From pre-models to models

normalization by Heyting algebras

Olivier HERMANT

18 Mars 2008

Deduction System: natural deduction (NJ)

first-order logic: function and predicate symbols, logical connectors: ∧, ∨, ⇒, ¬, and quantifiers ∀, ∃.

$$\frac{\overline{\Gamma, A + A} \text{ axiom}}{\Gamma + A \Gamma + B} \xrightarrow{\Lambda - i} \frac{\Gamma + A \wedge B}{\Gamma + A} \wedge -e1 \frac{\Gamma + A \wedge B}{\Gamma + B} \wedge -e2$$

$$\frac{\Gamma, A + B}{\Gamma + A \Rightarrow B} \Rightarrow -i \frac{\Gamma + A \Rightarrow B}{\Gamma + B} \Rightarrow -e$$

$$\frac{\Gamma + \forall x A[x]}{\Gamma + A[t]} \forall -e, \text{ any } t \frac{\Gamma + A[x]}{\Gamma + \forall x A[x]} \forall -i, x \text{ free}$$

General form (free variables are possible):

 $I \rightarrow r$

General form (free variables are possible):

$$I \rightarrow r$$

• use: We replace $t = \sigma I$ by σr (unification). Rewriting could be deep in the term.

General form (free variables are possible):

$$I \rightarrow r$$

- use: We replace $t = \sigma l$ by σr (unification). Rewriting could be deep in the term.
- rewriting on terms:

$$x + S(y) \rightarrow S(x + y)$$

General form (free variables are possible):

$$I \rightarrow r$$

- use: We replace $t = \sigma l$ by σr (unification). Rewriting could be deep in the term.
- rewriting on terms:

$$x + S(y) \rightarrow S(x + y)$$

and on propositions (predicate symbols):

$$x * y = 0 \rightarrow x = 0 \lor y = 0$$

advantage: expressiveness

General form (free variables are possible):

$$I \rightarrow r$$

- use: We replace $t = \sigma l$ by σr (unification). Rewriting could be deep in the term.
- rewriting on terms:

$$x + S(y) \rightarrow S(x + y)$$

and on propositions (predicate symbols):

$$x * y = 0 \rightarrow x = 0 \lor y = 0$$

- advantage: expressiveness
- we obtain a congruence modulo \mathcal{R} (chosen set of rules): \equiv

Natural deduction modulo - first presentation

$$\frac{\Gamma, A \vdash A}{\Gamma \vdash A \land B} \text{ axiom}$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A \land B} \land -i$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \land -e1$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \land -e2$$

$$\Rightarrow -i \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B}$$

$$\frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash B} \xrightarrow{\Gamma \vdash A} \Rightarrow -e$$

$$\frac{\Gamma \vdash \forall x A[x]}{\Gamma \vdash A[t]} \forall -e, \text{ any } t$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \lor -e$$

Natural deduction modulo - first presentation

$$\frac{\overline{\Gamma, A \vdash A} \text{ axiom}}{\Gamma \vdash A \quad \Gamma \vdash B} \land \neg i \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \land \neg e1 \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \land \neg e2$$

$$\Rightarrow \neg i \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \qquad \frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash B} \qquad \frac{\Gamma \vdash A}{\Gamma \vdash B} \Rightarrow \neg e$$

$$\frac{\Gamma \vdash \forall x A[x]}{\Gamma \vdash A[t]} \forall \neg e, \text{ any } t \qquad \frac{\Gamma \vdash A[x]}{\Gamma \vdash \forall x A[x]} \forall \neg i, x \text{ free}$$

Add the following conversion rule

$$\frac{\Gamma \vdash A}{\Gamma \vdash B} A \equiv B$$

Natural deduction modulo, second version

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash C} \text{ axiom, } A \equiv B$$

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash C} \land \neg i, \ C \equiv A \land B \qquad \frac{\Gamma \vdash C}{\Gamma \vdash A} \land \neg e1, \ C \equiv A \land B \qquad \frac{\Gamma \vdash C}{\Gamma \vdash B} \land \neg e2, \ C \equiv A \land B$$

$$\Rightarrow \neg i, \ C \equiv A \land B \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash C} \qquad \frac{\Gamma \vdash A}{\Gamma \vdash B} \Rightarrow \neg e, \ C \equiv A \land B$$

$$\frac{\Gamma \vdash A[x]}{\Gamma \vdash B} \forall \neg i, \ x \text{ free}, \ B \equiv \forall x A[x]$$

$$\frac{\Gamma \vdash B}{\Gamma \vdash A[t]} \forall \neg e, \ \text{any} \ t, \ B \equiv \forall x A[x]$$

$$P(0) \rightarrow A$$

 $P(1) \rightarrow B$

$$\forall x P(x) \vdash A \land B$$

$$P(0) \rightarrow A$$

$$P(1) \rightarrow B$$

$$\frac{\forall x P(x) \vdash A \quad \forall x P(x) \vdash B}{\forall x P(x) \vdash A \land B} \land -i$$

