Models for Normalization(s)

Olivier Hermant

19 November 2007

Deduction and Computation

- Computation is at the root of mathematics.

Deduction and Computation

- Computation is at the root of mathematics.
- It has been forgotten by the formalization of the mathematics.

Deduction and Computation

- Computation is at the root of mathematics.
- It has been forgotten by the formalization of the mathematics.
- reborn with informatics: rewriting rules.
- we need a balance between deduction steps and computation steps.

Natural Deduction: the logical framework

- first-order logic: function and predicate symbols, logical connectors: $\wedge, \vee, \Rightarrow, \neg$, and quantifiers \forall, \exists.

$$
\begin{gathered}
\operatorname{Even}(0) \\
\forall n(\operatorname{Even}(n) \Rightarrow \operatorname{Odd}(n+1)) \\
\forall n(\operatorname{Odd}(n) \Rightarrow \operatorname{Even}(n+1))
\end{gathered}
$$

Natural Deduction: the logical framework

- first-order logic: function and predicate symbols, logical connectors: $\wedge, \vee, \Rightarrow, \neg$, and quantifiers \forall, \exists.

$$
\begin{gathered}
\operatorname{Even}(0) \\
\forall n(\operatorname{Even}(n) \Rightarrow \operatorname{Odd}(n+1)) \\
\forall n(\operatorname{Odd}(n) \Rightarrow \operatorname{Even}(n+1))
\end{gathered}
$$

- a sequent :

$$
\overbrace{\Gamma}^{\text {hyp. }} \vdash \overbrace{A}^{\text {conc. }}
$$

- rules to form them: natural deduction (or sequent calculus)
- framework: intuitionnistic logic (classical, linear, higher-order, constraints ...)

Deduction System : natural deduction (NJ)

- A deduction rule:

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \wedge B}
$$

- introduction and elimination rules

$$
\begin{aligned}
& \overline{\Gamma, A+A} \text { axiom } \\
& \frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \wedge B} \wedge-\mathrm{i} \quad \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A} \wedge-\mathrm{e} 1 \quad \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash B} \wedge-\mathrm{e} 2 \\
& \frac{\Gamma, A+B}{\Gamma \vdash A \Rightarrow B} \Rightarrow-i \\
& \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma+A}{\Gamma+B} \Rightarrow-e \\
& \frac{\Gamma \vdash \forall x A[x]}{\Gamma \vdash A[t]} \forall-e \text {, any } t \\
& \frac{\Gamma \vdash A[x]}{\Gamma \vdash \forall x A[x]} \forall-i, x \text { free }
\end{aligned}
$$

Example: 1

$$
\forall x P(x) \vdash P(0) \wedge P(1)
$$

Example: 1

$$
\frac{\forall x P(x)+P(0) \quad \forall x P(x)+P(1)}{\forall x P(x)+P(0) \wedge P(1)} \wedge-i
$$

Example: 1

$$
\forall-\mathrm{e} \frac{\forall x P(x)+\forall x P(x)}{\frac{\forall x P(x)+P(0)}{\forall x P(x)+P(0) \wedge P(1)} \frac{\forall x P(x)+\forall x P(x)}{\forall x P(x)+P(1)} \forall-\mathrm{e}} \wedge-\mathrm{i}
$$

Example: 1

$$
\begin{aligned}
& \text { axiom } \frac{\forall x P(x)+\forall x P(x)}{\frac{\forall x P(x)+P(0)}{\forall x P(x)+P(0) \wedge P(1)}} \frac{\frac{\forall x P(x)+\forall x P(x)}{\forall x P(x)+P(1)}}{\frac{\forall-\mathrm{e}}{\text { axiom }}} \text {-i }
\end{aligned}
$$

Axioms vs. rewriting

Axioms	Rewriting
$x+S(y)=S(x+y)$	$x+S(y) \rightarrow S(x+y)$
$x+0=x$	$x+0 \rightarrow x$
$x * 0=0$	$x * 0 \rightarrow 0$
$x * S(y)=x+x * y$	$x * S(y) \rightarrow x+x * y$
$(x * y=0) \Leftrightarrow(x=0 \vee y=0)$	$(x * y=0) \rightarrow(x=0 \vee y=0)$
\vdots	$\overline{+4=4}$
$\frac{\mathcal{T}+2 * 2=4}{\mathcal{T}+\exists x(2 * x=4)}$	$\overline{\vdash \exists x(2 * x=4)}$

Deduction modulo: allowed rewriting

- General form (free variables are possible):

$$
I \rightarrow r
$$

Deduction modulo: allowed rewriting

- General form (free variables are possible):

$$
I \rightarrow r
$$

- use: We replace $t=\sigma l$ by σr (unification). Rewriting could be deep in the term.

