Integrating Computation in Logic: Deduction Modulo

Olivier Hermant

28 September 2007

Deduction and Computation

- Computation is at the root of mathematics.

Deduction and Computation

- Computation is at the root of mathematics.
- It has been forgotten by the formalization of the mathematics.

Deduction and Computation

- Computation is at the root of mathematics.
- It has been forgotten by the formalization of the mathematics.
- reborn with informatics: rewriting rules.
- we need a balance between deduction steps and computation steps.

Deduction systems: the logical framework

- first-order logic: function and predicate symbols, logical connectors: $\wedge, \vee, \Rightarrow, \neg$, and quantifiers \forall, \exists.

$$
\begin{gathered}
\operatorname{Even}(0) \\
\forall n(\operatorname{Even}(n) \Rightarrow \operatorname{Odd}(n+1)) \\
\forall n(\operatorname{Odd}(n) \Rightarrow \operatorname{Even}(n+1))
\end{gathered}
$$

Deduction systems: the logical framework

- first-order logic: function and predicate symbols, logical connectors: $\wedge, \vee, \Rightarrow, \neg$, and quantifiers \forall, \exists.

$$
\begin{gathered}
\operatorname{Even}(0) \\
\forall n(\operatorname{Even}(n) \Rightarrow \operatorname{Odd}(n+1)) \\
\forall n(\operatorname{Odd}(n) \Rightarrow \operatorname{Even}(n+1))
\end{gathered}
$$

- a sequent :

$$
\overbrace{\Gamma}^{\text {hyp. }} \vdash \overbrace{A}^{\text {conc. }}
$$

- rules to form them: sequent calculus (or natural deduction)
- framework: intuitionnistic logic (classical, linear, higher-order, constraints ...)

Deduction System : sequents calculus (LJ)

- A deduction rule:

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \wedge B}
$$

- right and left rules

$$
\begin{array}{lc}
\frac{\Gamma, A \vdash A}{} \text { axiom } & \frac{\Gamma, A \vdash B \Gamma \vdash A}{\Gamma \vdash B} c u t \\
\frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \wedge B} \wedge-r & \frac{\Gamma, A, B \vdash C}{\Gamma, A \wedge B+C} \wedge-। \\
\frac{\Gamma, \forall x A[x], A[t] \vdash B}{\Gamma, \forall x A[x] \vdash B} \forall-\mathrm{g}, \text { any } t & \frac{\Gamma \vdash A[x]}{\Gamma \vdash \forall x A[x]} \forall-r, x \text { free }
\end{array}
$$

Example: 1

$$
\forall x P(x) \vdash P(0) \wedge P(1)
$$

Example: 1

$$
\frac{\forall x P(x)+P(0) \quad \forall x P(x)+P(1)}{\forall x P(x)+P(0) \wedge P(1)} \wedge-r
$$

Example: 1

$$
\forall-I \frac{\forall x P(x), P(0) \vdash P(0)}{\frac{\forall x P(x)+P(0)}{\forall x P(x) \vdash P(0) \wedge P(1)} \frac{\forall x P(x), P(1)+P(1)}{\forall x P(x)+P(1)} \wedge-\mathrm{I}}
$$

Example: 1

$$
\forall-I \frac{\forall x P(x), P(0)+P(0)}{\frac{\forall x P(x)+P(0)}{\forall x P(x)+P(0) \wedge P(1)}} \text { axiom } \frac{\frac{\forall x P(x), P(1)+P(0)}{\forall x P(x)+P(1)}}{} \text { axiom }
$$

Example: 2

$$
\forall x P(x) \vdash P(0) \wedge P(1)
$$

Example: 2

$$
\frac{\forall x P(x), P(1), P(0) \vdash P(0) \wedge P(1)}{\frac{\forall x P(x), P(0) \vdash P(0) \wedge P(1)}{\forall x P(x)+P(0) \wedge P(1)} \forall-I} \forall-I
$$

