From pre-models to models

normalization by Heyting algebras

Olivier Hermant

18 Mars 2008

Deduction System : natural deduction (NJ)

- first-order logic: function and predicate symbols, logical connectors: $\wedge, \vee, \Rightarrow, \neg$, and quantifiers \forall, \exists.

$$
\begin{aligned}
& \overline{\Gamma, A \vdash A} \text { axiom } \\
& \frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \wedge B} \wedge-\mathrm{i} \quad \frac{\Gamma \vdash A \wedge B}{\Gamma+A} \wedge-\mathrm{e} 1 \quad \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash B} \wedge-\mathrm{e} 2 \\
& \frac{\Gamma, A+B}{\Gamma+A \Rightarrow B} \Rightarrow-\mathrm{i} \\
& \frac{\Gamma \vdash \forall x A[x]}{\Gamma \vdash A[t]} \forall-e \text {, any } t \\
& \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B} \Rightarrow-e \\
& \frac{\Gamma \vdash A[x]}{\Gamma+\forall x A[x]} \forall-i, x \text { free }
\end{aligned}
$$

Deduction modulo: allowed rewriting

- General form (free variables are possible):

$$
I \rightarrow r
$$

Deduction modulo: allowed rewriting

- General form (free variables are possible):

$$
I \rightarrow r
$$

- use: We replace $t=\sigma l$ by σr (unification). Rewriting could be deep in the term.

Deduction modulo: allowed rewriting

- General form (free variables are possible):

$$
I \rightarrow r
$$

- use: We replace $t=\sigma /$ by σr (unification). Rewriting could be deep in the term.
- rewriting on terms:

$$
x+S(y) \rightarrow S(x+y)
$$

Deduction modulo: allowed rewriting

- General form (free variables are possible):

$$
I \rightarrow r
$$

- use: We replace $t=\sigma /$ by σr (unification). Rewriting could be deep in the term.
- rewriting on terms:

$$
x+S(y) \rightarrow S(x+y)
$$

- and on propositions (predicate symbols):

$$
x * y=0 \rightarrow x=0 \vee y=0
$$

- advantage: expressiveness

Deduction modulo: allowed rewriting

- General form (free variables are possible):

$$
I \rightarrow r
$$

- use: We replace $t=\sigma /$ by σr (unification). Rewriting could be deep in the term.
- rewriting on terms:

$$
x+S(y) \rightarrow S(x+y)
$$

- and on propositions (predicate symbols):

$$
x * y=0 \rightarrow x=0 \vee y=0
$$

- advantage: expressiveness
- we obtain a congruence modulo \mathcal{R} (chosen set of rules): \equiv

Natural deduction modulo - first presentation

$$
\begin{aligned}
& \overline{\Gamma, A+A}^{\text {axiom }} \\
& \frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \wedge B} \wedge-i \\
& \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A} \wedge-\mathrm{e} 1 \quad \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash B} \wedge-\mathrm{e} 2 \\
& \Rightarrow-i \frac{\Gamma, A+B}{\Gamma+A \Rightarrow B} \\
& \frac{\Gamma+A \Rightarrow B \quad \Gamma+A}{\Gamma+B} \Rightarrow-e \\
& \frac{\Gamma+\forall x A[x]}{\Gamma \vdash A[t]} \forall-e \text {, any } t \\
& \frac{\Gamma \vdash A[x]}{\Gamma \vdash \forall x A[x]} \forall-i, x \text { free }
\end{aligned}
$$

Natural deduction modulo - first presentation

$$
\begin{aligned}
& \overline{\Gamma, A+A}^{\text {axiom }} \\
& \frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \wedge B} \wedge-i \\
& \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A} \wedge-\mathrm{e} 1 \quad \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash B} \wedge-\mathrm{e} 2 \\
& \Rightarrow-\mathrm{i} \frac{\Gamma, A+B}{\Gamma+A \Rightarrow B} \\
& \frac{\Gamma+A \Rightarrow B \quad \Gamma+A}{\Gamma+B} \Rightarrow-e \\
& \frac{\Gamma+\forall x A[x]}{\Gamma \vdash A[t]} \forall-e \text {, any } t \\
& \frac{\Gamma \vdash A[x]}{\Gamma \vdash \forall x A[x]} \forall-i, x \text { free }
\end{aligned}
$$

- Add the following conversion rule

$$
\frac{\Gamma \vdash A}{\Gamma \vdash B} A \equiv B
$$

Natural deduction modulo, second version

$$
\begin{aligned}
& \overline{\Gamma, A \vdash B}^{\text {axiom, } A \equiv B} \\
& \frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma+C} \wedge-\mathrm{i}, C \equiv A \wedge B \quad \frac{\Gamma \vdash C}{\Gamma+A} \wedge-\mathrm{e} 1, C \equiv A \wedge B \quad \frac{\Gamma \vdash C}{\Gamma+B} \wedge-\mathrm{e} 2, C \equiv A \wedge B \\
& \Rightarrow-\mathrm{i}, C \equiv A \wedge B \frac{\Gamma, A+B}{\Gamma+C} \quad \frac{\Gamma+C \quad \Gamma+A}{\Gamma+B} \Rightarrow-\mathrm{e}, C \equiv A \wedge B \\
& \frac{\Gamma+A[x]}{\Gamma+B} \forall-\mathrm{i}, x \text { free }, B \equiv \forall x A[x] \\
& \frac{\Gamma \vdash B}{\Gamma \vdash A[t]} \forall-e \text {, any } t, B \equiv \forall x A[x]
\end{aligned}
$$

Example: 3

- consider the rewriting system \mathcal{R} :

$$
\begin{array}{rl}
P(0) & \rightarrow \\
P(1) & \rightarrow B \\
\forall x P(x) \vdash A & A B
\end{array}
$$