Deduction modulo: allowed rewriting

- General form (free variables are possible):

$$
I \rightarrow r
$$

- use: We replace $t=\sigma /$ by σr (unification). Rewriting could be deep in the term.
- rewriting on terms:

$$
x+S(y) \rightarrow S(x+y)
$$

Deduction modulo: allowed rewriting

- General form (free variables are possible):

$$
I \rightarrow r
$$

- use: We replace $t=\sigma l$ by σr (unification). Rewriting could be deep in the term.
- rewriting on terms:

$$
x+S(y) \rightarrow S(x+y)
$$

- and on propositions (predicate symbols):

$$
x * y=0 \rightarrow x=0 \vee y=0
$$

- advantage: expressiveness

Deduction modulo: allowed rewriting

- General form (free variables are possible):

$$
I \rightarrow r
$$

- use: We replace $t=\sigma l$ by σr (unification). Rewriting could be deep in the term.
- rewriting on terms:

$$
x+S(y) \rightarrow S(x+y)
$$

- and on propositions (predicate symbols):

$$
x * y=0 \rightarrow x=0 \vee y=0
$$

- advantage: expressiveness
- we obtain a congruence modulo \mathcal{R} (chosen set of rules): \equiv

Deduction modulo: allowed rewriting

- General form (free variables are possible):

$$
I \rightarrow r
$$

- use: We replace $t=\sigma l$ by σr (unification). Rewriting could be deep in the term.
- rewriting on terms:

$$
x+S(y) \rightarrow S(x+y)
$$

- and on propositions (predicate symbols):

$$
x * y=0 \rightarrow x=0 \vee y=0
$$

- advantage: expressiveness
- we obtain a congruence modulo \mathcal{R} (chosen set of rules): \equiv
- deduction rules transform as such:

$$
\text { axiom } \overline{\Gamma, A \vdash A} \quad \text { becomes } \quad \overline{\Gamma, A \vdash B} \text { axiom, } A \equiv B
$$

Deduction modulo : natural deduction modulo - first presentation

$$
\begin{aligned}
& \overline{\Gamma, A+A} \text { axiom } \\
& \frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \wedge B} \wedge-i \\
& \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A} \wedge-\mathrm{e} 1 \quad \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash B} \wedge-\mathrm{e} 2 \\
& \Rightarrow-i \frac{\Gamma, A+B}{\Gamma+A \Rightarrow B} \\
& \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma+A}{\Gamma+B} \Rightarrow-\mathrm{e} \\
& \frac{\Gamma \vdash \forall x A[x]}{\Gamma \vdash A[t]} \forall-e \text {, any } t \\
& \frac{\Gamma \vdash A[x]}{\Gamma \vdash \forall x A[x]} \forall-i, x \text { free }
\end{aligned}
$$

Deduction modulo : first presentation

Add then the following conversion rule:

$$
\frac{\Gamma \vdash A}{\Gamma \vdash B} A \equiv B
$$

Deduction modulo : natural deduction modulo, reloaded

$$
\begin{aligned}
& \overline{\Gamma, A \vdash B}^{\text {axiom, } A \equiv B} \\
& \frac{\Gamma \vdash A \Gamma+B}{\Gamma+C} \wedge-\mathrm{i}, C \equiv A \wedge B \quad \frac{\Gamma+C}{\Gamma+A} \wedge-\mathrm{e} 1, C \equiv A \wedge B \quad \frac{\Gamma+C}{\Gamma+B} \wedge-\mathrm{e} 2, C \equiv A \wedge B \\
& \Rightarrow-\mathrm{i}, C \equiv A \wedge B \frac{\Gamma, A+B}{\Gamma+C} \quad \frac{\Gamma+C \quad \Gamma+A}{\Gamma+B} \Rightarrow-\mathrm{e}, C \equiv A \wedge B \\
& \frac{\Gamma+A[x]}{\Gamma+B} \forall-\mathrm{i}, x \text { free }, B \equiv \forall x A[x] \\
& \frac{\Gamma \vdash B}{\Gamma+A[t]} \forall-e \text {, any } t, B \equiv \forall x A[x]
\end{aligned}
$$

Example: 3

- consider the rewriting system \mathcal{R} :

$$
\begin{array}{rl}
P(0) & \rightarrow \\
P(1) & \rightarrow B \\
\forall x P(x) \vdash A & A B
\end{array}
$$

Example: 3

- consider the rewriting system \mathcal{R} :

$$
\begin{aligned}
& P(0) \rightarrow A \\
& P(1) \rightarrow B \\
& \frac{\forall x P(x)+A \quad \forall x P(x)+B}{\forall x P(x)+A \wedge B} \wedge-i
\end{aligned}
$$

Example: 3

- consider the rewriting system \mathcal{R} :

$$
\begin{aligned}
& P(0) \rightarrow A \\
& P(1) \rightarrow B \\
& \forall-\mathrm{e} \frac{\forall x P(x)+\forall x P(x)}{\forall x P(x)+A} \frac{\forall x P(x)+\forall x P(x)}{\forall x P(x)+B} \wedge-\mathrm{e} \\
& \forall x P(x)+A \wedge B \\
& \hline-\mathrm{r}
\end{aligned}
$$