$$\forall -e \frac{\forall x P(x) \vdash \forall x P(x)}{\forall x P(x) \vdash A} \frac{\forall x P(x) \vdash \forall x P(x)}{\forall x P(x) \vdash B} \land -r$$

$$\frac{\forall x P(x) \vdash \forall x P(x)}{\forall x P(x) \vdash P(0)} \qquad \frac{\forall x P(x) \vdash \forall x P(x)}{\forall x P(x) \vdash P(1)} \qquad \forall -e \\
\frac{\forall x P(x) \vdash A}{\forall x P(x) \vdash A} \qquad \frac{\forall x P(x) \vdash P(1)}{\forall x P(x) \vdash B} \land -r$$

$$\forall -e \frac{\forall x P(x) \vdash \forall x P(x)}{\forall x P(x) \vdash A} \frac{\forall x P(x) \vdash \forall x P(x)}{\forall x P(x) \vdash B} \land -r$$

$$\frac{\Gamma \vdash A \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \Rightarrow -i}{\Gamma \vdash B} \Rightarrow -e$$

- ▶ show $\Gamma \vdash A$ and $\Gamma, A \vdash B$
- then, you have showed Γ ⊢ B
- it is the application of a lemma.

$$\frac{\frac{\pi_1}{\Gamma \vdash A} \frac{\pi_2}{\Gamma \vdash B}}{\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \land -e} \land -i$$

General pattern of a cut: an introduction rule, followed by an elimination on the same symbol.

This is unnecessary, consider only π_1 .

$$\frac{\pi_1}{\Gamma \vdash A}$$

In deduction modulo:

$$\frac{\theta}{\Gamma \vdash A'} \frac{\frac{\pi}{\Gamma, A \vdash B}}{\frac{\Gamma \vdash C}{\Gamma \vdash B'}} \Rightarrow \text{-i, } C \equiv A \Rightarrow B$$

need for cut elimination: the heart of logic.

In deduction modulo:

$$\frac{\theta}{\Gamma \vdash A'} \frac{\frac{\pi}{\Gamma, A \vdash B}}{\frac{\Gamma \vdash C}{\Gamma \vdash B'}} \Rightarrow \text{-i, } C \equiv A \Rightarrow B$$

- need for cut elimination: the heart of logic.
- two main methods:
 - semantic: cut admissibility.
 - syntactic: proof normalization.

In deduction modulo:

$$\frac{\theta}{\frac{\Gamma \vdash A'}{\Gamma \vdash B'}} \xrightarrow{\frac{\pi}{\Gamma, A \vdash B}} \Rightarrow \text{-i, } C \equiv A \Rightarrow B$$

$$\frac{\Gamma \vdash C}{\Gamma \vdash B'} \Rightarrow \text{-e, } C \equiv A' \Rightarrow B'$$

- need for cut elimination: the heart of logic.
- two main methods:
 - semantic: cut admissibility.
 - syntactic: proof normalization.
- indecidable, need for conditions on \mathcal{R} .

II - The semantic method

The semantical method

The semantical method

Heyting algebras

- a universe Ω
- an order

Heyting algebras

- a universe Ω
- an order
- operations on it: lowest upper bound (join: ∪), greatest lower bound (meet: ∩), arrow → (more that lattice).

```
a \cap b \le a a \cap b \le b c \le a and c \le b implies c \le a \cap b

a \le a \cup b b \le a \cup b a \le c and b \le c implies a \cup b \le c

a \le b \to c iff a \cap b \le c
```

▶ like Boolean algebras, with weaker complement

an example

 $\,\blacktriangleright\,\,\mathbb{R}$ and open sets (infinite g.l.b. is not infinite intersection)

an example

- $ightharpoonup \mathbb{R}$ and open sets (infinite g.l.b. is not infinite intersection)
- complement is weaker:

A model

- ightharpoonup a domain $\mathcal D$ to interpret the first-order terms.
- a Heyting algebra Ω
- a interpretation function for each symbol:

$$\hat{f}: \mathcal{D}^n \to \mathcal{D}$$

 $\hat{P}: \mathcal{D}^m \to \Omega$

that we extend readily to all terms and all formulae and terms:

$$(x)_{\phi}^{*} := \phi(x)$$

$$(f(t_{1}, \dots, t_{n}))_{\phi}^{*} := \hat{f}(((t_{1})_{\phi}^{*}, \dots, (t_{n})_{\phi}^{*}))$$

$$(P(t_{1}, \dots, t_{n}))_{\phi}^{*} := \hat{P}(((t_{1})_{\phi}^{*}, \dots, (t_{n})_{\phi}^{*}))$$

$$(A \wedge B)_{\phi}^{*} := (A)_{\phi}^{*} \cap (B)_{\phi}^{*}$$

A model

- ightharpoonup a domain $\mathcal D$ to interpret the first-order terms.
- a Heyting algebra Ω
- a interpretation function for each symbol:

$$\hat{f}: \mathcal{D}^n \to \mathcal{D}$$

 $\hat{P}: \mathcal{D}^m \to \Omega$

that we extend readily to all terms and all formulae and terms:

$$(x)_{\phi}^{*} := \phi(x)$$

$$(f(t_{1}, \dots, t_{n}))_{\phi}^{*} := \hat{f}(((t_{1})_{\phi}^{*}, \dots, (t_{n})_{\phi}^{*}))$$

$$(P(t_{1}, \dots, t_{n}))_{\phi}^{*} := \hat{P}(((t_{1})_{\phi}^{*}, \dots, (t_{n})_{\phi}^{*}))$$

$$(A \wedge B)_{\phi}^{*} := (A)_{\phi}^{*} \cap (B)_{\phi}^{*}$$

- degree of freedom: how to choose \hat{f} and \hat{P} .
- in deduction modulo, additional condition:

$$A \equiv_{\mathcal{R}} B \text{ implies } A^* = B^*$$

Cannonical model: Lindenbaum algebra

- defined for provability
- elements of Ω : the equivalence class of formulae [A].

$$[A] := \{B \mid +A \Leftrightarrow B\}$$

- ▶ order: $[A] \leq [B]$ iff $\vdash A \Rightarrow B$ is provable
- ▶ meet: $[A] \cap [B]$ iff $[A \land B]$

Cannonical model: Lindenbaum algebra

- defined for provability
- elements of Ω : the equivalence class of formulae [A].

$$[A] := \{B \mid + A \Leftrightarrow B\}$$

- ▶ order: $[A] \leq [B]$ iff $\vdash A \Rightarrow B$ is provable
- ▶ meet: $[A] \cap [B]$ iff $[A \land B]$
- ▶ and so on ... (domain \mathcal{D} : open terms).
- with this model, one proves completeness

Cannonical model: Lindenbaum algebra

- defined for provability with cuts
- elements of Ω : the equivalence class of formulae [A].

$$[A] := \{B \mid \vdash A \Leftrightarrow B\}$$

- "intersection": $[A] \cap [B]$ iff $[A \wedge B]$
- "order": $[A] \leq [B]$ iff $\vdash A \Rightarrow B$
- ▶ and so on ... (domain D: open terms)
- with this model, one proves completeness: cuts are needed for transitivity of the order.

Cut-free cannonical model

- defined for provability without cuts
- elements of Ω : the contexts proving A cut-free.

$$[A] := \{\Gamma \mid \Gamma \vdash^* A\}$$

the [A] generate Ω with their (arbitrary) intersection and pseudo-union (l.u.b.):

$$a \cup b = \bigcap \{[A] \mid a \subseteq [A] \text{ and } b \subseteq [A]\}$$

- order: a ≤ b iff a ⊆ b
- and so on ...
- with this model, one proves cut-free completeness.

Deduction modulo

- what about the domain ?
- what about the validity of the rewrite rules ?

$$A \equiv_{\mathcal{R}} B \text{ implies } A^* = B^*$$

Deduction modulo

- what about the domain: it depends on \mathcal{R} (not always open term).
- what about the validity of the rewrite rules: choose carefully the interpretation of predicates and function symbols, depends on R.

An example: Simple Theory of Types

- aka higher-order (intuitionistic) logic.
- ▶ basic types o, ι , and arrow: $o \rightarrow o, o \rightarrow \iota, ...$
- constants of each type
- ▶ application $(t \ u)$ and λ -abstraction or combinators: S, K
- ▶ logical connectors: constants \land : $o \rightarrow o \rightarrow o$, ...
- e.g. we can form the formula: $\forall P.P$
- same deduction rules as NJ plus lambda-conversion.

problem number one, circularity:

$$\frac{\vdots}{\vdash \forall . P(P \Rightarrow P)}$$

$$\vdash (\mathfrak{P} \Rightarrow \mathfrak{P})$$

problem number one, circularity:

$$\frac{\vdots}{\vdash \forall . P(P \Rightarrow P)}$$

$$\vdash (\forall P.(P \Rightarrow P) \Rightarrow \forall P.(P \Rightarrow P))$$

no more induction on the size of the formulae.

problem number one, circularity:

$$\frac{\vdots}{\vdash \forall . P(P \Rightarrow P)}$$

$$\vdash (\forall P.(P \Rightarrow P) \Rightarrow \forall P.(P \Rightarrow P))$$

- no more induction on the size of the formulae.
- solution, same as Girard:

Define R_A : quantify over all R_B : Circular

Avoid circularity: define C a priori, quantify over C instead, Prove a posteriori that $R_B \in C$.

problem number one, circularity:

$$\frac{\vdots}{\vdash \forall . P(P \Rightarrow P)} \\
\vdash (\forall P.(P \Rightarrow P) \Rightarrow \forall P.(P \Rightarrow P))$$

- no more induction on the size of the formulae.
- solution, same as Girard:

Define R_A : quantify over all R_B : Circular

Avoid circularity: define C a priori, quantify over C instead, Prove a posteriori that $R_B \in C$.