Example: 3

- consider the rewriting system \mathcal{R} :

$$
\begin{aligned}
& P(0) \rightarrow A \\
& P(1) \rightarrow B \\
& \frac{\forall x P(x)+A \quad \forall x P(x)+B}{\forall x P(x)+A \wedge B} \wedge-i
\end{aligned}
$$

Example: 3

- consider the rewriting system \mathcal{R} :

$$
\begin{aligned}
& P(0) \rightarrow A \\
& P(1) \rightarrow B \\
& \forall-\mathrm{e} \frac{\forall x P(x)+\forall x P(x)}{\forall x P(x)+A} \frac{\forall x P(x)+\forall x P(x)}{\forall x P(x)+B} \wedge-\mathrm{e} \\
& \forall x P(x)+A \wedge B \\
& \hline-\mathrm{r}
\end{aligned}
$$

Example: 3

- consider the rewriting system \mathcal{R} :

$$
\left.\begin{array}{rl}
P(0) & \rightarrow A \\
P(1) & \rightarrow B \\
\forall-\mathrm{e} \frac{\forall x P(x)+\forall x P(x)}{\forall x P(x)+P(0)} \\
\text { conv } & \frac{\forall x P(x)+\forall x P(x)}{\frac{\forall x P(x)+P(1)}{\forall A}} \forall-\mathrm{e} \\
\forall x P(x)+A \wedge B \\
\forall x P(x)+B \\
\hline
\end{array}\right)
$$

Example: 3

- consider the rewriting system \mathcal{R} :

$$
\begin{aligned}
& P(0) \rightarrow A \\
& P(1) \rightarrow B \\
& \forall-\mathrm{e} \frac{\forall x P(x)+\forall x P(x)}{\forall x P(x)+A} \frac{\forall x P(x)+\forall x P(x)}{\forall x P(x)+B} \wedge-\mathrm{e} \\
& \forall x P(x)+A \wedge B \\
& \hline-\mathrm{r}
\end{aligned}
$$

Example: 3

- consider the rewriting system \mathcal{R} :

$$
\begin{aligned}
& P(0) \rightarrow A \\
& P(1) \rightarrow B
\end{aligned}
$$

$$
\quad \forall-\mathrm{e} \frac{\frac{\forall x P(x)+\forall x P(x)}{\forall x P(x)+A}}{\frac{\forall x P(x)}{\forall x P(x)+A \wedge B}} \frac{\frac{\forall x P(x)+\forall x P(x)}{\forall x P(x)+B} \text { axiom }}{\forall \text {-e }}
$$

A Cut: a detour

$$
\frac{\Gamma \vdash A \quad \frac{\Gamma, A \vdash B}{\Gamma+A \Rightarrow B} \Rightarrow-i}{\Gamma+B} \Rightarrow-e
$$

- show $\Gamma \vdash A$ and $\Gamma, A \vdash B$
- then, you have showed $\Gamma \vdash B$
- it is the application of a lemma.

A Cut: a detour

$$
\frac{\frac{\pi_{1}}{\Gamma \vdash A} \frac{\pi_{2}}{\Gamma \vdash B}}{\frac{\Gamma+A \wedge B}{\Gamma \vdash A} \wedge-\mathrm{e}}
$$

General pattern of a cut: an introduction rule, followed by an elimination on the same symbol.
This is unnecessary, consider only π_{1}.

$$
\frac{\pi_{1}}{\Gamma \vdash A}
$$

A Cut: a detour

In deduction modulo:

$$
\frac{\frac{\theta}{\Gamma+A^{\prime}} \quad \frac{\frac{\pi}{\Gamma, A+B}}{\Gamma+B^{\prime}} \Rightarrow-\mathrm{i}, C \equiv A \Rightarrow B}{} \Rightarrow-\mathrm{e}, C \equiv A^{\prime} \Rightarrow B^{\prime}
$$

- need for cut elimination: the heart of logic.

A Cut: a detour

In deduction modulo:

$$
\frac{\theta}{\frac{\theta+A^{\prime}}{\Gamma+B^{\prime}} \quad \frac{\frac{\pi}{\Gamma, A+B}}{\Gamma+C} \Rightarrow-\mathrm{e}, C \equiv A \Rightarrow B}
$$

- need for cut elimination: the heart of logic.
- two main methods:
- semantic: cut admissibility.
- syntactic: proof normalization.

A Cut: a detour

In deduction modulo:

$$
\frac{\theta}{\frac{\theta+A^{\prime}}{\Gamma+B^{\prime}} \quad \frac{\frac{\pi}{\Gamma, A+B}}{\Gamma+C} \Rightarrow-\mathrm{e}, C \equiv A \Rightarrow B}
$$

- need for cut elimination: the heart of logic.
- two main methods:
- semantic: cut admissibility.
- syntactic: proof normalization.
- indecidable, need for conditions on \mathcal{R}.

II - The semantic method

The semantical method

The semantical method

Heyting algebras

- a universe Ω
- an order

Heyting algebras

- a universe Ω
- an order
- operations on it: lowest upper bound (join: U), greatest lower bound (meet: \cap), arrow \rightarrow (more that lattice).

$$
\begin{array}{ccc}
a \cap b \leq a & a \cap b \leq b & c \leq a \text { and } c \leq b \text { implies } c \leq a \cap b \\
a \leq a \cup b & b \leq a \cup b & a \leq c \text { and } b \leq c \text { implies } a \cup b \leq c \\
a \leq b \rightarrow c & \text { iff } & a \cap b \leq c
\end{array}
$$

- like Boolean algebras, with weaker complement

an example

- \mathbb{R} and open sets (infinite g.l.b. is not infinite intersection)

an example

- \mathbb{R} and open sets (infinite g.l.b. is not infinite intersection)
- complement is weaker:

A model

- a domain \mathcal{D} to interpret the first-order terms.
- a Heyting algebra Ω
- a interpretation function for each symbol:

$$
\begin{aligned}
\hat{f}: \mathcal{D}^{n} & \rightarrow \mathcal{D} \\
\hat{P}: \mathcal{D}^{m} & \rightarrow \Omega
\end{aligned}
$$

- that we extend readily to all terms and all formulae and terms:

$$
\begin{aligned}
(x)_{\phi}^{*} & :=\phi(x) \\
\left(f\left(t_{1}, \cdots, t_{n}\right)\right)_{\phi}^{*} & :=\hat{f}\left(\left(\left(t_{1}\right)_{\phi}^{*}, \cdots,\left(t_{n}\right)_{\phi}^{*}\right)\right) \\
\left(P\left(t_{1}, \cdots, t_{n}\right)\right)_{\phi}^{*} & :=\hat{P}\left(\left(\left(t_{1}\right)_{\phi}^{*}, \cdots,\left(t_{n}\right)_{\phi}^{*}\right)\right) \\
(A \wedge B)_{\phi}^{*} & :=(A)_{\phi}^{*} \cap(B)_{\phi}^{*}
\end{aligned}
$$

A model

- a domain \mathcal{D} to interpret the first-order terms.
- a Heyting algebra Ω
- a interpretation function for each symbol:

$$
\begin{aligned}
\hat{f}: \mathcal{D}^{n} & \rightarrow \mathcal{D} \\
\hat{P}: \mathcal{D}^{m} & \rightarrow \Omega
\end{aligned}
$$

- that we extend readily to all terms and all formulae and terms:

$$
\begin{aligned}
(x)_{\phi}^{*} & :=\phi(x) \\
\left(f\left(t_{1}, \cdots, t_{n}\right)\right)_{\phi}^{*} & :=\hat{f}\left(\left(\left(t_{1}\right)_{\phi}^{*}, \cdots,\left(t_{n}\right)_{\phi}^{*}\right)\right) \\
\left(P\left(t_{1}, \cdots, t_{n}\right)\right)_{\phi}^{*} & :=\hat{P}\left(\left(\left(t_{1}\right)_{\phi}^{*}, \cdots,\left(t_{n}\right)_{\phi}^{*}\right)\right) \\
(A \wedge B)_{\phi}^{*} & :=(A)_{\phi}^{*} \cap(B)_{\phi}^{*}
\end{aligned}
$$

- degree of freedom: how to choose \hat{f} and \hat{P}.
- in deduction modulo, additional condition:

$$
A \equiv_{\mathcal{R}} B \text { implies } A^{*}=B^{*}
$$

Cannonical model: Lindenbaum algebra

- defined for provability
- elements of Ω : the equivalence class of formulae $[A]$.

$$
[A]:=\{B \mid \vdash A \Leftrightarrow B\}
$$

- order: $[A] \leq[B]$ iff $+A \Rightarrow B$ is provable
- meet: $[A] \cap[B]$ iff $[A \wedge B]$

Cannonical model: Lindenbaum algebra

- defined for provability
- elements of Ω : the equivalence class of formulae $[A]$.

$$
[A]:=\{B \mid \vdash A \Leftrightarrow B\}
$$

- order: $[A] \leq[B]$ iff $+A \Rightarrow B$ is provable
- meet: $[A] \cap[B]$ iff $[A \wedge B]$
- and so on ... (domain \mathcal{D} : open terms).
- with this model, one proves completeness

Cannonical model: Lindenbaum algebra

- defined for provability with cuts
- elements of Ω : the equivalence class of formulae $[A]$.

$$
[A]:=\{B \mid \vdash A \Leftrightarrow B\}
$$

- "intersection": $[A] \cap[B]$ iff $[A \wedge B]$
- "order": $[A] \leq[B]$ iff $\vdash A \Rightarrow B$
- and so on ... (domain \mathcal{D} : open terms)
- with this model, one proves completeness: cuts are needed for transitivity of the order.

Cut-free cannonical model

- defined for provability without cuts
- elements of Ω : the contexts proving A cut-free.

$$
[A]:=\left\{\Gamma \mid \Gamma \vdash^{*} A\right\}
$$

- the $[A]$ generate Ω with their (arbitrary) intersection and pseudo-union (l.u.b.):

$$
a \cup b=\bigcap\{[A] \mid a \subseteq[A] \text { and } b \subseteq[A]\}
$$

- order: $a \leq b$ iff $a \subseteq b$
- and so on ...
- with this model, one proves cut-free completeness.

Deduction modulo

- what about the domain?
- what about the validity of the rewrite rules ?

$$
A \equiv_{\mathcal{R}} B \text { implies } A^{*}=B^{*}
$$

Deduction modulo

- what about the domain: it depends on \mathcal{R} (not always open term).
- what about the validity of the rewrite rules: choose carefully the interpretation of predicates and function symbols, depends on \mathcal{R}.

An example: Simple Theory of Types

- aka higher-order (intuitionistic) logic.
- basic types $0, \iota$, and arrow: $0 \rightarrow 0, o \rightarrow \iota, \ldots$
- constants of each type
- application $(t u)$ and λ-abstraction or combinators: S, K
- logical connectors: constants $\wedge: 0 \rightarrow 0 \rightarrow 0, \ldots$
- e.g. we can form the formula: $\forall P . P$
- same deduction rules as NJ plus lambda-conversion.

Cut admissibility in STT

- problem number one, circularity:

$$
\frac{\vdots}{\frac{\vdash \forall \cdot P(P \Rightarrow P)}{\vdash(\mathfrak{P} \Rightarrow \mathfrak{P})}}
$$

Cut admissibility in STT

- problem number one, circularity:

$$
\frac{\frac{\vdots}{\vdash \forall . P(P \Rightarrow P)}}{\vdash(\forall P .(P \Rightarrow P) \Rightarrow \forall P .(P \Rightarrow P))}
$$

- no more induction on the size of the formulae.