Example: 3

- consider the rewriting system \mathcal{R} :

$$
\left.\begin{array}{rl}
P(0) & \rightarrow A \\
P(1) & \rightarrow B \\
\forall-\mathrm{e} \frac{\forall x P(x)+\forall x P(x)}{\forall x P(x)+P(0)} \\
\text { conv } & \frac{\forall x P(x)+\forall x P(x)}{\frac{\forall x P(x)+P(1)}{\forall A}} \forall-\mathrm{e} \\
\forall x P(x)+A \wedge B \\
\forall x P(x)+B \\
\hline
\end{array}\right)
$$

Example: 3

- consider the rewriting system \mathcal{R} :

$$
\begin{aligned}
& P(0) \rightarrow A \\
& P(1) \rightarrow B \\
& \forall-\mathrm{e} \frac{\forall x P(x)+\forall x P(x)}{\forall x P(x)+A} \frac{\forall x P(x)+\forall x P(x)}{\forall x P(x)+B} \wedge-\mathrm{e} \\
& \forall x P(x)+A \wedge B \\
& \hline-\mathrm{r}
\end{aligned}
$$

Example: 3

- consider the rewriting system \mathcal{R} :

$$
\begin{aligned}
& P(0) \rightarrow A \\
& P(1) \rightarrow B
\end{aligned}
$$

$$
\quad \forall-\mathrm{e} \frac{\frac{\forall x P(x)+\forall x P(x)}{\forall x P(x)+A}}{\frac{\forall x P(x)}{\forall x P(x)+A \wedge B}} \frac{\frac{\forall x P(x)+\forall x P(x)}{\forall x P(x)+B} \text { axiom }}{\forall \text {-e }}
$$

A Cut: a detour

$$
\frac{\Gamma+A \quad \frac{\Gamma, A \vdash B}{\Gamma+A \Rightarrow B} \Rightarrow-i}{\Gamma+B} \Rightarrow-e
$$

- show Г $+A$
- show $\Gamma, A+B$
- then, you have showed $\Gamma \vdash B$
- it is the application of a lemma.

A cut: a detour

$$
\frac{\frac{\pi_{1}}{\Gamma \vdash A} \frac{\pi_{2}}{\Gamma+B}}{\frac{\Gamma+A \wedge B}{\Gamma \vdash A} \wedge-\mathrm{e}}
$$

Replace it by π_{1}. And in the previous proof,

$$
\frac{\frac{\theta}{\Gamma+A} \quad \frac{\frac{\pi}{\Gamma, A+B}}{\Gamma+A \Rightarrow B}}{\Gamma+B} \Rightarrow-i
$$

π is directly a proof of $\Gamma \vdash B$ replace uses of A (nb: axioms) by θ. In clear: don't use the lemma, reprove its instances.

General definition: a cut is an elimination plus an introduction (same symbol).

A cut: a detour

$$
\frac{\frac{\theta}{\Gamma+A^{\prime}} \quad \frac{\frac{\pi}{\Gamma, A+B}}{\Gamma+B^{\prime}} \Rightarrow-\mathrm{i}, C \equiv A \Rightarrow B}{\Rightarrow-e, C \equiv A^{\prime} \Rightarrow B^{\prime}}
$$

- we show $\Gamma, A \vdash B$ and $\Gamma \vdash A$
- then we have showed $\Gamma \vdash B$.
- lemma: the good way for a human being.
- in practice: not adapted for automatic demonstration.

A cut: a detour

$$
\frac{\frac{\theta}{\Gamma \vdash A^{\prime}} \quad \frac{\frac{\pi}{\Gamma, A+B}}{\Gamma+B^{\prime}} \Rightarrow-\mathrm{i}, C \equiv A \Rightarrow B}{\Gamma-e, C \equiv A^{\prime} \Rightarrow B^{\prime}}
$$

- we show $\Gamma, A \vdash B$ and $\Gamma \vdash A$
- then we have showed $\Gamma \vdash B$.
- lemma: the good way for a human being.
- in practice: not adapted for automatic demonstration.
- in theory: consistency, proof normalization (Curry-Howard) depend of its elimination.

A cut: a detour

$$
\frac{\frac{\theta}{\Gamma \vdash A^{\prime}} \quad \frac{\frac{\pi}{\Gamma, A+B}}{\Gamma+B^{\prime}} \Rightarrow-\mathrm{i}, C \equiv A \Rightarrow B}{\Gamma-e, C \equiv A^{\prime} \Rightarrow B^{\prime}}
$$

- we show $\Gamma, A \vdash B$ and $\Gamma \vdash A$
- then we have showed $\Gamma \vdash B$.
- lemma: the good way for a human being.
- in practice: not adapted for automatic demonstration.
- in theory: consistency, proof normalization (Curry-Howard) depend of its elimination.
- eliminating cuts: a central result.

$$
\Gamma \vdash A \triangleright \Gamma \vdash_{c f} A
$$

- two main paths towards:
- proof normalization (syntactic).
- semantical methods.

