$\frac{\Gamma, P, Q \vdash R}{\Gamma, P \vdash R} \operatorname{contr-I} P \equiv_{\mathcal{R}} Q \qquad \qquad \frac{\Gamma, P \vdash Q}{\Gamma, P \vdash Q} \bot^{-1} P \equiv_{\mathcal{R}} \bot$$

$$\frac{\Gamma \vdash P}{\Gamma, S \vdash R} \Rightarrow -1 P \Rightarrow Q \equiv S \qquad \frac{\Gamma, P \vdash Q}{\Gamma \vdash S} \Rightarrow -r P \Rightarrow Q \equiv_{\mathcal{R}} S$$

$$\frac{\Gamma, \{c/x\}P \vdash Q}{\Gamma, R \vdash Q} \exists -1^* \exists xP \equiv_{\mathcal{R}} R \qquad \qquad \frac{\Gamma \vdash \{t/x\}P}{\Gamma \vdash R} \exists -r \exists xP \equiv_{\mathcal{R}} R$$

イロト イヨト イヨト イヨト

The Intuitionnistic Sequent Calculus Modulo

$$\frac{\Gamma, P \vdash Q}{\Gamma, P \vdash Q} \operatorname{axiom} P \equiv_{\mathcal{R}} Q \qquad \qquad \frac{\Gamma, P \vdash Q}{\Gamma \vdash Q} \operatorname{cut} P \equiv_{\mathcal{R}} Q$$

$$\frac{\Gamma, P, Q \vdash R}{\Gamma, P \vdash R} \operatorname{contr-I} P \equiv_{\mathcal{R}} Q \qquad \qquad \frac{\Gamma, P \vdash Q}{\Gamma, P \vdash Q} \bot^{-1} P \equiv_{\mathcal{R}} \bot$$

$$\frac{\Gamma \vdash P}{\Gamma, S \vdash R} \Rightarrow -1 P \Rightarrow Q \equiv S \qquad \frac{\Gamma, P \vdash Q}{\Gamma \vdash S} \Rightarrow -r P \Rightarrow Q \equiv_{\mathcal{R}} S$$

$$\frac{\Gamma, \{c/x\}P \vdash Q}{\Gamma, R \vdash Q} \exists -1^* \exists xP \equiv_{\mathcal{R}} R \qquad \qquad \frac{\Gamma \vdash \{t/x\}P}{\Gamma \vdash R} \exists -r \exists xP \equiv_{\mathcal{R}} R$$

イロト イヨト イヨト イヨト

The Intuitionnistic Sequent Calculus Modulo

> Definition are transformed in a straightforward way :

• cut-free A-consistency: $\Gamma \nvDash_{\mathcal{R}}^{cf} A$

・ロン ・回と ・ヨン・

The Intuitionnistic Sequent Calculus Modulo

Definition are transformed in a straightforward way :

- cut-free A-consistency: $\Gamma \nvDash_{\mathcal{R}}^{cf} A$
- ► cut-free *A*-completeness: either Γ , $P \vdash_{\mathcal{R}}^{cf} A$ or $P \in \Gamma$

イロト イヨト イヨト イヨト

The Intuitionnistic Sequent Calculus Modulo

Definition are transformed in a straightforward way :

- cut-free A-consistency: $\Gamma \nvDash_{\mathcal{R}}^{cf} A$
- ► cut-free *A*-completeness: either Γ , $P \vdash_{\mathcal{R}}^{cf} A$ or $P \in \Gamma$
- ► cut-free A-Henkin witnesses: Γ , $\exists x Q \nvDash_{\mathcal{R}}^{cf} A$ implies $\{c/x\}Q \in \Gamma$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Semantics for Deduction Modulo:

Kripke Structures or Heyting Algebras as well.

・ロト ・回ト ・ヨト ・ヨト

Semantics for Deduction Modulo:

- Kripke Structures or Heyting Algebras as well.
- But with an extra condition: if A ≡_R B, then α ⊨ A iff α ⊨ B (in the KS case).

・ロン ・回と ・ヨン・

Semantics for Deduction Modulo:

- Kripke Structures or Heyting Algebras as well.
- But with an extra condition: if A ≡_R B, then α ⊩ A iff α ⊩ B (in the KS case).
- The previous method should then be modified, because we have to ensure this new condition.

・ロン ・回と ・ヨン・

Cut Elimination in Deduction Modulo:

The completion process remains the same, but uses the new definitions.

・ロト ・回ト ・ヨト ・ヨト

Cut Elimination in Deduction Modulo:

- The completion process remains the same, but uses the new definitions.
- The model definition depends on the class of the rewrite rules. We show it for one class of Rewrite Systems.

・ロン ・回と ・ヨン・

An order condition

We suppose than we have a confluent rewrite system \mathcal{R} such that there exists a well-founded order \prec verifying:

・ロン ・回と ・ヨン・

An order condition

We suppose than we have a confluent rewrite system \mathcal{R} such that there exists a well-founded order \prec verifying:

• if $P \rightarrow_{\mathcal{R}} Q$ then $Q \prec P$.

・ロン ・回 と ・ ヨ と ・ ヨ と

An order condition

We suppose than we have a confluent rewrite system \mathcal{R} such that there exists a well-founded order \prec verifying:

- if $P \rightarrow_{\mathcal{R}} Q$ then $Q \prec P$.
- if A is a subformula of B then $A \prec B$.

・ロン ・回と ・ヨン・

An order condition

We suppose than we have a confluent rewrite system \mathcal{R} such that there exists a well-founded order \prec verifying:

- if $P \rightarrow_{\mathcal{R}} Q$ then $Q \prec P$.
- if A is a subformula of B then $A \prec B$.