Cut admissibility in STT

- problem number one, circularity:

$$
\frac{\frac{\vdots}{\vdash \forall \cdot P(P \Rightarrow P)}}{\vdash(\forall P .(P \Rightarrow P) \Rightarrow \forall P .(P \Rightarrow P))}
$$

- no more induction on the size of the formulae.
- solution, same as Girard:

Define R_{A} : quantify over all R_{B} : Circular
Avoid circularity: define C a priori, quantify over C instead, Prove a posteriori that $R_{B} \in C$.

Cut admissibility in STT

- problem number one, circularity:

$$
\frac{\frac{\vdots}{\vdash \forall \cdot P(P \Rightarrow P)}}{\vdash(\forall P .(P \Rightarrow P) \Rightarrow \forall P .(P \Rightarrow P))}
$$

- no more induction on the size of the formulae.
- solution, same as Girard:

Define R_{A} : quantify over all R_{B} : Circular
Avoid circularity: define C a priori, quantify over C instead, Prove a posteriori that $R_{B} \in C$.

- define "semantic candidates" [Okada] for $(A)^{*}$ without induction:

$$
\{\alpha \in \Omega \mid A \in \alpha \subseteq[A]\}
$$

Cut admissibility in STT

- problem number one, circularity:

$$
\frac{\frac{\vdots}{\vdash \forall \cdot P(P \Rightarrow P)}}{\vdash(\forall P .(P \Rightarrow P) \Rightarrow \forall P .(P \Rightarrow P))}
$$

- no more induction on the size of the formulae.
- solution, same as Girard:

Define R_{A} : quantify over all R_{B} : Circular
Avoid circularity: define C a priori, quantify over C instead, Prove a posteriori that $R_{B} \in C$.

- define "semantic candidates" [Okada] for $(A)^{*}$ without induction:

$$
\{\alpha \in \Omega \mid A \in \alpha \subseteq[A]\}
$$

- then quantify over all truth-values candidates. Identifies which of the α is $(A)^{*}$.

Cut admissibility in STT

- Problem 2: logical intensionality. In STT, as in λ Prolog:

$$
P(A \wedge A) \leftrightarrow P(A)
$$

No logical extensionality rule:

$$
\frac{P(A) \quad A \Leftrightarrow B}{P(B)}
$$

Cut admissibility in STT

- Problem 2: logical intensionality. In STT, as in λ Prolog:

$$
P(A \wedge A) \leftrightarrow P(A)
$$

No logical extensionality rule:

$$
\frac{P(A) \quad A \Leftrightarrow B}{P(B)}
$$

- implicates: although semantic truth value of A is in Ω, its domain of interpretation should not be Ω.

Cut admissibility in STT

- Problem 2: logical intensionality. In STT, as in λ Prolog:

$$
P(A \wedge A) \leftrightarrow P(A)
$$

No logical extensionality rule:

$$
\frac{P(A) \quad A \Leftrightarrow B}{P(B)}
$$

- implicates: although semantic truth value of A is in Ω, its domain of interpretation should not be Ω.
- usual trick:

$$
\{\alpha \in \Omega \mid A \in \alpha \subseteq[A]\}
$$

Cut admissibility in STT

- Problem 2: logical intensionality. In STT, as in λ Prolog:

$$
P(A \wedge A) \leftrightarrow P(A)
$$

No logical extensionality rule:

$$
\frac{P(A) \quad A \Leftrightarrow B}{P(B)}
$$

- implicates: although semantic truth value of A is in Ω, its domain of interpretation should not be Ω.
- usual trick: pairing (V-complexes).

$$
\mathrm{D}_{o}=\{\langle\boldsymbol{A}, \alpha\rangle \mid A \in \alpha \subseteq[A]\}
$$

Cut admissibility in STT

- Problem 2: logical intensionality. In STT, as in λ Prolog:

$$
P(A \wedge A) \leftrightarrow P(A)
$$

No logical extensionality rule:

$$
\frac{P(A) \quad A \Leftrightarrow B}{P(B)}
$$

- implicates: although semantic truth value of A is in Ω, its domain of interpretation should not be Ω.
- usual trick: pairing (V-complexes).

$$
\mathrm{D}_{o}=\{\langle A, \alpha\rangle \mid A \in \alpha \subseteq[A]\}
$$

- interpret everything within those domains, e.g.:

$$
\hat{\wedge}:=\langle\wedge, \lambda\langle B, b\rangle .\langle\wedge \cdot B, \lambda\langle C, c\rangle .\langle\wedge \cdot B \cdot C, b \cap c\rangle\rangle\rangle
$$

Cut admissibility in STT

- Problem 2: logical intensionality. In STT, as in λ Prolog:

$$
P(A \wedge A) \leftrightarrow P(A)
$$

No logical extensionality rule:

$$
\frac{P(A) \quad A \Leftrightarrow B}{P(B)}
$$

- implicates: although semantic truth value of A is in Ω, its domain of interpretation should not be Ω.
- usual trick: pairing (V-complexes).

$$
\mathrm{D}_{o}=\{\langle A, \alpha\rangle \mid A \in \alpha \subseteq[A]\}
$$

- interpret everything within those domains, e.g.:

$$
\hat{\wedge}:=\langle\wedge, \lambda\langle B, b\rangle .\langle\wedge \cdot B, \lambda\langle C, c\rangle .\langle\wedge \cdot B \cdot C, b \cap c\rangle\rangle\rangle
$$

- then, "extract" the truth value:

$$
\omega\left(A^{*}\right)=\pi_{2}\left(A^{*}\right)
$$

STT in deduction modulo

- same types, same symbols $\dot{\Lambda}, \dot{\forall}, \ldots$
- application:

$$
\begin{aligned}
K \cdot x \cdot y & \rightarrow x \\
S \cdot x \cdot y \cdot z & \rightarrow(x z)(y z)
\end{aligned}
$$

- how to express $\forall P . P$ in a first-order setting ?

