A simple proof that super consistency implies cut elimination

Olivier Hermant and Gilles Dowek

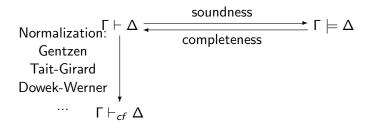
June 27, 2007

Olivier Hermant and Gilles Dowek A simple proof that super consistency implies cut elimination

What are the links between proof normalization and cut admissibility in deduction modulo ?

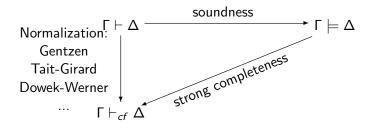
・ロン ・回と ・ヨン ・ヨン

What are the links between proof normalization and cut admissibility in deduction modulo ?

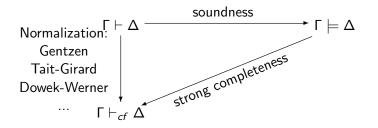


イロン イヨン イヨン イヨン

What are the links between proof normalization and cut admissibility in deduction modulo ?



What are the links between proof normalization and cut admissibility in deduction modulo ?



Normalization implies cut elimination but not the converse

(ロ) (四) (三) (三)

Deduction Modulo (in a nutshell)

A framework integrating computation to deduction.

A theory : a set of axioms and rewrite rules e.g.

 $x * 0 \rightarrow 0$

$$P(0) \rightarrow \forall x Q(x)$$

defining a congruence \equiv

• Deduction rules (*e.g.* NJ) take \equiv into account

 $\frac{\Gamma \vdash A \qquad \Gamma \vdash A \Rightarrow B}{\Gamma \vdash B} \Rightarrow \text{-elim} \qquad \frac{\Gamma \vdash A \qquad \Gamma \vdash C}{\Gamma \vdash C} \Rightarrow \text{-elim}, \ C \equiv A \Rightarrow B$ Some theories have the cut elimination property, some do not ◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの Olivier Hermant and Gilles Dowek

An example: simple-type theory (intuitionistic HOL)

▶ sorts:
$$\iota, o, \iota \rightarrow o, \iota \rightarrow \iota, ...$$

$$\begin{array}{rcl} \alpha(\alpha(\alpha(S,x),y),z) & \to & \alpha(\alpha(x,z),\alpha(y,z)) \\ \alpha(\alpha(K,x),y) & \to & x \\ \varepsilon(\alpha(\alpha(\Rightarrow,x),y)) & \to & \varepsilon(x) \Rightarrow \varepsilon(y) \\ \varepsilon(\alpha(\forall_{T},x)) & \to & \forall y \ \varepsilon(\alpha(x,y)) \end{array}$$

first-order encoding of simple-type theory + orientation

Truth values algebras

- Heyting algebra:
 - an ordered set with g.l.b. (to interprete ∧, ∀ and ⊤) and l.u.b. (to interprete ∨, ∃ and ⊥) and → (to interprete ⇒)
 - like boolean algebra but with weaker complement
- Truth value algebra : same as Heyting algebra but order replaced by pre-order

・ロト ・回ト ・ヨト ・ヨト

Truth values algebra based models

- Propositions interpreted in a TVA ${\cal B}$
- we keep soundness and completeness
- in deduction modulo, additional constraint:

$$A \equiv B$$
 implies $\llbracket A \rrbracket = \llbracket B \rrbracket$

Notice

 $A \Leftrightarrow B \text{ (only) implies } (\llbracket A \rrbracket \leq \llbracket B \rrbracket \text{ and } \llbracket B \rrbracket \leq \llbracket A \rrbracket)$

Super consistency

 \equiv is super-consistent if for all TVA ${\cal B}$ it has a ${\cal B}\mbox{-valued model}$

- reducibility candidates form a TVA (and not a HA!)
- super-consitency implies normalization (Dowek)
- hence super-consitency implies cut elimination
- we give here a simpler proof

- 4 同 2 4 日 2 4 日 2

the Algebra of sequents ${\cal S}$

- we simplify the algebra "candidates of reducibility"
- reducibility candidates are sets of proofs
- ► the candidate ⊥ : set of proofs that reduce to a neutral cut-free proof

the Algebra of sequents ${\cal S}$

- we simplify the algebra "candidates of reducibility"
- reducibility candidates are sets of proofs
- ► the candidate ⊥ : set of proofs that reduce to a neutral cut-free proof
- remplace each proof by its conclusion
- set of sequents having an identical structure
- ► the sequents truth value ⊥ : set of sequents that have a neutral cut-free proof

the Algebra of sequents ${\cal S}$

- we simplify the algebra "candidates of reducibility"
- reducibility candidates are sets of proofs
- ► the candidate ⊥ : set of proofs that reduce to a neutral cut-free proof
- remplace each proof by its conclusion
- set of sequents having an identical structure
- ► the sequents truth value ⊥ : set of sequents that have a neutral cut-free proof
- ▶ super-consistency implies the existence of a model \mathcal{M} where $\llbracket A \rrbracket_{\phi}$ is an element of S

From the algebra of sequents to the Algebra of contexts Ω

▶ S is not a Heyting Algebra. Can we get back one ?

From the algebra of sequents to the Algebra of contexts $\boldsymbol{\Omega}$

- S is not a Heyting Algebra. Can we get back one ?
- turning the pre-order into an order (quotienting) would give a trivial HA (⊤ = ⊥).