define "semantic candidates" [Okada] for (A)* without induction:

$$\{\alpha \in \Omega \mid A \in \alpha \subseteq [A]\}$$

problem number one, circularity:

$$\frac{\vdots}{\vdash \forall . P(P \Rightarrow P)} \\
\vdash (\forall P.(P \Rightarrow P) \Rightarrow \forall P.(P \Rightarrow P))$$

- no more induction on the size of the formulae.
- solution, same as Girard:

Define R_A : quantify over all R_B : Circular

Avoid circularity: define C a priori, quantify over C instead, Prove a posteriori that $R_B \in C$.

define "semantic candidates" [Okada] for (A)* without induction:

$$\{\alpha \in \Omega \mid A \in \alpha \subseteq [A]\}$$

▶ then quantify over all truth-values candidates. Identifies which of the α is $(A)^*$.

▶ Problem 2: logical intensionality. In STT, as in *\lambda* Prolog:

$$P(A \wedge A) \leftrightarrow P(A)$$

No logical extensionality rule:

$$\frac{P(A) \quad A \Leftrightarrow B}{P(B)}$$

▶ Problem 2: logical intensionality. In STT, as in λ Prolog:

$$P(A \wedge A) \leftrightarrow P(A)$$

No logical extensionality rule:

$$\frac{P(A) \qquad A \Leftrightarrow B}{P(B)}$$

implicates: although semantic truth value of A is in Ω, its domain of interpretation should not be Ω.

▶ Problem 2: logical intensionality. In STT, as in λ Prolog:

$$P(A \wedge A) \leftrightarrow P(A)$$

No logical extensionality rule:

$$\frac{P(A) \quad A \Leftrightarrow B}{P(B)}$$

- implicates: although semantic truth value of A is in Ω, its domain of interpretation should not be Ω.
- usual trick:

$$\{\alpha\in\Omega\mid A\in\alpha\subseteq[A]\}$$

▶ Problem 2: logical intensionality. In STT, as in \(\lambda \)Prolog:

$$P(A \wedge A) \leftrightarrow P(A)$$

No logical extensionality rule:

$$\frac{P(A) \qquad A \Leftrightarrow B}{P(B)}$$

- implicates: although semantic truth value of A is in Ω , its domain of interpretation should not be Ω .
- usual trick: pairing (V-complexes).

$$\mathsf{D}_o = \{ \langle A, \alpha \rangle \mid A \in \alpha \subseteq [A] \}$$

▶ Problem 2: logical intensionality. In STT, as in \(\lambda \)Prolog:

$$P(A \wedge A) \leftrightarrow P(A)$$

No logical extensionality rule:

$$\frac{P(A) \qquad A \Leftrightarrow B}{P(B)}$$

- implicates: although semantic truth value of A is in Ω , its domain of interpretation should not be Ω .
- usual trick: pairing (V-complexes).

$$\mathsf{D}_o = \{ \langle \mathsf{A}, \alpha \rangle \mid \mathsf{A} \in \alpha \subseteq [\mathsf{A}] \}$$

interpret everything within those domains, e.g.:

$$\hat{\wedge} := \langle \wedge, \lambda \langle B, b \rangle. \langle \wedge \cdot B, \lambda \langle C, c \rangle. \langle \wedge \cdot B \cdot C, b \cap c \rangle \rangle \rangle$$

▶ Problem 2: logical intensionality. In STT, as in λ Prolog:

$$P(A \wedge A) \leftrightarrow P(A)$$

No logical extensionality rule:

$$\frac{P(A) \qquad A \Leftrightarrow B}{P(B)}$$

- implicates: although semantic truth value of A is in Ω , its domain of interpretation should not be Ω .
- usual trick: pairing (V-complexes).

$$\mathsf{D}_o = \{ \langle \mathsf{A}, \alpha \rangle \mid \mathsf{A} \in \alpha \subseteq [\mathsf{A}] \}$$

interpret everything within those domains, e.g.:

$$\hat{\wedge} := \langle \wedge, \lambda \langle B, b \rangle. \langle \wedge \cdot B, \lambda \langle C, c \rangle. \langle \wedge \cdot B \cdot C, b \cap c \rangle \rangle \rangle$$

then, "extract" the truth value:

$$\omega(A^*) = \pi_2(A^*)$$

- same types, same symbols $\dot{\wedge}, \dot{\forall}, \cdots$
- application:

$$K \cdot x \cdot y \rightarrow x$$

 $S \cdot x \cdot y \cdot z \rightarrow (xz)(yz)$

▶ how to express $\forall P.P$ in a first-order setting?