STT in deduction modulo

- same types, same symbols $\dot{\Lambda}, \dot{\forall}, \cdots$
- application:

$$
\begin{aligned}
K \cdot x \cdot y & \rightarrow x \\
S \cdot x \cdot y \cdot z & \rightarrow(x z)(y z)
\end{aligned}
$$

- how to express $\forall P . P$ in a first-order setting ?
- solution: embed P into $\varepsilon(P)$, and define:

$$
\begin{aligned}
\varepsilon(\dot{\wedge} \cdot A \cdot B) & \rightarrow \varepsilon(A) \wedge \varepsilon(B) \\
\varepsilon(\dot{\forall} A) & \rightarrow \forall x \cdot \varepsilon(A x)
\end{aligned}
$$

STT in deduction modulo

- same types, same symbols $\dot{\Lambda}, \dot{\forall}, \ldots$
- application:

$$
\begin{aligned}
K \cdot x \cdot y & \rightarrow x \\
S \cdot x \cdot y \cdot z & \rightarrow(x z)(y z)
\end{aligned}
$$

- how to express $\forall P . P$ in a first-order setting ?
- solution: embed P into $\varepsilon(P)$, and define:

$$
\begin{aligned}
\varepsilon(\dot{\wedge} \cdot A \cdot B) & \rightarrow \varepsilon(A) \wedge \varepsilon(B) \\
\varepsilon(\dot{\forall} A) & \rightarrow \forall x \cdot \varepsilon(A x)
\end{aligned}
$$

- duplication of "connectors": \wedge (of the type hierarchy) connecting terms and \wedge, connecting propositions.
- two "formulae": P, a term, and $\varepsilon(P)$, at the logical level.
- ε is the only predicate symbol.

STT in deduction modulo

- same types, same symbols $\dot{\Lambda}, \dot{\forall}, \cdots$
- application:

$$
\begin{aligned}
K \cdot x \cdot y & \rightarrow x \\
S \cdot x \cdot y \cdot z & \rightarrow(x z)(y z)
\end{aligned}
$$

- how to express $\forall P . P$ in a first-order setting ?
- solution: embed P into $\varepsilon(P)$, and define:

$$
\begin{aligned}
\varepsilon(\dot{\wedge} \cdot A \cdot B) & \rightarrow \varepsilon(A) \wedge \varepsilon(B) \\
\varepsilon(\dot{\forall} A) & \rightarrow \forall x \cdot \varepsilon(A x)
\end{aligned}
$$

- duplication of "connectors": \wedge (of the type hierarchy) connecting terms and \wedge, connecting propositions.
- two "formulae": P, a term, and $\varepsilon(P)$, at the logical level.
- ε is the only predicate symbol.
- ε embeds in the syntax the ω is in the semantics: separates truth value and propositional content.

III - Normalization

Curry-Howard correspondence

- Notation for proofs. Give a name to each of the hypothesis:

$$
\Gamma=x_{1}: A_{1}, \ldots, x_{n}: A_{n}
$$

$$
\begin{array}{cl}
\frac{\Gamma, x: A \vdash x: A}{} A x i o m & \frac{\Gamma \vdash \pi: A \wedge B}{\Gamma \vdash f s t(\pi): A} \wedge-\mathrm{e} 1 \\
\frac{\Gamma \vdash \pi_{1}: A \quad \Gamma \vdash \pi_{2}: B}{\Gamma \vdash\left\langle\pi_{1}, \pi_{2}\right\rangle: A \wedge B} \wedge-\mathrm{i} & \frac{\Gamma \vdash \pi: A \wedge B}{\Gamma \vdash s n d(\pi): A} \wedge-\mathrm{e} 2 \\
\frac{\Gamma, x: A \vdash \pi: B}{\Gamma \vdash \lambda x \cdot \pi: A \Rightarrow B} \Rightarrow-\mathrm{i} & \frac{\Gamma \vdash \pi^{\prime}: A}{\Gamma \vdash \pi: A \Rightarrow B}
\end{array}
$$

Curry-Howard correspondence

- Notation for proofs. Give a name to each of the hypothesis:

$$
\Gamma=x_{1}: A_{1}, \ldots, x_{n}: A_{n}
$$

$$
\begin{array}{cl}
\frac{\Gamma, x: A \vdash x: A}{} A x i o m & \frac{\Gamma \vdash \pi: A \wedge B}{\Gamma \vdash f s t(\pi): A} \wedge-\mathrm{e} 1 \\
\frac{\Gamma \vdash \pi_{1}: A}{\Gamma \vdash\left\langle\pi_{1}, \pi_{2}\right\rangle: A \wedge B} \wedge-\mathrm{i} & \frac{\Gamma \vdash \pi: A \wedge B}{\Gamma \vdash s n d(\pi): A} \wedge-\mathrm{e} 2 \\
\frac{\Gamma, x: A \vdash \pi: B}{\Gamma \vdash \lambda x \cdot \pi: A \Rightarrow B} \Rightarrow-\mathrm{i} & \frac{\Gamma \vdash \pi^{\prime}: A \quad \Gamma \vdash \pi: A \Rightarrow B}{\Gamma \vdash\left(\pi \pi^{\prime}\right): B}
\end{array}
$$