A cut: a detour

$$
\frac{\frac{\theta}{\Gamma \vdash A^{\prime}} \quad \frac{\frac{\pi}{\Gamma, A+B}}{\Gamma+B^{\prime}} \Rightarrow-\mathrm{i}, C \equiv A \Rightarrow B}{\Gamma-e, C \equiv A^{\prime} \Rightarrow B^{\prime}}
$$

- we show $\Gamma, A \vdash B$ and $\Gamma \vdash A$
- then we have showed $\Gamma \vdash B$.
- lemma: the good way for a human being.
- in practice: not adapted for automatic demonstration.
- in theory: consistency, proof normalization (Curry-Howard) depend of its elimination.
- eliminating cuts: a central result.

$$
\Gamma \vdash A \triangleright \Gamma \vdash_{c f} A
$$

- two main paths towards:
- proof normalization (syntactic).
- semantical methods.
- in deduction modulo: indecidable, need for conditions on \mathcal{R}.

The semantical method

The semantical method

The semantical method

The normalization method(s)

- Curry-Howard: proofs = programs
- formulas = types
- proof tree = typing tree
- at the heart of proof assistants (PVS, Coq, Isabelle, ...)
- when a program calculates, it performs a cut elimination procedure.

The normalization method(s)

- Curry-Howard: proofs = programs
- formulas = types
- proof tree = typing tree
- at the heart of proof assistants (PVS, Coq, Isabelle, ...)
- when a program calculates, it performs a cut elimination procedure.
- show that all typables function terminates.

Curry-Howard correspondence

- Notation for proofs. Give a name to each of the hypothesis:

$$
\Gamma=x_{1}: A_{1}, \ldots, x_{n}: A_{n}
$$

$$
\begin{array}{cl}
\frac{\Gamma, x: A \vdash x: A}{} A x i o m & \frac{\Gamma \vdash \pi: A \wedge B}{\Gamma \vdash f s t(\pi): A} \wedge-\mathrm{e} 1 \\
\frac{\Gamma \vdash \pi_{1}: A \quad \Gamma \vdash \pi_{2}: B}{\Gamma \vdash\left\langle\pi_{1}, \pi_{2}\right\rangle: A \wedge B} \wedge-\mathrm{i} & \frac{\Gamma \vdash \pi: A \wedge B}{\Gamma \vdash s n d(\pi): A} \wedge-\mathrm{e} 2 \\
\frac{\Gamma, x: A \vdash \pi: B}{\Gamma \vdash \lambda x \cdot \pi: A \Rightarrow B} \Rightarrow-\mathrm{i} & \frac{\Gamma \vdash \pi^{\prime}: A}{\Gamma \vdash \pi: A \Rightarrow B}
\end{array}
$$

Curry-Howard correspondence

- Notation for proofs. Give a name to each of the hypothesis:

$$
\Gamma=x_{1}: A_{1}, \ldots, x_{n}: A_{n}
$$

$$
\begin{array}{cl}
\frac{\Gamma, x: A \vdash x: A}{} A x i o m & \frac{\Gamma \vdash \pi: A \wedge B}{\Gamma \vdash f s t(\pi): A} \wedge-\mathrm{e} 1 \\
\frac{\Gamma \vdash \pi_{1}: A}{\Gamma \vdash\left\langle\pi_{1}, \pi_{2}\right\rangle: A \wedge B} \wedge-\mathrm{i} & \frac{\Gamma \vdash \pi: A \wedge B}{\Gamma \vdash s n d(\pi): A} \wedge-\mathrm{e} 2 \\
\frac{\Gamma, x: A \vdash \pi: B}{\Gamma \vdash \lambda x \cdot \pi: A \Rightarrow B} \Rightarrow-\mathrm{i} & \frac{\Gamma \vdash \pi^{\prime}: A \quad \Gamma \vdash \pi: A \Rightarrow B}{\Gamma \vdash\left(\pi \pi^{\prime}\right): B}
\end{array}
$$

- very similar to a type system

Curry-Howard correspondence

- Notation for proofs. Give a name to each of the hypothesis:

$$
\Gamma=x_{1}: A_{1}, \ldots, x_{n}: A_{n}
$$

$$
\begin{array}{cl}
\frac{\Gamma, x: A \vdash x: A}{} A x i o m & \frac{\Gamma \vdash \pi: A \wedge B}{\Gamma \vdash f s t(\pi): A} \wedge-\mathrm{e} 1 \\
\frac{\Gamma \vdash \pi_{1}: A}{\Gamma \vdash\left\langle\pi_{1}, \pi_{2}\right\rangle: A \wedge B} \wedge-\mathrm{i} & \frac{\Gamma \vdash \pi: A \wedge B}{\Gamma \vdash s n d(\pi): A} \wedge-\mathrm{e} 2 \\
\frac{\Gamma, x: A \vdash \pi: B}{\Gamma \vdash \lambda x \cdot \pi: A \Rightarrow B} \Rightarrow-\mathrm{i} & \frac{\Gamma \vdash \pi^{\prime}: A}{\Gamma \vdash \pi: A \Rightarrow B}
\end{array}
$$

