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Cut elimination in Intuitionnistic Sequent Calculus

I Cut elimination is a central result.

I It is sufficient in many cases.
I We will prove cut elimination:

I in the Intuitionnistic Sequent Calculus
I by semantic means, extending results for classical logic
I and extend it to deduction modulo

I Is there a link with normalisation method ?
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The Intuitionnistic Sequent Calculus

Γ, P ` P
axiom

Γ, P ` Q Γ ` P

Γ ` Q
cut

Γ, P, P ` Q

Γ, P ` Q
contr-l

Γ,⊥ ` Q
⊥-l

Γ, P ` R Γ, Q ` R

Γ, P ∨ Q ` R
∨ -l

Γ ` P

Γ ` P ∨ Q
∨ -r

Γ ` Q

Γ ` P ∨ Q
∨ -r

Γ ` P Γ, Q ` R

Γ, P ⇒ Q ` R
⇒ -l

Γ, P ` Q

Γ ` P ⇒ Q
⇒ -r

Γ, {c/x}P ` Q

Γ,∃xP ` Q
∃-l, c fresh constant

Γ ` {t/x}P
Γ ` ∃xP ∃-r
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Semantic Approach

I Soundness and Completeness

I Soundness: If Γ ` P then Γ |= P.
I Completeness: If Γ |= P then Γ ` P.
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Kripke Structures

A Kripke Structure is a quadruple 〈K ,≤,D,〉
I K is a set of worlds, partially ordered by ≤

I D : α → Set is a monotone function. It interprets the terms.
I  is a relation between worlds and propositions, verifying

certain condition, among which:

I A is an atom: if α ≤ β and α  A, then β  A.
I α  P ⇒ Q iff for any β ≥ α we have β  P implies β  Q.
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I Another formulation of the completeness theorem: if Γ 0cf P
there exists a K.S. that is a model for Γ and that is not a
model for P.
Given such Γ qnd P, we have to construct a world α of some
KS K, s.t. α  Γ and α 1 P.

I We can no more use usual definitions (e.g. completeness or
saturation), because we can’t no more ensure that Γ `cf P
implies P ∈ Γ, without having inconsitency.
We could have: Γ,P `cf and Γ `cf P at the same time.

I Adding the fact that we are in an intuitionnistic framework,
they become:

I A-Consistency: Γ 0cf A
I A-Completeness (saturation): Γ,P `cf A or P ∈ Γ
I A-Henkin witnesses: Γ,∃xP 0cf A implies {c/x}P ∈ Γ for

some constant c .

Olivier Hermant Semantic Cut Elimination in Sequent Calculus



Outline
Introduction

Semantic approach
Kripke Structures

The completeness theorem
Deduction Modulo

I Another formulation of the completeness theorem: if Γ 0cf P
there exists a K.S. that is a model for Γ and that is not a
model for P.
Given such Γ qnd P, we have to construct a world α of some
KS K, s.t. α  Γ and α 1 P.

I We can no more use usual definitions (e.g. completeness or
saturation), because we can’t no more ensure that Γ `cf P
implies P ∈ Γ, without having inconsitency.
We could have: Γ,P `cf and Γ `cf P at the same time.

I Adding the fact that we are in an intuitionnistic framework,
they become:

I A-Consistency: Γ 0cf A
I A-Completeness (saturation): Γ,P `cf A or P ∈ Γ
I A-Henkin witnesses: Γ,∃xP 0cf A implies {c/x}P ∈ Γ for

some constant c .

Olivier Hermant Semantic Cut Elimination in Sequent Calculus



Outline
Introduction

Semantic approach
Kripke Structures

The completeness theorem
Deduction Modulo

I Another formulation of the completeness theorem: if Γ 0cf P
there exists a K.S. that is a model for Γ and that is not a
model for P.
Given such Γ qnd P, we have to construct a world α of some
KS K, s.t. α  Γ and α 1 P.

I We can no more use usual definitions (e.g. completeness or
saturation), because we can’t no more ensure that Γ `cf P
implies P ∈ Γ, without having inconsitency.
We could have: Γ,P `cf and Γ `cf P at the same time.

I Adding the fact that we are in an intuitionnistic framework,
they become:

I A-Consistency: Γ 0cf A
I A-Completeness (saturation): Γ,P `cf A or P ∈ Γ
I A-Henkin witnesses: Γ,∃xP 0cf A implies {c/x}P ∈ Γ for

some constant c .

Olivier Hermant Semantic Cut Elimination in Sequent Calculus



Outline
Introduction

Semantic approach
Kripke Structures

The completeness theorem
Deduction Modulo

Model Construction

Given an A-consistent theory Γ0, we sature it:

I Let C be a set of fresh constants w.r.t. Γ0

I Let P0, ...,Pn, ... be an enumeration of the propositions.

I if Γn,Pn 0cf A then Γn+1 = Γn ∪ {Pn}
I if, moreover,Pn is an existential formula ∃xQ, let

Γn+1 = Γn ∪ {Pn, {c/x}Q}
I Else, Γn+1 = Γn

I Let Γ =
⋃

Γn

Γ0 ⊆ Γ and Γ is A-consistent, A-complete, and admits A-witnesses.
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Model Construction

I construction of the Kripke Structure : as usual.