- same types, same symbols $\dot{\wedge}, \dot{\forall}, \cdots$
- application:

$$K \cdot x \cdot y \rightarrow x$$

 $S \cdot x \cdot y \cdot z \rightarrow (xz)(yz)$

- ▶ how to express $\forall P.P$ in a first-order setting?
- ▶ solution: embed P into $\varepsilon(P)$, and define:

$$\begin{array}{ccc} \varepsilon(\dot{\wedge} \cdot A \cdot B) & \to & \varepsilon(A) \wedge \varepsilon(B) \\ \varepsilon(\dot{\forall} A) & \to & \forall x. \varepsilon(Ax) \end{array}$$

- same types, same symbols $\dot{\wedge}, \dot{\forall}, \cdots$
- application:

$$K \cdot x \cdot y \rightarrow x$$

 $S \cdot x \cdot y \cdot z \rightarrow (xz)(yz)$

- ▶ how to express $\forall P.P$ in a first-order setting?
- ▶ solution: embed P into $\varepsilon(P)$, and define:

$$\begin{array}{ccc} \varepsilon(\dot{\wedge} \cdot A \cdot B) & \to & \varepsilon(A) \wedge \varepsilon(B) \\ & \varepsilon(\dot{\forall} A) & \to & \forall x. \varepsilon(Ax) \end{array}$$

- ▶ duplication of "connectors": A (of the type hierarchy) connecting terms and A, connecting propositions.
- ▶ two "formulae": P, a term, and $\varepsilon(P)$, at the logical level.
- \triangleright ε is the only predicate symbol.

- same types, same symbols $\dot{\Lambda}, \dot{\forall}, \cdots$
- application:

$$K \cdot x \cdot y \rightarrow x$$

 $S \cdot x \cdot y \cdot z \rightarrow (xz)(yz)$

- ▶ how to express $\forall P.P$ in a first-order setting?
- ▶ solution: embed P into $\varepsilon(P)$, and define:

$$\begin{array}{ccc} \varepsilon(\dot{\wedge} \cdot A \cdot B) & \to & \varepsilon(A) \wedge \varepsilon(B) \\ & \varepsilon(\dot{\forall} A) & \to & \forall x. \varepsilon(Ax) \end{array}$$

- ▶ duplication of "connectors": A (of the type hierarchy) connecting terms and A, connecting propositions.
- ▶ two "formulae": P, a term, and $\varepsilon(P)$, at the logical level.
- \triangleright ε is the only predicate symbol.
- ho embeds in the syntax the ω is in the semantics: separates truth value and propositional content.

III - Normalization

Curry-Howard correspondence

Notation for proofs. Give a name to each of the hypothesis:

$$\Gamma = x_1 : A_1, \ldots, x_n : A_n$$

$$\frac{\Gamma \vdash \pi : A \land B}{\Gamma \vdash fst(\pi) : A} \land -e1$$

$$\frac{\Gamma \vdash \pi_1 : A \qquad \Gamma \vdash \pi_2 : B}{\Gamma \vdash \langle \pi_1, \pi_2 \rangle : A \land B} \land -i \qquad \frac{\Gamma \vdash \pi : A \land B}{\Gamma \vdash snd(\pi) : A} \land -e2$$

$$\frac{\Gamma, x : A \vdash \pi : B}{\Gamma \vdash \lambda x . \pi : A \Rightarrow B} \Rightarrow -i \qquad \frac{\Gamma \vdash \pi' : A \qquad \Gamma \vdash \pi : A \Rightarrow B}{\Gamma \vdash (\pi \pi') : B}$$

Curry-Howard correspondence

Notation for proofs. Give a name to each of the hypothesis:

$$\Gamma = x_1 : A_1, \dots, x_n : A_n$$

$$\frac{\Gamma \vdash \pi : A \land B}{\Gamma \vdash fst(\pi) : A} \land -e1$$

$$\frac{\Gamma \vdash \pi_1 : A \qquad \Gamma \vdash \pi_2 : B}{\Gamma \vdash \langle \pi_1, \pi_2 \rangle : A \land B} \land -i \qquad \frac{\Gamma \vdash \pi : A \land B}{\Gamma \vdash snd(\pi) : A} \land -e2$$

$$\frac{\Gamma, x : A \vdash \pi : B}{\Gamma \vdash \lambda x . \pi : A \Rightarrow B} \Rightarrow -i \qquad \frac{\Gamma \vdash \pi' : A \qquad \Gamma \vdash \pi : A \Rightarrow B}{\Gamma \vdash (\pi \pi') : B}$$

very similar to a type system

Curry-Howard correspondence

Notation for proofs. Give a name to each of the hypothesis:

 $\Gamma = X_1 : A_1, \ldots, X_n : A_n$

$$\frac{\Gamma \vdash \pi : A \land B}{\Gamma \vdash fst(\pi) : A} \land -e1$$

$$\frac{\Gamma \vdash \pi_1 : A \qquad \Gamma \vdash \pi_2 : B}{\Gamma \vdash \langle \pi_1, \pi_2 \rangle : A \land B} \land -i \qquad \frac{\Gamma \vdash \pi : A \land B}{\Gamma \vdash snd(\pi) : A} \land -e2$$

$$\frac{\Gamma, x : A \vdash \pi : B}{\Gamma \vdash \lambda x . \pi : A \Rightarrow B} \Rightarrow -i \qquad \frac{\Gamma \vdash \pi' : A \qquad \Gamma \vdash \pi : A \Rightarrow B}{\Gamma \vdash (\pi \pi') : B}$$