- very similar to a type system
- in deduction modulo, rewrite rules are silent:

$$
\frac{\Gamma \vdash \pi: A}{\Gamma \vdash \pi: B} A \equiv B
$$

Cut elimination with proof terms

- Cut elimination is a process, similar to function execution.

$$
\begin{aligned}
& \frac{\Gamma \vdash \pi_{1}: A \quad \Gamma \vdash \pi_{2}: B}{\frac{\Gamma \vdash\left\langle\pi_{1}, \pi_{2}\right\rangle: A \wedge B}{\Gamma \vdash f t} \wedge-i \quad \triangleright \quad \Gamma \vdash \pi_{1}: A} \\
& \frac{\Gamma \vdash \theta: A \quad \frac{\Gamma, x: A \vdash \pi: B}{\Gamma \vdash \lambda x \cdot \pi: A \Rightarrow B} \Rightarrow-\mathrm{i}}{\Gamma \vdash(\lambda x \cdot \pi) \theta: B} \Rightarrow \quad \Gamma+\{\theta / x\} \pi: B
\end{aligned}
$$

Cut elimination with proof terms

- Cut elimination is a process, similar to function execution.

$$
\begin{aligned}
& \frac{\Gamma \vdash \pi_{1}: A \quad \Gamma \vdash \pi_{2}: B}{\frac{\Gamma \vdash\left\langle\pi_{1}, \pi_{2}\right\rangle: A \wedge B}{\Gamma \vdash f t\left(\left\langle\pi_{1}, \pi_{2}\right\rangle\right): A} \wedge-\mathrm{e}} \triangleright \quad \Gamma \vdash \pi_{1}: A \\
& \frac{\Gamma \vdash \theta: A \quad \frac{\Gamma, x: A \vdash \pi: B}{\Gamma \vdash \lambda x \cdot \pi: A \Rightarrow B} \Rightarrow-\mathrm{i}}{\Gamma \vdash(\lambda x \cdot \pi) \theta: B} \Rightarrow \quad \Gamma \quad \Gamma \vdash\{\theta / x\} \pi: B
\end{aligned}
$$

- showing that every proof normalizes: the cut elimination process terminates.

Normalization

- deduction modulo is high-level: we need reducibility candidates.

Normalization

- deduction modulo is high-level: we need reducibility candidates.
- A reducibility candidate: a set of proofs that are normalizing (and some other properties).

Normalization

- deduction modulo is high-level: we need reducibility candidates.
- A reducibility candidate: a set of proofs that are normalizing (and some other properties).
- to each formula A, associates a candidate $\llbracket A \rrbracket$. Show that if $\Gamma \vdash \pi: A$ then $\pi \in \llbracket A \rrbracket$.

Normalization

- deduction modulo is high-level: we need reducibility candidates.
- A reducibility candidate: a set of proofs that are normalizing (and some other properties).
- to each formula A, associates a candidate $\llbracket A \rrbracket$. Show that if $\Gamma \vdash \pi: A$ then $\pi \in \llbracket A \rrbracket$.
- in deduction modulo, if $A \equiv B$, additional constraint:

$$
\llbracket A \rrbracket=\llbracket B \rrbracket
$$

Towards "usual" semantics

- such methods are defined in deduction modulo (Heyting arithmetic, higher-order logic, Zermelo's set theory, ...)

Towards "usual" semantics

- such methods are defined in deduction modulo (Heyting arithmetic, higher-order logic, Zermelo's set theory, ...)
- the sets of candidates have a structure: pseudo Heyting algebras [Dowek].

Heyting algebras

- a universe Ω
- an order

Heyting algebras

- a universe Ω
- an order
- operations on it: lowest upper bound (join: $\cup-$ pseudo union), greatest lower bound (meet: \cap - intersection).

$$
\begin{array}{lll}
a \cap b \leq a & a \cap b \leq b & c \leq a \text { and } c \leq b \text { implies } c \leq a \cap b \\
a \leq a \cup b & b \leq a \cup b & a \leq c \text { and } b \leq c \text { implies } a \cup b \leq c
\end{array}
$$

- think about \mathbb{R} and closed sets (infinite l.u.b. is not infinite union)

Heyting algebras

Used in semantic cut elimination (Lipton, e.g.):

Heyting algebras

- a universe Ω
- an order
- operations on it: lowest upper bound (join: $\cup-$ pseudo union), greatest lower bound (meet: \cap - intersection).

$$
\begin{array}{lll}
a \cap b \leq a & a \cap b \leq b & c \leq a \text { and } c \leq b \text { implies } c \leq a \cap b \\
a \leq a \cup b & b \leq a \cup b & a \leq c \text { and } b \leq c \text { implies } a \cup b \leq c
\end{array}
$$