Example: 2

$$
\text { axiom } \frac{\overline{\forall x P(x), P(1), P(0) \vdash P(0)}_{\frac{\forall x P(x), P(1), P(0) \vdash P(0) \wedge P(1)}{\forall x P(x), P(1), P(0) \vdash P(1)}}^{\frac{\forall x P(x), P(0) \vdash P(0) \wedge P(1)}{\forall x P(x) \vdash P(0) \wedge P(1)}} \text { axio, }}{\wedge-\mathrm{I}}
$$

Example: 2

$$
\text { axiom } \frac{\overline{\forall x P(x), P(1), P(0) \vdash P(0)} \quad \overline{\forall x P(x), P(1), P(0) \vdash P(1)}}{\frac{\forall x P(x), P(1), P(0) \vdash P(0) \wedge P(1)}{\frac{\forall x P(x), P(0) \vdash P(0) \wedge P(1)}{\forall x P(x) \vdash P(0) \wedge P(1)}} \forall-\mathrm{I}} \text { axiom }
$$

- the first rule is not always "don't care": free variable condition.

Axioms vs. rewriting

Axioms	Rewriting
$x+S(y)=S(x+y)$	$x+S(y) \rightarrow S(x+y)$
$x+0=x$	$x+0 \rightarrow x$
$x * 0=0$	$x * 0 \rightarrow 0$
$x * S(y)=x+x * y$	$x * S(y) \rightarrow x+x * y$
$(x * y=0) \Leftrightarrow(x=0 \vee y=0)$	$(x * y=0) \rightarrow(x=0 \vee y=0)$
\vdots	$\overline{+4=4}$
$\frac{\mathcal{T}+2 * 2=4}{\mathcal{T}+\exists x(2 * x=4)}$	$\overline{\vdash \exists x(2 * x=4)}$

Deduction modulo: allowed rewriting

- General form (free variables are possible):

$$
I \rightarrow r
$$

Deduction modulo: allowed rewriting

- General form (free variables are possible):

$$
I \rightarrow r
$$

- use: We replace $t=\sigma l$ by σr (unification). Rewriting could be deep in the term.

Deduction modulo: allowed rewriting

- General form (free variables are possible):

$$
I \rightarrow r
$$

- use: We replace $t=\sigma /$ by σr (unification). Rewriting could be deep in the term.
- rewriting on terms:

$$
x+S(y) \rightarrow S(x+y)
$$

Deduction modulo: allowed rewriting

- General form (free variables are possible):

$$
I \rightarrow r
$$

- use: We replace $t=\sigma l$ by σr (unification). Rewriting could be deep in the term.
- rewriting on terms:

$$
x+S(y) \rightarrow S(x+y)
$$

- and on propositions (predicate symbols):

$$
x * y=0 \rightarrow x=0 \vee y=0
$$

- advantage: expressiveness

Deduction modulo: allowed rewriting

- General form (free variables are possible):

$$
I \rightarrow r
$$

- use: We replace $t=\sigma l$ by σr (unification). Rewriting could be deep in the term.
- rewriting on terms:

$$
x+S(y) \rightarrow S(x+y)
$$

- and on propositions (predicate symbols):

$$
x * y=0 \rightarrow x=0 \vee y=0
$$

- advantage: expressiveness
- we obtain a congruence modulo \mathcal{R} (chosen set of rules): \equiv

Deduction modulo: allowed rewriting

- General form (free variables are possible):

$$
I \rightarrow r
$$

- use: We replace $t=\sigma l$ by σr (unification). Rewriting could be deep in the term.
- rewriting on terms:

$$
x+S(y) \rightarrow S(x+y)
$$

- and on propositions (predicate symbols):

$$
x * y=0 \rightarrow x=0 \vee y=0
$$

- advantage: expressiveness
- we obtain a congruence modulo \mathcal{R} (chosen set of rules): \equiv
- deduction rules transform as such:

$$
\text { axiom } \overline{\Gamma, A \vdash A} \quad \text { becomes } \quad \overline{\Gamma, A \vdash B} \text { axiom, } A \equiv B
$$