- very similar to a type system

Curry-Howard correspondence

- Notation for proofs. Give a name to each of the hypothesis:

$$
\Gamma=x_{1}: A_{1}, \ldots, x_{n}: A_{n}
$$

$$
\begin{array}{cl}
\frac{\Gamma, x: A \vdash x: A}{} A x i o m & \frac{\Gamma \vdash \pi: A \wedge B}{\Gamma \vdash f s t(\pi): A} \wedge-\mathrm{e} 1 \\
\frac{\Gamma \vdash \pi_{1}: A \quad \Gamma \vdash \pi_{2}: B}{\Gamma \vdash\left\langle\pi_{1}, \pi_{2}\right\rangle: A \wedge B} \wedge-\mathrm{i} & \frac{\Gamma \vdash \pi: A \wedge B}{\Gamma \vdash s n d(\pi): A} \wedge-\mathrm{e} 2 \\
\frac{\Gamma, x: A \vdash \pi: B}{\Gamma \vdash \lambda x \cdot \pi: A \Rightarrow B} \Rightarrow-\mathrm{i} & \frac{\Gamma \vdash \pi^{\prime}: A \quad \Gamma \vdash \pi: A \Rightarrow B}{\Gamma \vdash\left(\pi \pi^{\prime}\right): B}
\end{array}
$$

- very similar to a type system
- in deduction modulo, rewrite rules are silent:

$$
\frac{\Gamma \vdash \pi: A}{\Gamma \vdash \pi: B} A \equiv B
$$

Cut elimination with proof terms

- Cut elimination is a process, similar to function execution.

$$
\begin{aligned}
& \frac{\Gamma \vdash \pi_{1}: A \quad \Gamma \vdash \pi_{2}: B}{\frac{\Gamma \vdash\left\langle\pi_{1}, \pi_{2}\right\rangle: A \wedge B}{\Gamma \vdash f t} \wedge-i \quad \triangleright \quad \Gamma \vdash \pi_{1}: A} \\
& \frac{\Gamma+\theta: A \quad \frac{\Gamma, x: A+\pi: B}{\Gamma+\lambda x \cdot \pi: A \Rightarrow B} \Rightarrow-\mathrm{i}}{\Gamma+(\lambda x \cdot \pi) \theta: B} \Rightarrow \quad \Gamma+\{\theta / x\} \pi: B
\end{aligned}
$$

Cut elimination with proof terms

- Cut elimination is a process, similar to function execution.

$$
\begin{aligned}
& \frac{\Gamma \vdash \pi_{1}: A \quad \Gamma \vdash \pi_{2}: B}{\frac{\Gamma \vdash\left\langle\pi_{1}, \pi_{2}\right\rangle: A \wedge B}{\Gamma \vdash f t} \wedge-i \quad \triangleright \quad \Gamma \vdash \pi_{1}: A} \\
& \frac{\Gamma \vdash \theta: A \quad \frac{\Gamma, x: A \vdash \pi: B}{\Gamma \vdash \lambda x \cdot \pi: A \Rightarrow B} \Rightarrow-\mathrm{i}}{\Gamma+(\lambda x \cdot \pi) \theta: B} \Rightarrow \quad \Gamma+\{\theta / x\} \pi: B
\end{aligned}
$$

- showing that every proof normalizes: the cut elimination process terminates.

Normalization [Dowek,Werner]

- deduction modulo is high-level: circularity hence reducibility candidates.

Normalization [Dowek,Werner]

- deduction modulo is high-level: circularity hence reducibility candidates.
- A reducibility candidate: a set of normalizing proof terms (and other closure properties).

Normalization [Dowek,Werner]

- deduction modulo is high-level: circularity hence reducibility candidates.
- A reducibility candidate: a set of normalizing proof terms (and other closure properties).
- to each formula A, associates a candidate $\llbracket A \rrbracket$: this is a C-valued model (pre-model).

Normalization [Dowek,Werner]

- deduction modulo is high-level: circularity hence reducibility candidates.
- A reducibility candidate: a set of normalizing proof terms (and other closure properties).
- to each formula A, associates a candidate $\llbracket A \rrbracket$: this is a C-valued model (pre-model).
- in deduction modulo, if $A \equiv B$, additional constraint:

$$
\llbracket A \rrbracket=\llbracket B \rrbracket
$$

Normalization [Dowek,Werner]

- deduction modulo is high-level: circularity hence reducibility candidates.
- A reducibility candidate: a set of normalizing proof terms (and other closure properties).
- to each formula A, associates a candidate $\llbracket A \rrbracket$: this is a C-valued model (pre-model).
- in deduction modulo, if $A \equiv B$, additional constraint:

$$
\llbracket A \rrbracket=\llbracket B \rrbracket
$$

- then prove the main theorem:

Theorem: if $\Gamma \vdash \pi: A$ then for any ψ substitution, ϕ model assignment, θ environment (mapping $\alpha: B \in \Gamma$ to $\llbracket A \rrbracket_{\phi}$), we have $\theta \psi \pi \in \llbracket A \rrbracket_{\phi}$

IV－From Normalization to usual semantics

- such methods are defined in deduction modulo (Heyting arithmetic, higher-order logic, Zermelo's set theory, ...)
- such methods are defined in deduction modulo (Heyting arithmetic, higher-order logic, Zermelo's set theory, ...)
- the pre-model have a structure: pseudo Heyting algebras, or truth value algebras (TVA) [Dowek].