- like boolean algebra, but with weaker complement.
- think about \mathbb{R} and closed sets (infinite l.u.b. is not infinite union)

pseudo-Heyting algebras, aka Truth Values Algebras

- a universe Ω
- a pre-order: $a \leq b$ and $b \leq a$ with $a \neq b$ possible.
- operations on it: lowest upper bound (join: $\cup-$ pseudo union), greatest lower bound (meet: \cap - intersection).

$$
\begin{array}{lll}
a \cap b \leq a & a \cap b \leq b & c \leq a \text { and } c \leq b \text { implies } c \leq a \cap b \\
a \leq a \cup b & b \leq a \cup b & a \leq c \text { and } b \leq c \text { implies } a \cup b \leq c
\end{array}
$$

Candidates form a pseudo-Heyting algebra

- $\mathrm{T}=\perp=S \mathrm{~N}$
- $\llbracket A \rrbracket \cap \llbracket B \rrbracket=\llbracket A \wedge B \rrbracket$
- and so on.
- pre-order: trivial one.
- But $\llbracket A \wedge A \rrbracket \leq \geq \llbracket A \rrbracket$ only.

Super consistency

- consistency: there exists a model.
- condition in DM: $A \equiv B$ implies $\llbracket A \rrbracket=\llbracket B \rrbracket$

Super consistency

- consistency: there exists a model.
- super-consistency: for every (pseudo-Heyting) structure, there exists a model (interpretation).
- condition in DM: $A \equiv B$ implies $\llbracket A \rrbracket=\llbracket B \rrbracket$

Super consistency

- e.g. higher-order logic is super-consistent:

$$
\begin{aligned}
M_{\iota} & =\iota \text { (dummy) } \\
M_{o} & =\Omega \\
M_{t \rightarrow u} & =M_{u}^{M_{t}}
\end{aligned}
$$

Super consistency

- e.g. higher-order logic is super-consistent:

$$
\begin{aligned}
M_{\iota} & =\iota \text { (dummy) } \\
M_{0} & =\Omega \\
M_{t \rightarrow u} & =M_{u}^{M_{t}}
\end{aligned}
$$

- hence, it has a model in the candidates pseudo-Heying Algebra
- $\Gamma \vdash \pi: A$ implies $\pi \in \llbracket A \rrbracket$.
- the system enjoys proof normalization.

Towards usual semantics

Towards usual semantics

- assuming we have a model \mathcal{M}, $\llbracket-\rrbracket$ in the previous pseudo-Heyting algebra.
- first idea: pseudo-Heyting to Heyting by quotienting.

Towards usual semantics

- assuming we have a model \mathcal{M}, $\llbracket-\rrbracket$ in the previous pseudo-Heyting algebra.
- first idea: pseudo-Heyting to Heyting by quotienting.
- trivial pseudo order implies $T=\perp$.

The link: fibring

define

$$
[A]_{\phi}^{\sigma}=\llbracket A \rrbracket_{\phi} \triangleleft A \sigma=\left\{\Gamma \mid \Gamma \vdash \pi: A \sigma, \pi \in \llbracket A \rrbracket_{\phi}\right\}
$$

- $\llbracket A \rrbracket_{\phi}$ is a candidate of reducibility. It contains some proof terms $\Delta \vdash v: B$. We don't want them.

The link: fibring

define

$$
[A]_{\phi}^{\sigma}=\llbracket A \rrbracket_{\phi} \triangleleft A \sigma=\left\{\Gamma \mid \Gamma \vdash \pi: A \sigma, \pi \in \llbracket A \rrbracket_{\phi}\right\}
$$

- $\llbracket A \rrbracket_{\phi}$ is a candidate of reducibility. It contains some proof terms $\Delta \vdash v: B$. We don't want them.
- weak definition: for some π only.
- this is a Heyting algebra ([A]: basis)

The link: fibring

define

$$
[A]_{\phi}^{\sigma}=\llbracket A \rrbracket_{\phi} \triangleleft A \sigma=\left\{\Gamma \mid \Gamma \vdash \pi: A \sigma, \pi \in \llbracket A \rrbracket_{\phi}\right\}
$$

- $\llbracket A \rrbracket_{\phi}$ is a candidate of reducibility. It contains some proof terms $\Delta \vdash v: B$. We don't want them.
- weak definition: for some π only.
- this is a Heyting algebra ($[A]$: basis)
- interpretation of formulas in it:

$$
A^{*}=[A]_{\phi}^{\sigma}=\llbracket A \rrbracket_{\phi} \triangleleft A \sigma
$$

- interpetation of terms in it:

$$
t^{*}=\left\langle t, \llbracket t \rrbracket_{\phi}\right\rangle
$$

The link: fibring

define

$$
[A]_{\phi}^{\sigma}=\llbracket A \rrbracket_{\phi} \triangleleft A \sigma=\left\{\Gamma \mid \Gamma \vdash \pi: A \sigma, \pi \in \llbracket A \rrbracket_{\phi}\right\}
$$

- $\llbracket A \rrbracket_{\phi}$ is a candidate of reducibility. It contains some proof terms $\Delta \vdash v: B$. We don't want them.
- weak definition: for some π only.
- this is a Heyting algebra ($[A]$: basis)
- interpretation of formulas in it:

$$
A^{*}=[A]_{\phi}^{\sigma}=\llbracket A \rrbracket_{\phi} \triangleleft A \sigma
$$

- interpetation of terms in it:

$$
t^{*}=\left\langle t, \llbracket t \rrbracket_{\phi}\right\rangle
$$

- this proves semantical cut elimination.