Deduction modulo : sequent calculus modulo

$$
\begin{array}{ll}
\frac{\Gamma, A \vdash B}{\Gamma, A x i o m ~} A \equiv B & \frac{\Gamma, A \vdash C \Gamma \vdash B}{\Gamma \vdash C} \operatorname{cut} A \equiv B \\
\frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash C} \wedge-\mathrm{r} A \wedge B \equiv C & \frac{\Gamma, A, B+C}{\Gamma, D \vdash C} \wedge-\vdash A \wedge B \equiv D \\
\frac{\Gamma, B, A[t]+C}{\Gamma, B+C} \forall-I \forall x A[x] \equiv B & \frac{\Gamma \vdash A[x]}{\Gamma \vdash B} \forall-r^{*} \forall x A[x] \equiv B \\
\hline
\end{array}
$$

Example: 3

- consider the rewriting system \mathcal{R} :

$$
\begin{array}{rl}
P(0) & \rightarrow \\
P(1) & \rightarrow B \\
\forall x P(x) \vdash A & A B
\end{array}
$$

Example: 3

- consider the rewriting system \mathcal{R} :

$$
\begin{aligned}
& P(0) \rightarrow A \\
& P(1) \rightarrow B \\
& \frac{\forall x P(x)+A \quad \forall x P(x) \vdash B}{\forall x P(x) \vdash A \wedge B} \wedge-r
\end{aligned}
$$

Example: 3

- consider the rewriting system \mathcal{R} :

$$
\begin{aligned}
P(0) & \rightarrow A \\
P(1) & \rightarrow B \\
\forall-I \frac{\forall x P(x), P(0)+A}{\forall x P(x)+A} & \frac{\forall x P(x), P(1)+B}{\forall x P(x)+B} \wedge-\mathrm{I}
\end{aligned}
$$

Example: 3

- consider the rewriting system \mathcal{R} :

$$
\begin{aligned}
& P(0) \rightarrow A \\
& P(1) \rightarrow B
\end{aligned}
$$

\quad axiom $\frac{\overline{\forall x P(x), P(0)+B}}{\frac{\forall x P(x)+A}{\forall x P(x)+A \wedge B}} \frac{\frac{\forall x P(x), P(1)+B}{\forall x P(x)+B} \text { axiom }}{\forall-\mathrm{r}} \mathrm{r}$

Cut rule: a detour

$$
\frac{\Gamma, A \vdash B \Gamma \vdash C}{\Gamma \vdash B} \text { cut, } A \equiv C
$$

- show $\Gamma \vdash A$
- show $\Gamma, A+B$
- then, you have showed $\Gamma \vdash B$
- it is the application of a lemma.

Example: 4

- consider the rewriting system \mathcal{R} :

$$
\begin{array}{rl}
P(0) & \rightarrow \\
P(1) & \rightarrow B \\
\forall x P(x) \vdash A & A B
\end{array}
$$

Example: 4

- consider the rewriting system \mathcal{R} :

$$
\begin{gathered}
P(0) \rightarrow A \\
P(1) \rightarrow B \\
\forall x P(x), A+A \wedge B \quad \forall x P(x)+A \\
\forall x P(x) \vdash A \wedge B
\end{gathered}
$$

Example: 4

- consider the rewriting system \mathcal{R} :

$$
\begin{aligned}
& P(0) \rightarrow A \\
& P(1) \rightarrow B \\
& \frac{\frac{A x .}{\forall x P(x), P(0)+A}}{\forall x P(x)+A} \text { cut }
\end{aligned} \forall-\mathrm{r}
$$