Heyting algebras

- a universe Ω
- an order
- operations on it: lowest upper bound (join: U), greatest lower bound (meet: \cap - intersection).

$$
\begin{array}{lll}
a \cap b \leq a & a \cap b \leq b & c \leq a \text { and } c \leq b \text { implies } c \leq a \cap b \\
a \leq a \cup b & b \leq a \cup b & a \leq c \text { and } b \leq c \text { implies } a \cup b \leq c
\end{array}
$$

- like Boolean algebras, with weaker complement

pseudo-Heyting algebras, aka Truth Values Algebras

- a universe Ω
- a pre-order: $a \leq b$ and $b \leq a$ with $a \neq b$ possible.
- operations on it: lowest upper bound (join: $\cup-$ pseudo union), greatest lower bound (meet: \cap - intersection).

$$
\begin{array}{lll}
a \cap b \leq a & a \cap b \leq b & c \leq a \text { and } c \leq b \text { implies } c \leq a \cap b \\
a \leq a \cup b & b \leq a \cup b & a \leq c \text { and } b \leq c \text { implies } a \cup b \leq c
\end{array}
$$

Candidates form a pseudo-Heyting algebra

- $\mathrm{T}=\perp=S N$
- $\llbracket A \rrbracket \cap \llbracket B \rrbracket=\llbracket A \wedge B \rrbracket$
- and so on.
- pre-order: trivial one.
- But $\llbracket A \wedge A \rrbracket \leq \geq \llbracket A \rrbracket$ only.
- of course:

$$
A \equiv B \text { implies } \llbracket A \rrbracket=\llbracket B \rrbracket
$$

Super consistency

- the pre-model construction (domain, ...) does not depends on the properties of C.
- consistency: there exists a model.
- condition in DM: $A \equiv B$ implies $\llbracket A \rrbracket=\llbracket B \rrbracket$

Super consistency

- the pre-model construction (domain, ...) does not depends on the properties of C.
- consistency: there exists a model.
- super-consistency: for every TVA, there exists a model (interpretation): construction has to be uniform.
- condition in DM: $A \equiv B$ implies $\llbracket A \rrbracket=\llbracket B \rrbracket$

Super consistency

- the pre-model construction (domain, ...) does not depends on the properties of C.
- consistency: there exists a model.
- super-consistency: for every TVA, there exists a model (interpretation): construction has to be uniform.
- condition in DM: $A \equiv B$ implies $\llbracket A \rrbracket=\llbracket B \rrbracket$
- Super consistency implies cut elimination.

Super consistency

- e.g. higher-order logic is super-consistent:

$$
\begin{aligned}
M_{\iota} & =\iota \text { (dummy) } \\
M_{o} & =C \\
M_{t \rightarrow u} & =M_{u}^{M_{t}}
\end{aligned}
$$

Super consistency

- e.g. higher-order logic is super-consistent:

$$
\begin{aligned}
M_{\iota} & =\iota \text { (dummy) } \\
M_{o} & =C \\
M_{t \rightarrow u} & =M_{u}^{M_{t}}
\end{aligned}
$$

- hence, it has a model in the pseudo-Heying Algebra of candidates
- $\Gamma \vdash \pi: A$ implies $\pi \in \llbracket A \rrbracket$.
- the system enjoys proof normalization.

Towards usual semantics

Super consistency

- e.g. higher-order logic is super-consistent:

$$
\begin{aligned}
M_{\iota} & =\iota \text { (dummy) } \\
M_{o} & =C \\
M_{t \rightarrow u} & =M_{u}^{M_{t}}
\end{aligned}
$$

Super consistency

- e.g. higher-order logic is super-consistent:

$$
\begin{aligned}
M_{\iota} & =\iota \text { (dummy) } \\
M_{o} & =C \\
M_{t \rightarrow u} & =M_{u}^{M_{t}}
\end{aligned}
$$

- hence, it has a model in the pseudo-Heying Algebra of reducibility candidates

$$
\llbracket A \rrbracket=\{\pi \text { such that } \ldots\}
$$

- but, $\llbracket \top \rrbracket \wedge \llbracket \top \rrbracket \neq \llbracket \top \rrbracket$

Towards usual semantics

- How to transform a TVA into a Heyting algebra.
- assume we have a model \mathcal{M}, 【-】 in the previous pseudo-Heyting algebra of sequents.
- first idea: pseudo-Heyting to Heyting by quotienting.

Towards usual semantics

- How to transform a TVA into a Heyting algebra.
- assume we have a model \mathcal{M}, 【-】 in the previous pseudo-Heyting algebra of sequents.
- first idea: pseudo-Heyting to Heyting by quotienting.
- trivial pseudo order implies $T=\perp$.

The link: extract contexts

- Assumption: we have a pre-model $\left(\llbracket A \rrbracket_{\phi}\right.$, model \mathcal{M} defined $)$. Set:
$[A]_{\phi}^{\sigma}=\{\Gamma \mid \Gamma \vdash \pi: \sigma A$, and for any environment θ, assignment ψ, $\left.\theta \psi \pi \in \llbracket A \rrbracket_{\phi}\right\}$

The link: extract contexts

- Assumption: we have a pre-model $\left(\llbracket A \rrbracket_{\phi}\right.$, model \mathcal{M} defined $)$. Set:
$[A]_{\phi}^{\sigma}=\{\Gamma \mid \Gamma \vdash \pi: \sigma A$, and for any environment θ, assignment ψ, $\left.\theta \psi \pi \in \llbracket A \rrbracket_{\phi}\right\}$
- $\llbracket A \rrbracket_{\phi}$ contains proof terms associated to $\Delta \vdash \pi: B$. Extract the contexts corresponding to A.
- this forms a Heyting algebra ([A]: basis)

The link: extract contexts

- Assumption: we have a pre-model $\left(\llbracket A \rrbracket_{\phi}\right.$, model \mathcal{M} defined $)$. Set:
$[A]_{\phi}^{\sigma}=\{\Gamma \mid \Gamma \vdash \pi: \sigma A$, and for any environment θ, assignment ψ, $\left.\theta \psi \pi \in \llbracket A \rrbracket_{\phi}\right\}$
- $\llbracket A \rrbracket_{\phi}$ contains proof terms associated to $\Delta \vdash \pi: B$. Extract the contexts corresponding to A.
- this forms a Heyting algebra ([A]: basis)
- interpretation of formulas in it:

$$
A^{*}=[A]_{\phi}^{\sigma}
$$

Wait a minute!

- interpretation ? $[A]_{\phi}^{\sigma}$.

Wait a minute!