Wait a minute!

- interpretation ? $[A]_{\phi}^{\sigma}$.

Wait a minute!

- interpretation ? $[A]_{\phi}^{\sigma}$.
- Need for one single substitution. hybridization: $\sigma \times \phi$.

$$
D=\mathcal{T} \times M
$$

Wait a minute!

- interpretation ? $[A]_{\phi}^{\sigma}$.
- Need for one single substitution. hybridization: $\sigma \times \phi$.

$$
D=\mathcal{T} \times M
$$

- interpretation for symbols

$$
\begin{aligned}
\hat{f}^{\mathcal{D}}\left(\left\langle t_{1}, d_{1}\right\rangle, \ldots,\left\langle t_{n}, d_{n}\right\rangle\right) & =\left\langle f\left(t_{1}, \ldots, t_{n}\right), \hat{f}^{\mathcal{M}}\left(d_{1}, \ldots, d_{n}\right)\right\rangle \\
\hat{P}^{\mathcal{D}}\left(\left\langle t_{1}, d_{1}\right\rangle, \ldots,\left\langle t_{n}, d_{n}\right\rangle\right) & =\left[\left(t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right) P\right]_{\left(d_{1} / x_{1}, \ldots, d_{n} / x_{n}\right)} \\
& =\left\{\Gamma \mid\left(\Gamma \vdash P\left(t_{1}, \ldots, t_{n}\right)\right) \in \llbracket P \rrbracket_{\left(d_{1} / x_{1}, \ldots, d_{n} / x_{n}\right)}\right\}
\end{aligned}
$$

Wait a minute!

- interpretation ? $[A]_{\phi}^{\sigma}$.
- Need for one single substitution. hybridization: $\sigma \times \phi$.

$$
D=\mathcal{T} \times M
$$

- interpretation for symbols

$$
\begin{aligned}
\hat{f}^{\mathcal{D}}\left(\left\langle t_{1}, d_{1}\right\rangle, \ldots,\left\langle t_{n}, d_{n}\right\rangle\right) & =\left\langle f\left(t_{1}, \ldots, t_{n}\right), \hat{f}^{\mathcal{M}}\left(d_{1}, \ldots, d_{n}\right)\right\rangle \\
\hat{P}^{\mathcal{D}}\left(\left\langle t_{1}, d_{1}\right\rangle, \ldots,\left\langle t_{n}, d_{n}\right\rangle\right) & =\left[\left(t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right) P\right]_{\left(d_{1} / x_{1}, \ldots, d_{n} / x_{n}\right)} \\
& =\left\{\Gamma \mid\left(\Gamma \vdash P\left(t_{1}, \ldots, t_{n}\right)\right) \in \llbracket P \rrbracket_{\left(d_{1} / x_{1}, \ldots, d_{n} / x_{n}\right)}\right\}
\end{aligned}
$$

- pointwise application

$$
\langle t, v\rangle \odot\left\langle t^{\prime}, v^{\prime}\right\rangle=\left\langle\left(t t^{\prime}\right),\left(v v^{\prime}\right)\right\rangle
$$

Wait a minute!

- interpretation ? $[A]_{\phi}^{\sigma}$.
- Need for one single substitution. hybridization: $\sigma \times \phi$.

$$
D=\mathcal{T} \times M
$$

- interpretation for symbols

$$
\begin{aligned}
\hat{f}^{\mathcal{D}}\left(\left\langle t_{1}, d_{1}\right\rangle, \ldots,\left\langle t_{n}, d_{n}\right\rangle\right) & =\left\langle f\left(t_{1}, \ldots, t_{n}\right), \hat{f}^{\mathcal{M}}\left(d_{1}, \ldots, d_{n}\right)\right\rangle \\
\hat{P}^{\mathcal{D}}\left(\left\langle t_{1}, d_{1}\right\rangle, \ldots,\left\langle t_{n}, d_{n}\right\rangle\right) & =\left[\left(t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right) P\right]_{\left(d_{1} / x_{1}, \ldots, d_{n} / x_{n}\right)} \\
& =\left\{\Gamma \mid\left(\Gamma \vdash P\left(t_{1}, \ldots, t_{n}\right)\right) \in \llbracket P \rrbracket_{\left(d_{1} / x_{1}, \ldots, d_{n} / x_{n}\right)}\right\}
\end{aligned}
$$

- pointwise application

$$
\langle t, v\rangle \odot\left\langle t^{\prime}, v^{\prime}\right\rangle=\left\langle\left(t t^{\prime}\right),\left(v v^{\prime}\right)\right\rangle
$$

- We embed a (potentially) complex structure (e.g. candidates) inside D.