I The set of worlds K is the set of B-complete, B-consitent
theories admitting B-Henkin witnesses, for some (variable)
proposition B, over sets of languages
L0 ⊂ L1 = L0 ∪ C0 ⊂ ... ⊂ Ln...).

I The order is inclusion
I The domain of Γ is the set of closed terms.
I the forcing relation on atoms: Γ  A iff A ∈ Γ. It is extended

straightforwarly to propositions, by definition.

I This is a Kripke Structure. Moreover, it has the following
properties:

I for any P ∈ Γ, Γ  P
I if Γ 0cf P then Γ 1 P
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Model Construction

I Turn back to the proof of the completeness theorem.
Theorem: if T 1 A, then we can find α  T and α 1 A.
Proof: We complete T into Γ, and in the KS previously
defined, we get that Γ  T . 2

I As a corollary, we get the cut elimination theorem.
Theorem: if Γ ` P then Γ `cf P.
Proof: We have Γ  P by soundness, and we conclude with
cut-free completeness.
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The Deduction Modulo

I Addition of rewrite rules on terms:

(x + y) + z → x + (y + z)

x ∗ 0 → 0

I Addition of rewrite rules on atomic propositions:

x ∗ y = 0 → x = 0 ∨ y = 0

I Rewrite rules on propositions is the central paradigm of
deduction modulo.
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The Deduction Modulo

Reflexivity

P ` 4 = 4
...

P ` 3 + 1 = 4
...

P ` 2 + 2 = 4

Replacing axiom with rewrite rule x + S(y) → S(x) + y :

Reflexivity

`R 2 + 2 = 4
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The Intuitionnistic Sequent Calculus Modulo

Γ,P ` Q
axiom P ≡R Q

Γ,P ` Q Γ ` P

Γ ` Q
cut P ≡R Q

Γ,P,Q ` R

Γ,P ` R
contr-l P ≡R Q

Γ,P ` Q
⊥-l P ≡R ⊥

Γ ` P Γ,Q ` R

Γ,S ` R
⇒ -l P ⇒ Q ≡ S

Γ,P ` Q

Γ ` S
⇒ -r P ⇒ Q ≡R S

Γ, {c/x}P ` Q

Γ,R ` Q
∃-l∗ ∃xP ≡R R

Γ ` {t/x}P
Γ ` R

∃-r ∃xP ≡R R
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Γ,R ` Q
∃-l∗ ∃xP ≡R R

Γ ` {t/x}P
Γ ` R

∃-r ∃xP ≡R R
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The Intuitionnistic Sequent Calculus Modulo

I Definition are transformed in a straightforward way :
I cut-free A-consistency: Γ 0cf

R A

I cut-free A-completeness: either Γ,P `cf
R A or P ∈ Γ

I cut-free A-Henkin witnesses: Γ,∃xQ 0cf
R A implies

{c/x}Q ∈ Γ.
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Semantics for Deduction Modulo:
I Kripke Structures or Heyting Algebras as well.

I But with an extra condition: if A ≡R B, then α  A iff α  B
(in the KS case).

I The previous method should then be modified, because we
have to ensure this new condition.
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Cut Elimination in Deduction Modulo:

I The completion process remains the same, but uses the new
definitions.

I The model definition depends on the class of the rewrite rules.
We show it for one class of Rewrite Systems.
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An order condition

We suppose than we have a confluent rewrite system R such
that there exists a well-founded order ≺ verifying:

I if P →R Q then Q ≺ P.
I if A is a subformula of B then A ≺ B.

I For example:

A → B ∨ ∀xC (x)

C (O) → D

I Confluence is necessary, in order not to have:

A

����� HHHHj
B ∨ C B ′ ∧ C ′
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An order condition

Modulo this order, it suffice to now construct the KS as
following:

I The set of worlds K is the set of A-complete, A-consitent
theories admitting A-Henkin witnesses, as before.

I The order is inclusion.
I The domain of Γ is the set of closed terms.
I the forcing relation is first defined on normal atoms: Γ  A iff

A ∈ Γ
I We extend it by induction on the order ≺ to non atomic

propositions and non-normal atoms:
I for a non-normal atom, set Γ  A iff Γ  A ↓
I for non atomic propositions, follow the definition.

I From the well-foundedness of ≺, the above definition is
well-founded.
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An order condition

Moreover, the KS defined in the previous slide is a KS for the
rewrite system R.
So, we have proved the cut-free completeness theorem:

I Theorem: Let R be a confluent Rewrite System compatible
with a wfo having the subformula property.

Γ |= P implies Γ `cf
R P

I As a corollary, we get the cut-elimination theorem:
Theorem: Let R be a confluent Rewrite System compatible
with a wfo having the subformula property.

Γ `R P implies Γ `cf
R P
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Cut elimination 6= Normalization

The rewrite system composed of the following rewrite rule:

R ∈ R →R ∀y (∀x(y ∈ x ⇒ R ∈ x) ⇒ (y ∈ R ⇒ (A ⇒ A))

I Doesn’t normalize. E.g. the following proof:

R ∈ R `cf
R A ⇒ A `cf

R R ∈ R

`R A ⇒ A
cut

I Has the cut elimination property. We can find by other means
a cut-free proof of `cf

R A ⇒ A.

I And a proof of cut redundancy by our method works.
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Further work

I Can we extend these results to other classes (HOL, positive
Rewrite Systems, ...)

I Links with methods based on Heyting Algebras ?
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