Example: 4

- consider the rewriting system \mathcal{R} :

$$
\begin{aligned}
& P(0) \rightarrow A \\
& P(1) \rightarrow B
\end{aligned}
$$

$$
\wedge-\mathrm{r} \frac{\frac{\mathrm{Ax} .}{\forall x P(x), A \vdash A}}{\frac{\frac{\mathrm{Ax}}{}}{\forall x P(x), A+A \wedge B} \frac{\forall x P(x), P(1), A \vdash B}{\forall x P(x), A \vdash B}} \forall-\mathrm{r} \quad \frac{\mathrm{Ax} .}{\forall x P(x), P(0)+A} \forall x P(x)+A \wedge B_{\forall x P(x)+A}^{\mathrm{V}} \mathrm{cut}
$$

Example: 4

- consider the rewriting system \mathcal{R} :

$$
\begin{aligned}
& P(0) \rightarrow A \\
& P(1) \rightarrow B
\end{aligned}
$$

$$
\wedge-\mathrm{r} \frac{\frac{\mathrm{Ax} .}{\forall x P(x), A \vdash A} \frac{\frac{A x .}{\forall x P(x), P(1), A \vdash B}}{\forall x P(x), A+B}}{\forall x P(x), A \vdash A \wedge B}-\mathrm{r} \frac{\frac{\mathrm{Ax} .}{\forall x P(x), P(0)+A}}{\forall x P(x)+A \wedge B} \mathrm{\forall xP(x)+A} \mathrm{cut}
$$

- an unnecessary detour
- we could have cutted on any formula!

The cut rule: a detour

$$
\frac{\Gamma, A \vdash B \Gamma \vdash C}{\Gamma \vdash B} \operatorname{cut} A \equiv C
$$

- we show $\Gamma, A \vdash B$ and $\Gamma \vdash A$
- then we have showed $\Gamma \vdash B$.
- lemma: the good way for a human being.
- in practice: not adapted for automatic demonstration.

Nb : resolution method do not proceed by cuts !

The cut rule: a detour

$$
\frac{\Gamma, A \vdash B \Gamma \vdash C}{\Gamma \vdash B} \operatorname{cut} A \equiv C
$$

- we show $\Gamma, A \vdash B$ and $\Gamma \vdash A$
- then we have showed $\Gamma \vdash B$.
- lemma: the good way for a human being.
- in practice: not adapted for automatic demonstration.

Nb : resolution method do not proceed by cuts !

- in theory: consistence, proof normalization (Curry-Howard) depend of its elimination.

The cut rule: a detour

$$
\frac{\Gamma, A \vdash B \Gamma \vdash C}{\Gamma \vdash B} \text { cut } A \equiv C
$$

- we show $\Gamma, A \vdash B$ and $\Gamma \vdash A$
- then we have showed $\Gamma \vdash B$.
- lemma: the good way for a human being.
- in practice: not adapted for automatic demonstration.

Nb : resolution method do not proceed by cuts !

- in theory: consistence, proof normalization (Curry-Howard) depend of its elimination.
- eliminating cuts: a key result.

$$
\Gamma \vdash A \triangleright \Gamma \vdash \vdash_{c f} A
$$

- two main paths towards:
- proof normalization (syntactic).
- semantical methods.

The cut rule: a detour

$$
\frac{\Gamma, A \vdash B \Gamma \vdash C}{\Gamma \vdash B} \operatorname{cut} A \equiv C
$$

- we show $\Gamma, A \vdash B$ and $\Gamma \vdash A$
- then we have showed $\Gamma \vdash B$.
- lemma: the good way for a human being.
- in practice: not adapted for automatic demonstration.

Nb : resolution method do not proceed by cuts !

- in theory: consistence, proof normalization (Curry-Howard) depend of its elimination.
- eliminating cuts: a key result.

$$
\Gamma \vdash A \triangleright \Gamma \vdash \vdash_{c f} A
$$

- two main paths towards:
- proof normalization (syntactic).
- semantical methods.
- in deduction modulo: indecidable, need for general criterions on \mathcal{R}

The normalization method(s)

- Curry-Howard: proofs = programs
- formulas = types
- proof tree = typing tree
- at the heart of proof assistants (PVS, Coq, Isabelle, ...)
- when a program calculates, it performs a cut elimination procedure.