- very similar to a type system
- ▶ in deduction modulo, rewrite rules are silent:

$$\frac{\Gamma \vdash \pi : A}{\Gamma \vdash \pi : B} A \equiv B$$

Cut elimination with proof terms

Cut elimination is a process, similar to function execution.

$$\frac{\frac{\Gamma \vdash \pi_{1} : A \qquad \Gamma \vdash \pi_{2} : B}{\Gamma \vdash \langle \pi_{1}, \pi_{2} \rangle : A \land B} \land \neg i}{\frac{\Gamma \vdash \langle \pi_{1}, \pi_{2} \rangle : A}{\Gamma \vdash fst(\langle \pi_{1}, \pi_{2} \rangle) : A}} \land \neg e} \qquad \triangleright \qquad \Gamma \vdash \pi_{1} : A$$

$$\frac{\Gamma \vdash \theta : A \qquad \frac{\Gamma, x : A \vdash \pi : B}{\Gamma \vdash \langle x \land x : A \Rightarrow B} \Rightarrow \neg i}{\Gamma \vdash \langle x \land x : B \rangle} \Rightarrow \neg e} \Rightarrow \neg e$$

$$\Gamma \vdash \{\theta \mid x\}\pi : B$$

Cut elimination with proof terms

Cut elimination is a process, similar to function execution.

$$\frac{\frac{\Gamma \vdash \pi_{1} : A \qquad \Gamma \vdash \pi_{2} : B}{\Gamma \vdash \langle \pi_{1}, \pi_{2} \rangle : A \land B} \land -i}{\frac{\Gamma \vdash \pi_{1} : A \land \pi_{2} \land -e}{\Gamma \vdash fst(\langle \pi_{1}, \pi_{2} \rangle) : A} \land -e}} \triangleright \qquad \Gamma \vdash \pi_{1} : A$$

$$\frac{\Gamma \vdash \theta : A \qquad \frac{\Gamma, x : A \vdash \pi : B}{\Gamma \vdash \lambda x . \pi : A \Rightarrow B} \Rightarrow -i}{\Gamma \vdash (\lambda x . \pi)\theta : B} \Rightarrow -e \qquad \triangleright \qquad \Gamma \vdash \{\theta / x\}\pi : B$$

showing that every proof normalizes: the cut elimination process terminates.

deduction modulo is high-level: circularity hence reducibility candidates.

- deduction modulo is high-level: circularity hence reducibility candidates.
- A reducibility candidate: a set of normalizing proof terms (and other closure properties).

- deduction modulo is high-level: circularity hence reducibility candidates.
- A reducibility candidate: a set of normalizing proof terms (and other closure properties).
- to each formula A, associates a candidate [A]: this is a C-valued model (pre-model).

- deduction modulo is high-level: circularity hence reducibility candidates.
- A reducibility candidate: a set of normalizing proof terms (and other closure properties).
- to each formula A, associates a candidate [A]: this is a C-valued model (pre-model).
- ▶ in deduction modulo, if $A \equiv B$, additional constraint:

$$\llbracket A \rrbracket = \llbracket B \rrbracket$$

- deduction modulo is high-level: circularity hence reducibility candidates.
- A reducibility candidate: a set of normalizing proof terms (and other closure properties).
- to each formula A, associates a candidate [A]: this is a C-valued model (pre-model).
- ▶ in deduction modulo, if $A \equiv B$, additional constraint:

$$[\![A]\!] = [\![B]\!]$$

then prove the main theorem:

Theorem: if $\Gamma \vdash \pi : A$ then for any ψ substitution, ϕ model assignment, θ environment (mapping $\alpha : B \in \Gamma$ to $[\![A]\!]_{\phi}$), we have $\theta \psi \pi \in [\![A]\!]_{\phi}$

IV - From Normalization to usual semantics

such methods are defined in deduction modulo (Heyting arithmetic, higher-order logic, Zermelo's set theory, ...)

- such methods are defined in deduction modulo (Heyting arithmetic, higher-order logic, Zermelo's set theory, ...)
- the pre-model have a structure: pseudo Heyting algebras, or truth value algebras (TVA) [Dowek].

Heyting algebras

- a universe Ω
- an order
- operations on it: lowest upper bound (join: ∪), greatest lower bound (meet: ∩ – intersection).

```
a \cap b \le a a \cap b \le b c \le a and c \le b implies c \le a \cap b
a \le a \cup b b \le a \cup b a \le c and b \le c implies a \cup b \le c
```

▶ like Boolean algebras, with weaker complement

pseudo-Heyting algebras, aka Truth Values Algebras

- a universe Ω
- ▶ a pre-order: $a \le b$ and $b \le a$ with $a \ne b$ possible.
- operations on it: lowest upper bound (join: ∪ pseudo union), greatest lower bound (meet: ∩ – intersection).

```
a \cap b \le a a \cap b \le b c \le a and c \le b implies c \le a \cap b
a \le a \cup b b \le a \cup b a \le c and b \le c implies a \cup b \le c
```

Candidates form a pseudo-Heyting algebra

- ightharpoonup $T = \bot = SN$
- $[A] \cap [B] = [A \land B]$
- and so on.
- pre-order: trivial one.
- But [[A ∧ A]] ≤≥ [[A]] only.
- of course:

$$A \equiv B \text{ implies } \llbracket A \rrbracket = \llbracket B \rrbracket$$

Super consistency

- ▶ the pre-model construction (domain, ...) does not depends on the properties of *C*.
- consistency: there exists a model.