Wait a minute!

- interpretation ? $[A]_{\phi}^{\sigma}$.
- Need for one single substitution. hybridization: $\sigma \times \phi$.

$$
D=\mathcal{T} \times M
$$

- interpretation for symbols

$$
\begin{aligned}
\hat{f}^{\mathcal{D}}\left(\left\langle t_{1}, d_{1}\right\rangle, \ldots,\left\langle t_{n}, d_{n}\right\rangle\right) & =\left\langle f\left(t_{1}, \ldots, t_{n}\right), \hat{f}^{\mathcal{M}}\left(d_{1}, \ldots, d_{n}\right)\right\rangle \\
\hat{P}^{\mathcal{D}}\left(\left\langle t_{1}, d_{1}\right\rangle, \ldots,\left\langle t_{n}, d_{n}\right\rangle\right) & =\left[\left(t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right) P\right]_{\left(d_{1} / x_{1}, \ldots, d_{n} / x_{n}\right)} \\
& =\left\{\Gamma \mid\left(\Gamma \vdash P\left(t_{1}, \ldots, t_{n}\right)\right) \in \llbracket P \rrbracket_{\left(d_{1} / x_{1}, \ldots, d_{n} / x_{n}\right)}\right\}
\end{aligned}
$$

- pointwise application

$$
\langle t, v\rangle \odot\left\langle t^{\prime}, v^{\prime}\right\rangle=\left\langle\left(t t^{\prime}\right),\left(v v^{\prime}\right)\right\rangle
$$

- We embed a (potentially) complex structure (e.g. candidates) inside D.
- proves directly $[A \wedge B]=[A] \cap[B]$. Usually, only:

$$
A \wedge B \in[A] \cap[B] \subset[A \wedge B]
$$

Wait a minute!

- interpretation ? $[A]_{\phi}^{\sigma}$.
- Need for one single substitution. hybridization: $\sigma \times \phi$.

$$
D=\mathcal{T} \times M
$$

- interpretation for symbols

$$
\begin{aligned}
\hat{f}^{\mathcal{D}}\left(\left\langle t_{1}, d_{1}\right\rangle, \ldots,\left\langle t_{n}, d_{n}\right\rangle\right) & =\left\langle f\left(t_{1}, \ldots, t_{n}\right), \hat{f}^{\mathcal{M}}\left(d_{1}, \ldots, d_{n}\right)\right\rangle \\
\hat{P}^{\mathcal{D}}\left(\left\langle t_{1}, d_{1}\right\rangle, \ldots,\left\langle t_{n}, d_{n}\right\rangle\right) & =\left[\left(t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right) P\right]_{\left(d_{1} / x_{1}, \ldots, d_{n} / x_{n}\right)} \\
& =\left\{\Gamma \mid\left(\Gamma \vdash P\left(t_{1}, \ldots, t_{n}\right)\right) \in \llbracket P \rrbracket_{\left(d_{1} / x_{1}, \ldots, d_{n} / x_{n}\right)}\right\}
\end{aligned}
$$

- pointwise application

$$
\langle t, v\rangle \odot\left\langle t^{\prime}, v^{\prime}\right\rangle=\left\langle\left(t t^{\prime}\right),\left(v v^{\prime}\right)\right\rangle
$$

- We embed a (potentially) complex structure (e.g. candidates) inside D.
- proves directly $[A \wedge B]=[A] \cap[B]$. Usually, only:

$$
A \wedge B \in[A] \cap[B] \subset[A \wedge B]
$$

- proof resembles the proof for normalization.

Cut admissibility

Assume $\Gamma \vdash A$ has a proof (with cuts)

- $[\Gamma] \leq[A]$ in \mathcal{D} by (usual) soundness
- $\Gamma \in[\Gamma]$
- $\Gamma \in[A]$ implies $\Gamma{ }_{\text {cf }} A$
- Q.E.D.

Cut admissibility

Assume $\Gamma \vdash A$ has a proof (with cuts)

- $[\Gamma] \leq[A]$ in \mathcal{D} by (usual) soundness
- $\Gamma \in[\Gamma]$
- $\Gamma \in[A]$ implies $\Gamma \vdash_{\text {cf }} A$
- Q.E.D.
- definition:

$$
[A]_{\phi}^{\sigma}=\llbracket A \sigma \rrbracket_{\phi} \triangleleft A \sigma=\left\{\Gamma \mid \Gamma \vdash \pi: A \sigma, \pi \in \llbracket A \rrbracket_{\phi}\right\}
$$

is weak (some π only)

- we get (weak) normalization by evaluation.

- This diagram does not commute in deduction modulo.

Further work

- there is normalization by evaluation work, but in a Kripke style: links?
- do the proof terms (candidates) always have a "pseudo-" structure?
- realizing rewrite rule not with $\lambda x . x$ (not silently), could recover normalization and make the previous diagram commute again.

$$
\frac{\Gamma \vdash \pi: A}{\Gamma \vdash \pi: B} A \equiv B
$$