The normalization method(s)

- Curry-Howard: proofs = programs
- formulas = types
- proof tree = typing tree
- at the heart of proof assistants (PVS, Coq, Isabelle, ...)
- when a program calculates, it performs a cut elimination procedure.
- show that all typables function terminates.

The semantical method(s)

- define a semantical space (truth value). Ex: Boolean algebras.
- we must have soundness/completeness wrt the semantic.

The semantical method

The semantical method

The semantical method

A semantic for deduction modulo

Two main semantics for intuitionistic logic:

A semantic for deduction modulo

Two main semantics for intuitionistic logic:

- Heyting algebras [Lipton,Okada]

A semantic for deduction modulo

Two main semantics for intuitionistic logic:

- Heyting algebras [Lipton,Okada]
- Kripke structures

A semantic for deduction modulo

Two main semantics for intuitionistic logic:

- Kripke structures

A Kripke Structure (KS) is a tuple $\langle K, \leq, D, \Vdash\rangle$:

A semantic for deduction modulo

Two main semantics for intuitionistic logic:

- Kripke structures

A Kripke Structure (KS) is a tuple $\langle K, \leq, D, \Vdash r\rangle$:

- K the set of worlds, partially ordered with \leq (a "temporal relation": past, present, possible futures: partial information)

A semantic for deduction modulo

Two main semantics for intuitionistic logic:

- Kripke structures

A Kripke Structure (KS) is a tuple $\langle K, \leq, D, \Vdash\rangle$:

- K the set of worlds, partially ordered with \leq (a "temporal relation": past, present, possible futures: partial information)
- $D: \alpha \rightarrow$ Set a monotone function (interpretation domain for terms).

A semantic for deduction modulo

Two main semantics for intuitionistic logic:

- Kripke structures

A Kripke Structure (KS) is a tuple $\langle K, \leq, D, \Vdash\rangle$:

- K the set of worlds, partially ordered with \leq (a "temporal relation": past, present, possible futures: partial information)
- $D: \alpha \rightarrow$ Set a monotone function (interpretation domain for terms).
- 1 - is a relation between worlds and formulas, verifiying:

A semantic for deduction modulo

- P atomic: if $\alpha \leq \beta$ and $\alpha \Vdash P$, then $\beta \Vdash P$.
- $\alpha \Vdash A \Rightarrow B$ iff for any $\beta \geq \alpha$, when $\beta \Vdash A$ then $\beta \Vdash B$.
- $\alpha \Vdash A \vee B$ iff $\alpha \Vdash A$ or $\alpha \Vdash B$.

A semantic for deduction modulo

- P atomic: if $\alpha \leq \beta$ and $\alpha \Vdash P$, then $\beta \Vdash P$.
- $\alpha \Vdash A \Rightarrow B$ iff for any $\beta \geq \alpha$, when $\beta \Vdash A$ then $\beta \Vdash B$.
- $\alpha \Vdash A \vee B$ iff $\alpha \Vdash A$ or $\alpha \Vdash B$.
- Additional constraint in deduction modulo:

$$
A \equiv B \quad \text { implies } \quad \alpha \Vdash A \Leftrightarrow \alpha \Vdash B
$$

Kripke structures at work

- $A \vee(\neg A)$ is well-known not to be valid in intuitionistic logic.
- we build a structure that is invalidating this formula. Note: at least two worlds (single world = boolean model).
- $\neg A=A \Rightarrow \perp$

$$
\left.\right|_{\alpha \Vdash \emptyset} ^{\beta \Vdash A}
$$

Kripke structures at work

- $A \vee(\neg A)$ is well-known not to be valid in intuitionistic logic.
- we build a structure that is invalidating this formula. Note: at least two worlds (single world = boolean model).
- $\neg A=A \Rightarrow \perp$

Constructive proof: the algorithm behind

Constructive proof: the algorithm behind

Constructive proof: the algorithm behind

The tableau method

- Searching for a counter-model

The tableau method

- Searching for a counter-model
- Exhaustive algorithm, each branch represents a possible counter-model.