- interpretation ? $[A]_{\phi}^{\sigma}$.
- Need for one single substitution. hybridization: $\sigma \times \phi$.

$$
D=\mathcal{T} \times M
$$

Wait a minute!

- interpretation ? $[A]_{\phi}^{\sigma}$.
- Need for one single substitution. hybridization: $\sigma \times \phi$.

$$
D=\mathcal{T} \times M
$$

- interpretation for symbols were, in C :

$$
\hat{f}^{\mathcal{M}}\left(d_{1}, \ldots, d_{n}\right) \in M \quad \hat{P}^{\mathcal{M}}\left(d_{1}, \ldots, d_{n}\right) \in C
$$

Wait a minute!

- interpretation ? $[A]_{\phi}^{\sigma}$.
- Need for one single substitution. hybridization: $\sigma \times \phi$.

$$
D=\mathcal{T} \times M
$$

- interpretation for symbols were, in C:

$$
\hat{f}^{\mathcal{M}}\left(d_{1}, \ldots, d_{n}\right) \in M \quad \hat{P}^{\mathcal{M}}\left(d_{1}, \ldots, d_{n}\right) \in C
$$

- Now they are:

$$
\begin{aligned}
\hat{f}^{\mathcal{D}}\left(\left\langle t_{1}, d_{1}\right\rangle, \ldots,\left\langle t_{n}, d_{n}\right\rangle\right) & =\left\langle f\left(t_{1}, \ldots, t_{n}\right), \hat{f}^{\mathcal{M}}\left(d_{1}, \ldots, d_{n}\right)\right\rangle \\
\hat{P}^{\mathcal{D}}\left(\left\langle t_{1}, d_{1}\right\rangle, \ldots,\left\langle t_{n}, d_{n}\right\rangle\right) & =[P]_{\left(d_{1} / x_{1}, \ldots, d_{n} / x_{n}\right)}^{\left(t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right)} \\
& =\left\{\Gamma \mid(\Gamma \vdash \pi: P(\vec{t})) \in \llbracket P \mathbb{1}_{(\vec{d} / \vec{x})}\right\}
\end{aligned}
$$

Wait a minute!

- interpretation ? $[A]_{\phi}^{\sigma}$.
- Need for one single substitution. hybridization: $\sigma \times \phi$.

$$
D=\mathcal{T} \times M
$$

- interpretation for symbols were, in C :

$$
\hat{f}^{\mathcal{M}}\left(d_{1}, \ldots, d_{n}\right) \in M \quad \hat{P}^{\mathcal{M}}\left(d_{1}, \ldots, d_{n}\right) \in C
$$

- Now they are:

$$
\begin{aligned}
\hat{f}^{\mathcal{D}}\left(\left\langle t_{1}, d_{1}\right\rangle, \ldots,\left\langle t_{n}, d_{n}\right\rangle\right) & =\left\langle f\left(t_{1}, \ldots, t_{n}\right), \hat{f}^{\mathcal{M}}\left(d_{1}, \ldots, d_{n}\right)\right\rangle \\
\hat{P}^{\mathcal{D}}\left(\left\langle t_{1}, d_{1}\right\rangle, \ldots,\left\langle t_{n}, d_{n}\right\rangle\right) & =[P]_{\left(d_{1} / x_{1}, \ldots, d_{n} / x_{n}\right)}^{\left(t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right)} \\
& =\left\{\Gamma \mid(\Gamma \vdash \pi: P(\vec{t})) \in \llbracket P \mathbb{1}_{(\vec{d} / \vec{x})}\right\}
\end{aligned}
$$

- Holds for any theory in DM. extends the V-complexes.
- pointwise application

$$
\langle t, v\rangle \odot\left\langle t^{\prime}, v^{\prime}\right\rangle=\left\langle\left(t t^{\prime}\right),\left(v v^{\prime}\right)\right\rangle
$$

instead of $\langle t, v\rangle \odot\left\langle t^{\prime}, v^{\prime}\right\rangle=\left\langle\left(t t^{\prime}\right),\left(v\left(\left\langle t^{\prime}, v^{\prime}\right\rangle\right)\right)\right\rangle$

- Need to prove $[A \wedge B]=[A] \cap[B]$ to have a model interpretation. Usually (semantic cut elim), only:

$$
A \wedge B \in[A] \cap[B] \subset[A \wedge B]
$$

- Need to prove $[A \wedge B]=[A] \cap[B]$ to have a model interpretation. Usually (semantic cut elim), only:

$$
A \wedge B \in[A] \cap[B] \subset[A \wedge B]
$$

- proof resembles the proof for normalization.

Cut admissibility

Assume $\Gamma \vdash A$ has a proof (with cuts)

- $[\Gamma] \leq[A]$ in \mathcal{D} by (usual) soundness
- $\Gamma \in[\Gamma]$
- $\Gamma \in[A]$ implies $\Gamma \vdash_{\text {cf }} A$
- Q.E.D.

Cut admissibility

Assume $\Gamma \vdash A$ has a proof (with cuts)

- $[\Gamma] \leq[A]$ in \mathcal{D} by (usual) soundness
- $\Gamma \in[\Gamma]$
- $\Gamma \in[A]$ implies $\Gamma \vdash_{\text {cf }} A$
- Q.E.D.
- compared to the former main lemma: $\Gamma \vdash \pi: A$ implies $\pi \in \llbracket A \rrbracket$, and hence π is $\mathcal{S N}$.

- This diagram does not commute in deduction modulo.

Further work

- what is the computational content of this algorithm ?
- there is normalization by evaluation work, but in a Kripke style: links ?
- do the proof terms (candidates) always have a "pseudo-" structure ?
- realizing rewrite rule not with $\lambda x . x$ (not silently), could recover (some) normalization and make the previous diagram commute again.

$$
\frac{\Gamma \vdash \pi: A}{\Gamma \vdash \pi: B} A \equiv B
$$