From the algebra of sequents to the Algebra of contexts $\boldsymbol{\Omega}$

- S is not a Heyting Algebra. Can we get back one ?
- turning the pre-order into an order (quotienting) would give a trivial HA (⊤ = ⊥).
- instead, we define some fibration over A:

$$[A] = \{ \Gamma \mid (\Gamma \vdash A) \in \llbracket A \rrbracket \}$$
$$[A]^{\sigma}_{\phi} = \{ \Gamma \mid (\Gamma \vdash \sigma A) \in \llbracket A \rrbracket_{\phi} \}$$

Some facts about ${\mathcal S}$ and Ω

$$\begin{array}{c|c} \mathcal{S} & \Omega \\ (\Gamma, A \vdash A) \in a \\ (\Gamma \vdash A) \in a \text{ iff } (\Gamma \vdash B) \in a \\ (\Gamma \vdash A) \in b \end{array} \begin{array}{c} \Gamma, A \in [A] \\ [A] = [B] \\ \Gamma \in [A] \end{array} \begin{array}{c} \text{axiom} \\ \text{if } B \equiv A \\ \Rightarrow \Gamma \vdash_{cf} A \end{array}$$

Key lemma: [] defines almost a model interpretation !

- $[\bot]$ is the least element of Ω .
- $\blacktriangleright [A \land B] = [A] \cap [B]$

•
$$[\forall xA] = \bigcap [A]_{d/x}^{t/x}$$
 with $d \in M$, t closed term.

・ロン ・回 と ・ ヨ と ・ ヨ と

Only missing to get a model: the domain!

- hybridization $D = T \times M = \{ \langle t, d \rangle \}.$
- interpretation for symbols

$$\begin{split} \hat{f}^{\mathcal{D}}(\langle t_{1}, d_{1} \rangle, ..., \langle t_{n}, d_{n} \rangle) &= \langle (f(t_{1}, ..., t_{n}), \hat{f}^{\mathcal{M}}(d_{1}, ..., d_{n}) \rangle \\ \hat{P}^{\mathcal{D}}(\langle t_{1}, d_{1} \rangle, ..., \langle t_{n}, d_{n} \rangle) &= [(t_{1}/x_{1}, ..., t_{n}/x_{n})P]_{(d_{1}/x_{1}, ..., d_{n}/x_{n})} \\ &= \{ \Gamma \mid (\Gamma \vdash P(t_{1}, ..., t_{n})) \in \llbracket P \rrbracket_{(d_{1}/x_{1}, ..., d_{n}/x_{n})} \} \end{split}$$

remember: *M* given by super-consistency applied to *S*.
Embedding a (possibly) complex structure at the term level.

・ロト ・回ト ・ヨト ・ヨト

Finally the theorem ...

Assume $\Gamma \vdash A$ has a proof (with cuts)

- $\blacktriangleright \ \Gamma \in [\land \Gamma]$
- $[\Gamma] \leq [A]$ in \mathcal{D} by (usual) soundness
- ▶ $\Gamma \in [A]$ implies $\Gamma \vdash_{cf} A$
- ▶ Q.E.D.

・ロン ・四マ ・ヨマ ・ヨマ

A case study: HOL

Super-consistency constructs the following \mathcal{M} -valued Algebra:

- the domain is, respectively for each type
 - ► M_o = S (anticipating that o is the type of "propositional content")
 - $M_{\iota} = \{0\}$ (or any other "dummy" constant)
 - $M_{T \to U} = M_U^{M_T}$ (functional space)
- the (immediate) interpretation for the symbols:
 - $\hat{\varepsilon}: a \mapsto a$.
 - $\hat{\wedge} = \tilde{\wedge}$ (the operation of \mathcal{M}), ...

Exporting this into \mathcal{D} (the Ω -valued model):

- $D_o = \{ \langle t, d \rangle \}$, t closed term of sort $o, d \in S$.
- $D_{\iota} = \{\langle t, 0 \rangle\}$ (dummy constant)
- $D_{T \to U} = \{ \langle t, f \rangle \}$ with t of sort $T \to U$ and $f \in M_U^{M_T}$.
- ▶ application is pointwise: $\hat{\alpha}(\langle t, f \rangle, \langle u, g \rangle) = \langle tu, f(g) \rangle$.
- re-inventing (and simplifying) V-complexes

The V-complexes semantic method

Takahashi, Prawitz, Andrews, Okada, De Marco, Lipton ... Idea: find a (Heyting-valued) model such that $\llbracket \Gamma \rrbracket \leq \llbracket A \rrbracket$ implies $\Gamma \vdash_{cf} A$. Take care of intensionality and impredicativity !

- the Heyting Algebra has for basis $[A] = \{ \Gamma \mid \Gamma \vdash_{cf} A \}$
- The construction of the domains D has to be intricated. Requires accuracy.
- Our construction in two steps (thanks to the choice M_o = S and not {0,1}) avoids this.

Comparison

We have two semantical methods:

	V-complexes	Hybridization
applies to	HOL	any case (including HOL)
Do	$\subset \mathcal{T} \times \Omega$	$=\mathcal{T} imes\mathcal{S}$
$\langle t, f \rangle \bullet \langle u, g \rangle$	$f(\langle u,g \rangle)$	$\langle tu, f(g) \rangle$

This all comes from $\Omega \neq S$.

・ロン ・回と ・ヨン・

æ

- future work: extension to normalization ? extension to non super-consistent theories ?
- Heyting (v.s. Kripke) fight back (NBE : Coquand, Altenkirch, Hofman, Streicher)
- Reverse engineering ? i.e. Could this helps understand the historical V-complexes ? Generalize them ?