The tableau method

- Searching for a counter-model
- Exhaustive algorithm, each branch represents a possible counter-model.
- some rules:

$$
\begin{gathered}
F p \Vdash A \vee B \\
F p \Vdash A \\
F p \Vdash B
\end{gathered}
$$

The tableau method

- Searching for a counter-model
- Exhaustive algorithm, each branch represents a possible counter-model.
- some rules:

$F p \Vdash A \vee B$
$F p \Vdash A$
$F p \Vdash B$

- in deduction modulo: allow rewrite rules, define a new systematic research algorithm with \mathcal{R}.

Tableau: example 1

- We want to show " $A \vee B \vdash C \Rightarrow A$ "
- tranlsation in tableau language: there is NO (node of no) Kripke structure satisfying $A \vee B$ without satisfying also $C \Rightarrow A$. Let's see if the counter-model search fails or not.
- We choose as usual sequences of integers for the set of worlds (partial order: prefix).
$T \emptyset \Vdash A \vee B, F \emptyset \Vdash C \Rightarrow A$

Tableau: example 1
$T \emptyset \Vdash A \vee B, F \emptyset \Vdash C \Rightarrow A$

Tableau: example 1

$T \emptyset \Vdash A \vee B, F \emptyset \Vdash C \Rightarrow A$
$T 1 \Vdash C$
$F 1 \Vdash A$

Tableau: example 1
$T \emptyset \Vdash A \vee B, F \emptyset \Vdash C \Rightarrow A$
$T 1 \Vdash C$
$F 1 \Vdash A$

Tableau: example 1

$T \emptyset \Vdash A \vee B, F \emptyset \Vdash C \Rightarrow A$
$T 1 \Perp C$
$F 1$ ㅘ A
$T \emptyset \Vdash A \quad T \emptyset \Vdash B$

Tableau: example 1

$T \emptyset \Vdash A \vee B, F \emptyset \Vdash C \Rightarrow A$
$T 1 \Vdash C$
$F 1 \Vdash A$
$T \emptyset \Vdash A \quad T \emptyset \Vdash B$

Tableau: example 1

$T \emptyset \Vdash A \vee B, F \emptyset \Vdash C \Rightarrow A$
$T 1 \Vdash C$
$F 1 \Perp A$
$T \emptyset \Vdash A \quad T \emptyset \Vdash B$
\odot

Tableau: example 2

- We want to show " $\vdash(A \Rightarrow B) \Rightarrow(A \Rightarrow B)$ "
$F_{\varnothing} \Vdash(A \Rightarrow B) \Rightarrow A \Rightarrow B$

Tableau: example 2

$$
F_{\varnothing} \Vdash(A \Rightarrow B) \Rightarrow A \Rightarrow B
$$

$T_{1} \Vdash(A \Rightarrow B)$
$F_{1} \Vdash A \Rightarrow B$

Tableau: example 2

$F_{\varnothing} \Vdash(A \Rightarrow B) \Rightarrow A \Rightarrow B$
$T_{1} \Vdash(A \Rightarrow B)$
$F_{1} \Vdash A \Rightarrow B$
$\begin{array}{cc}F_{1} \Vdash A \quad & T_{1} \Vdash B\end{array}$

Tableau: example 2

Tableau: example 2

F_{11} ॥ B

Tableau: example 2

Tableau: example 2

$F_{\varnothing} \Vdash(A \Rightarrow B) \Rightarrow A \Rightarrow B$

$$
T_{1} \Vdash(A \Rightarrow B)
$$

$F_{1} \Vdash A \Rightarrow B$
$F_{1 \Vdash} \quad T_{1} \Vdash B$
$T_{1} \Vdash(A \Rightarrow B)$
$T_{11} \Vdash A$
$F_{11} \Vdash B$
$F_{11} \Vdash A \quad T_{11} \Vdash B$
\odot

Tableau: example 2

$$
F_{\varnothing} \Vdash(A \Rightarrow B) \Rightarrow A \Rightarrow B
$$

$$
T_{1} \Vdash(A \Rightarrow B)
$$

$F_{1} \Vdash A \Rightarrow B$
$F_{1 \Perp A}$
$T_{1} \Vdash B$
$T_{1} \Vdash(A \Rightarrow B)$
$T_{11} \Vdash A$
F_{11} ॥ B
$F_{11 \Vdash} \Vdash \quad T_{11} \Vdash B$

Tableaux completeness

- If the systematic tableau generation fails (does not terminate): does it generate a counter-model ?
- well known in the classical sequent calculus.