► For example:

 $\begin{array}{rcl} A & \to & B \lor \forall x C(x) \\ C(O) & \to & D \end{array}$

・ロト ・回ト ・ヨト ・ヨト

An order condition

We suppose than we have a confluent rewrite system \mathcal{R} such that there exists a well-founded order \prec verifying:

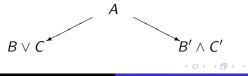
- if $P \rightarrow_{\mathcal{R}} Q$ then $Q \prec P$.
- if A is a subformula of B then $A \prec B$.

► For example:

$$A \rightarrow B \lor \forall x C(x)$$

 $C(O) \rightarrow D$

Confluence is necessary, in order not to have:



3 × 4 3 ×

An order condition

Modulo this order, it suffice to now construct the KS as following:

<ロ> (四) (四) (三) (三) (三)

An order condition

Modulo this order, it suffice to now construct the KS as following:

► The set of worlds *K* is the set of *A*-complete, *A*-consitent theories admitting *A*-Henkin witnesses, as before.

・ロト ・回ト ・ヨト ・ヨト

An order condition

Modulo this order, it suffice to now construct the KS as following:

- ► The set of worlds *K* is the set of *A*-complete, *A*-consitent theories admitting *A*-Henkin witnesses, as before.
- The order is inclusion.

イロン イヨン イヨン イヨン

An order condition

Modulo this order, it suffice to now construct the KS as following:

- ► The set of worlds *K* is the set of *A*-complete, *A*-consitent theories admitting *A*-Henkin witnesses, as before.
- The order is inclusion.
- The domain of Γ is the set of closed terms.

・ロト ・回ト ・ヨト ・ヨト

An order condition

Modulo this order, it suffice to now construct the KS as following:

- ► The set of worlds *K* is the set of *A*-complete, *A*-consitent theories admitting *A*-Henkin witnesses, as before.
- The order is inclusion.
- The domain of Γ is the set of closed terms.
- ► the forcing relation is first defined on normal atoms: $\Gamma \Vdash A$ iff $A \in \Gamma$

・ロト ・回ト ・ヨト ・ヨト

An order condition

Modulo this order, it suffice to now construct the KS as following:

- ► The set of worlds *K* is the set of *A*-complete, *A*-consitent theories admitting *A*-Henkin witnesses, as before.
- The order is inclusion.
- The domain of Γ is the set of closed terms.
- ► the forcing relation is first defined on normal atoms: $\Gamma \Vdash A$ iff $A \in \Gamma$
- We extend it by induction on the order ≺ to non atomic propositions and non-normal atoms:
 - for a non-normal atom, set $\Gamma \Vdash A$ iff $\Gamma \Vdash A \downarrow$
 - for non atomic propositions, follow the definition.

・ロン ・回 と ・ ヨ と ・ ヨ と

An order condition

Modulo this order, it suffice to now construct the KS as following:

- ► The set of worlds *K* is the set of *A*-complete, *A*-consitent theories admitting *A*-Henkin witnesses, as before.
- The order is inclusion.
- The domain of Γ is the set of closed terms.
- ► the forcing relation is first defined on normal atoms: $\Gamma \Vdash A$ iff $A \in \Gamma$
- We extend it by induction on the order ≺ to non atomic propositions and non-normal atoms:
 - for a non-normal atom, set $\Gamma \Vdash A$ iff $\Gamma \Vdash A \downarrow$
 - for non atomic propositions, follow the definition.
- ► From the well-foundedness of ≺, the above definition is well-founded.

An order condition

Moreover, the KS defined in the previous slide is a KS for the rewrite system \mathcal{R} .

So, we have proved the cut-free completeness theorem:

・ロト ・回ト ・ヨト ・ヨト

An order condition

Moreover, the KS defined in the previous slide is a KS for the rewrite system \mathcal{R} .

So, we have proved the cut-free completeness theorem:

► Theorem: Let *R* be a confluent Rewrite System compatible with a wfo having the subformula property.

$$\Gamma \models P$$
 implies $\Gamma \vdash_{\mathcal{R}}^{cf} P$

イロト イポト イヨト イヨト

An order condition

Moreover, the KS defined in the previous slide is a KS for the rewrite system \mathcal{R} .

So, we have proved the cut-free completeness theorem:

► Theorem: Let *R* be a confluent Rewrite System compatible with a wfo having the subformula property.

$$\Gamma \models P$$
 implies $\Gamma \vdash_{\mathcal{R}}^{cf} P$

As a corollary, we get the cut-elimination theorem: Theorem: Let R be a confluent Rewrite System compatible with a wfo having the subformula property.

$$\Gamma \vdash_{\mathcal{R}} P$$
 implies $\Gamma \vdash_{\mathcal{R}}^{cf} P$

イロト イポト イヨト イヨト

Cut elimination \neq Normalization

The rewrite system composed of the following rewrite rule:

$$R \in R o_{\mathcal{R}} orall y \; (orall x (y \in x \Rightarrow R \in x) \Rightarrow (y \in R \Rightarrow (A \Rightarrow A))$$

Doesn't normalize. E.g. the following proof:

$$\frac{R \in R \vdash_{\mathcal{R}}^{cf} A \Rightarrow A \quad \vdash_{\mathcal{R}}^{cf} R \in R}{\vdash_{\mathcal{R}} A \Rightarrow A} \text{ cut}$$

- ► Has the cut elimination property. We can find by other means a cut-free proof of ⊢^{cf}_R A ⇒ A.
- And a proof of cut redundancy by our method works.

イロト イポト イヨト イヨト

Further work

- Can we extend these results to other classes (HOL, positive Rewrite Systems, ...)
- Links with methods based on Heyting Algebras ?

・ロン ・回と ・ヨン・