▶ condition in DM: $A \equiv B$ implies [A] = [B]

Super consistency

- ▶ the pre-model construction (domain, ...) does not depends on the properties of *C*.
- consistency: there exists a model.
- super-consistency: for every TVA, there exists a model (interpretation): construction has to be uniform.
- ▶ condition in DM: $A \equiv B$ implies [A] = [B]

Super consistency

- ▶ the pre-model construction (domain, ...) does not depends on the properties of *C*.
- consistency: there exists a model.
- super-consistency: for every TVA, there exists a model (interpretation): construction has to be uniform.
- ▶ condition in DM: $A \equiv B$ implies [A] = [B]
- Super consistency implies cut elimination.

Super consistency

• e.g. higher-order logic is super-consistent:

$$egin{array}{lcl} M_\iota & = & \iota ext{ (dummy)} \ M_O & = & C \ M_{t
ightarrow u} & = & M_u^{M_t} \ \end{array}$$

Super consistency

• e.g. higher-order logic is super-consistent:

$$egin{array}{lcl} M_\iota & = & \iota ext{ (dummy)} \ M_O & = & C \ M_{t
ightarrow u} & = & M_u^{M_t} \ \end{array}$$

- hence, it has a model in the pseudo-Heying Algebra of candidates
- ▶ $\Gamma \vdash \pi : A \text{ implies } \pi \in \llbracket A \rrbracket$.
- the system enjoys proof normalization.

Towards usual semantics

Super consistency

• e.g. higher-order logic is super-consistent:

$$egin{array}{lcl} M_\iota & = & \iota ext{ (dummy)} \ M_o & = & C \ M_{t
ightarrow u} & = & M_u^{M_t} \ \end{array}$$

Super consistency

e.g. higher-order logic is super-consistent:

$$egin{array}{lcl} M_{\iota} & = & \iota ext{ (dummy)} \ M_{o} & = & C \ M_{t
ightarrow u} & = & M_{u}^{M_{t}} \ \end{array}$$

 hence, it has a model in the pseudo-Heying Algebra of reducibility candidates

$$[\![A]\!] = \{\pi \text{ such that } ...\}$$

but, [[⊤]] ∧ [[⊤]] ≠ [[⊤]]

Towards usual semantics

- How to transform a TVA into a Heyting algebra.
- ▶ assume we have a model M, [_] in the previous pseudo-Heyting algebra of sequents.
- first idea: pseudo-Heyting to Heyting by quotienting.

Towards usual semantics

- How to transform a TVA into a Heyting algebra.
- assume we have a model M, [_] in the previous pseudo-Heyting algebra of sequents.
- first idea: pseudo-Heyting to Heyting by quotienting.
- ▶ trivial pseudo order implies $\top = \bot$.

The link: extract contexts

▶ Assumption: we have a pre-model ($[\![A]\!]_{\phi}$, model $\mathcal M$ defined). Set:

```
[A]_{\phi}^{\sigma}=\{\Gamma\mid\Gamma\vdash\pi:\sigma A, \text{ and for any environment }\theta, \text{ assignment }\psi,\ \theta\psi\pi\in\llbracket A\rrbracket_{\phi}\}
```

The link: extract contexts

Assumption: we have a pre-model ($[\![A]\!]_{\phi}$, model $\mathcal M$ defined). Set:

```
[A]_{\phi}^{\sigma} = \{\Gamma \mid \Gamma \vdash \pi : \sigma A, \text{ and for any environment } \theta, \text{ assignment } \psi, \\ \theta \psi \pi \in \llbracket A \rrbracket_{\phi} \}
```

- ▶ $[\![A]\!]_{\phi}$ contains proof terms associated to $\Delta \vdash \pi : B$. Extract the contexts corresponding to A.
- this forms a Heyting algebra ([A]: basis)

The link: extract contexts

Assumption: we have a pre-model ($[\![A]\!]_{\phi}$, model $\mathcal M$ defined). Set:

$$[A]_{\phi}^{\sigma} = \{\Gamma \mid \Gamma \vdash \pi : \sigma A, \text{ and for any environment } \theta, \text{ assignment } \psi, \\ \theta \psi \pi \in \llbracket A \rrbracket_{\phi} \}$$

- ▶ $[\![A]\!]_{\phi}$ contains proof terms associated to $\Delta \vdash \pi : B$. Extract the contexts corresponding to A.
- this forms a Heyting algebra ([A]: basis)
- interpretation of formulas in it:

$$A^* = [A]^{\sigma}_{\phi}$$

• interpretation ? $[A]_{\phi}^{\sigma}$.