Tableaux completeness

- If the systematic tableau generation fails (does not terminate): does it generate a counter-model ?
- well known in the classical sequent calculus.
- defining a model from an infinite branch: the latter has the needed properties.

Tableaux completeness

- If the systematic tableau generation fails (does not terminate): does it generate a counter-model ?
- well known in the classical sequent calculus.
- defining a model from an infinite branch: the latter has the needed properties.
- the model is consistent with the branch:

$$
T p \Vdash P \quad \text { iff } \quad p \Vdash P
$$

Tableaux completeness

- If the systematic tableau generation fails (does not terminate): does it generate a counter-model ?
- well known in the classical sequent calculus.
- defining a model from an infinite branch: the latter has the needed properties.
- the model is consistent with the branch:

$$
T p \Vdash P \quad \text { iff } \quad p \Vdash P
$$

- deduction modulo: it has also to be a model of the rewrite rules \mathcal{R}.

Tableaux completeness

- If the systematic tableau generation fails (does not terminate): does it generate a counter-model ?
- well known in the classical sequent calculus.
- defining a model from an infinite branch: the latter has the needed properties.
- the model is consistent with the branch:

$$
T p \Vdash P \quad \text { iff } \quad p \Vdash P
$$

- deduction modulo: it has also to be a model of the rewrite rules \mathcal{R}.
- constructive point of view: if there is no counter-model, does the method terminate? (KS definition is modified)

Remember the tableau for $A \vee B \vdash C \Rightarrow A$:
$T \emptyset \Vdash A \vee B, F \emptyset \Vdash C \Rightarrow A$

- the right path generates counter model.
- the nerve: the atomic formulas each world entails (forces), extension by induction.

Conditions on rewrite rules

Providing the confluence of the rewrite system \mathcal{R}, and for:

- an order condition: $>$, well-founded, having the subformula property, and such that $P \rightarrow^{*} Q$ implies $P>Q$.
the tableau method is complete.

Conditions on rewrite rules

Providing the confluence of the rewrite system \mathcal{R}, and for:

- an order condition: $>$, well-founded, having the subformula property, and such that $P \rightarrow^{*} Q$ implies $P>Q$.
- a positivity condition: if $A \rightarrow P$ then P has only positive occurences of atoms.
the tableau method is complete.

Conditions on rewrite rules

Providing the confluence of the rewrite system \mathcal{R}, and for:

- an order condition: $>$, well-founded, having the subformula property, and such that $P \rightarrow^{*} Q$ implies $P>Q$.
- a positivity condition: if $A \rightarrow P$ then P has only positive occurences of atoms.
- both conditions mixed: $\mathcal{R}_{>} \cup \mathcal{R}_{+}$, with a compatibility condition.
the tableau method is complete.

Conditions on rewrite rules

Providing the confluence of the rewrite system \mathcal{R}, and for:

- an order condition: $>$, well-founded, having the subformula property, and such that $P \rightarrow^{*} Q$ implies $P>Q$.
- a positivity condition: if $A \rightarrow P$ then P has only positive occurences of atoms.
- both conditions mixed: $\mathcal{R}_{\succ} \cup \mathcal{R}_{+}$, with a compatibility condition.
- the rule:

$$
R \in R \rightarrow \forall y(\forall x(y \in x \Rightarrow R \in x) \Rightarrow(y \in R \Rightarrow(A \Rightarrow A)))
$$

the tableau method is complete.