- interpretation ? $[A]^{\sigma}_{\phi}$.
- ▶ Need for *one single* substitution. hybridization: $\sigma \times \phi$.

$$D=\mathcal{T}\times M$$

- interpretation ? $[A]^{\sigma}_{\phi}$.
- ▶ Need for *one single* substitution. hybridization: $\sigma \times \phi$.

$$D = \mathcal{T} \times M$$

▶ interpretation for symbols were, in C:

$$\hat{f}^{\mathcal{M}}(d_1,...,d_n) \in M \qquad \hat{P}^{\mathcal{M}}(d_1,...,d_n) \in C$$

- interpretation ? $[A]^{\sigma}_{\phi}$.
- ▶ Need for *one single* substitution. hybridization: $\sigma \times \phi$.

$$D = \mathcal{T} \times M$$

▶ interpretation for symbols were, in C:

$$\hat{f}^{\mathcal{M}}(d_1,...,d_n)\in M\qquad \hat{P}^{\mathcal{M}}(d_1,...,d_n)\in C$$

Now they are:

$$\hat{f}^{\mathcal{D}}(\langle t_1, d_1 \rangle, ..., \langle t_n, d_n \rangle) = \langle f(t_1, ..., t_n), \hat{f}^{\mathcal{M}}(d_1, ..., d_n) \rangle
\hat{P}^{\mathcal{D}}(\langle t_1, d_1 \rangle, ..., \langle t_n, d_n \rangle) = [P]_{(d_1/x_1, ..., t_n/x_n)}^{(t_1/x_1, ..., t_n/x_n)}
= \{\Gamma \mid (\Gamma \vdash \pi : P(\overrightarrow{t})) \in [\![P]\!]_{(\overrightarrow{d}/\overrightarrow{x})}\}$$

- interpretation ? $[A]^{\sigma}_{\phi}$.
- ▶ Need for one single substitution. hybridization: $\sigma \times \phi$.

$$D = \mathcal{T} \times M$$

interpretation for symbols were, in C:

$$\hat{f}^{\mathcal{M}}(d_1,...,d_n) \in M$$
 $\hat{P}^{\mathcal{M}}(d_1,...,d_n) \in C$

Now they are:

$$\hat{f}^{\mathcal{D}}(\langle t_{1}, d_{1} \rangle, ..., \langle t_{n}, d_{n} \rangle) = \langle f(t_{1}, ..., t_{n}), \hat{f}^{\mathcal{M}}(d_{1}, ..., d_{n}) \rangle
\hat{P}^{\mathcal{D}}(\langle t_{1}, d_{1} \rangle, ..., \langle t_{n}, d_{n} \rangle) = [P]_{(d_{1}/x_{1}, ..., d_{n}/x_{n})}^{(t_{1}/x_{1}, ..., t_{n}/x_{n})}
= \{\Gamma \mid (\Gamma \vdash \pi : P(\overrightarrow{t})) \in [\![P]\!]_{(\overrightarrow{d}/\overrightarrow{x})}\}$$

- Holds for any theory in DM. extends the V-complexes.
- pointwise application

$$\langle t, v \rangle \odot \langle t', v' \rangle = \langle (tt'), (vv') \rangle$$

instead of $\langle t, v \rangle \odot \langle t', v' \rangle = \langle (tt'), (v(\langle t', v' \rangle)) \rangle$

Need to prove [A ∧ B] = [A] ∩ [B] to have a model interpretation.
Usually (semantic cut elim), only:

$$A \wedge B \in [A] \cap [B] \subset [A \wedge B]$$

Need to prove [A ∧ B] = [A] ∩ [B] to have a model interpretation.
Usually (semantic cut elim), only:

$$A \wedge B \in [A] \cap [B] \subset [A \wedge B]$$

proof resembles the proof for normalization.

Cut admissibility

Assume $\Gamma \vdash A$ has a proof (with cuts)

- ▶ $[\Gamma] \leq [A]$ in \mathcal{D} by (usual) soundness
- ▶ $\Gamma \in [A]$ implies $\Gamma \vdash_{cf} A$
- Q.E.D.

Cut admissibility

Assume $\Gamma \vdash A$ has a proof (with cuts)

- ▶ $[\Gamma] \leq [A]$ in \mathcal{D} by (usual) soundness
- ▶ $\Gamma \in [A]$ implies $\Gamma \vdash_{cf} A$
- Q.E.D.
- compared to the former main lemma: $\Gamma \vdash \pi : A$ implies $\pi \in [\![A]\!]$, and hence π is SN.

► This diagram does not commute in deduction modulo.

Further work

- what is the computational content of this algorithm ?
- there is normalization by evaluation work, but in a Kripke style: links?
- do the proof terms (candidates) always have a "pseudo-" structure?
- realizing rewrite rule not with \(\lambda x.x\) (not silently), could recover (some) normalization and make the previous diagram commute again.

$$\frac{\Gamma \vdash \pi : A}{\Gamma \vdash \pi : B} A \equiv B$$