Tableaux soundness

We show the following theorem:

Theorem

If a tableau starting with $T \emptyset \Perp \Gamma, F \emptyset \Vdash P$ is closed, then we can transform it into a proof of $\Gamma \vdash_{c t} P$.

- intuitionistic diffculty: in a tableau, there might be more than one "non true" formula:

Tableaux soundness

We show the following theorem:

Theorem

If a tableau starting with $T \emptyset \Perp \Gamma, F \emptyset \Vdash P$ is closed, then we can transform it into a proof of $\Gamma \vdash_{\text {cf }} P$.

- intuitionistic diffculty: in a tableau, there might be more than one "non true" formula:

- we must derive the following rule:

$$
\frac{\Gamma \vdash_{c f} A \vee B \Gamma \vdash_{c f} A \vee C}{\Gamma \vdash_{c f} A \vee(B \wedge C)}
$$

- we must derive the following rule:

$$
\frac{\Gamma \vdash_{c f} A \vee B\left\ulcorner\vdash_{c f} A \vee C\right.}{\Gamma \vdash_{c f} A \vee(B \wedge C)}
$$

- we must derive the following rule:

$$
\frac{\Gamma \vdash_{c f} A \vee B\left\ulcorner\vdash_{c f} A \vee C\right.}{\Gamma \vdash_{c f} A \vee(B \wedge C)}
$$

- easy with the cut rule:

$$
\operatorname{Cut} \frac{\frac{\vdots}{\Gamma, A \vee B, A \vee C \vdash A \vee(B \wedge C)}}{\operatorname{Cut} \frac{\Gamma, A \vee B \vdash A \vee(B \wedge C)}{\Gamma, A \vee B \vdash A \vee C}} \frac{\text { Hyp. }}{\Gamma \vdash A \vee(B \wedge C)}
$$

- we must derive the following rule:

$$
\frac{\Gamma \vdash_{c f} A \vee B\left\ulcorner\vdash_{c f} A \vee C\right.}{\Gamma \vdash_{c f} A \vee(B \wedge C)}
$$

- easy with the cut rule:

$$
\operatorname{Cut} \frac{\frac{\vdots}{\Gamma, A \vee B, A \vee C \vdash A \vee(B \wedge C)}}{\operatorname{Cut} \frac{\Gamma, A \vee B \vdash A \vee(B \wedge C)}{\Gamma, A \vee B \vdash A \vee C}} \frac{\text { Hyp. }}{\Gamma \vdash A \vee(B \wedge C)}
$$

- Without the cut rule, we show the lemma (by a double induction):

$$
\begin{aligned}
\Gamma_{1} \vdash_{c f} A \vee B & \Gamma_{2} \vdash_{c f} A \vee C \\
\text { then } & \Gamma_{1}, \Gamma_{2} \vdash_{c f} A \vee(B \wedge C)
\end{aligned}
$$

Computational content: what kind of algorithm ?

Let's reconsider the rule:

$$
R \in R \rightarrow \forall y(\forall x(y \in x \Rightarrow R \in x) \Rightarrow(y \in R \Rightarrow(A \Rightarrow A)))
$$

- has semantical cut elimination but no normalization.

Computational content: what kind of algorithm ?

Let's reconsider the rule:

$$
R \in R \rightarrow \forall y(\forall x(y \in x \Rightarrow R \in x) \Rightarrow(y \in R \Rightarrow(A \Rightarrow A)))
$$

- has semantical cut elimination but no normalization.
- this can not be a normalization algorithm.

Computational content: what kind of algorithm ?

Let's reconsider the rule:

$$
R \in R \rightarrow \forall y(\forall x(y \in x \Rightarrow R \in x) \Rightarrow(y \in R \Rightarrow(A \Rightarrow A)))
$$

- has semantical cut elimination but no normalization.
- this can not be a normalization algorithm.
- it is more or less the tableau method described here.

- This diagram does not commute.

- This diagram does not commute.
- But: normalization methods "generate" a certain kind of semantical cut elimination proof [Dowek - Hermant].

