
Models for Normalization(s)

Olivier H

11 Mars 2008

Natural Deduction: the logical framework

I first-order logic: function and predicate symbols, logical
connectors: ∧,∨,⇒,¬, and quantifiers ∀,∃.

Even(0)

∀n(Even(n)⇒ Odd(n + 1))

∀n(Odd(n)⇒ Even(n + 1))

I a sequent :
hyp.︷︸︸︷
Γ `

conc.︷︸︸︷
A

I rules to form them: natural deduction (or sequent calculus)
I framework: intuitionnistic logic (classical, linear, higher-order,

constraints ...)

Natural Deduction: the logical framework

I first-order logic: function and predicate symbols, logical
connectors: ∧,∨,⇒,¬, and quantifiers ∀,∃.

Even(0)

∀n(Even(n)⇒ Odd(n + 1))

∀n(Odd(n)⇒ Even(n + 1))

I a sequent :
hyp.︷︸︸︷
Γ `

conc.︷︸︸︷
A

I rules to form them: natural deduction (or sequent calculus)
I framework: intuitionnistic logic (classical, linear, higher-order,

constraints ...)

Deduction System : natural deduction (NJ)

I A deduction rule:
Γ ` A Γ ` B

Γ ` A ∧ B
I introduction and elimination rules

Γ,A ` A
axiom

Γ ` A Γ ` B
Γ ` A ∧ B

∧ -i
Γ ` A ∧ B

Γ ` A
∧ -e1

Γ ` A ∧ B
Γ ` B

∧ -e2

Γ,A ` B
⇒-i

Γ ` A ⇒ B
Γ ` A ⇒ B Γ ` A

⇒-e
Γ ` B

Γ ` ∀xA [x]

Γ ` A [t]
∀-e, any t

Γ ` A [x]

Γ ` ∀xA [x]
∀-i, x free

Example: 1

∀xP(x) ` P(0) ∧ P(1)

Example: 1

∀xP(x) ` P(0) ∀xP(x) ` P(1)
∧-i

∀xP(x) ` P(0) ∧ P(1)

Example: 1

∀xP(x) ` ∀xP(x)
∀-e

∀xP(x) ` P(0)

∀xP(x) ` ∀xP(x)
∀-e

∀xP(x) ` P(1)
∧-i

∀xP(x) ` P(0) ∧ P(1)

Example: 1

axiom
∀xP(x) ` ∀xP(x)

∀-e
∀xP(x) ` P(0)

axiom
∀xP(x) ` ∀xP(x)

∀-e
∀xP(x) ` P(1)

∧-i
∀xP(x) ` P(0) ∧ P(1)

Deduction modulo: allowed rewriting
I General form (free variables are possible):

l → r

I use: We replace t = σl by σr (unification). Rewriting could be
deep in the term.

I rewriting on terms:

x + S(y)→ S(x + y)

I and on propositions (predicate symbols):

x ∗ y = 0→ x = 0 ∨ y = 0

I advantage: expressiveness
I we obtain a congruence modulo R (chosen set of rules): ≡
I deduction rules transformation:

axiom
Γ,A ` A becomes axiom, A ≡ B

Γ,A ` B

Deduction modulo: allowed rewriting
I General form (free variables are possible):

l → r
I use: We replace t = σl by σr (unification). Rewriting could be

deep in the term.

I rewriting on terms:

x + S(y)→ S(x + y)

I and on propositions (predicate symbols):

x ∗ y = 0→ x = 0 ∨ y = 0

I advantage: expressiveness
I we obtain a congruence modulo R (chosen set of rules): ≡
I deduction rules transformation:

axiom
Γ,A ` A becomes axiom, A ≡ B

Γ,A ` B

Deduction modulo: allowed rewriting
I General form (free variables are possible):

l → r
I use: We replace t = σl by σr (unification). Rewriting could be

deep in the term.
I rewriting on terms:

x + S(y)→ S(x + y)

I and on propositions (predicate symbols):

x ∗ y = 0→ x = 0 ∨ y = 0

I advantage: expressiveness
I we obtain a congruence modulo R (chosen set of rules): ≡
I deduction rules transformation:

axiom
Γ,A ` A becomes axiom, A ≡ B

Γ,A ` B

Deduction modulo: allowed rewriting
I General form (free variables are possible):

l → r
I use: We replace t = σl by σr (unification). Rewriting could be

deep in the term.
I rewriting on terms:

x + S(y)→ S(x + y)

I and on propositions (predicate symbols):

x ∗ y = 0→ x = 0 ∨ y = 0

I advantage: expressiveness

I we obtain a congruence modulo R (chosen set of rules): ≡
I deduction rules transformation:

axiom
Γ,A ` A becomes axiom, A ≡ B

Γ,A ` B

Deduction modulo: allowed rewriting
I General form (free variables are possible):

l → r
I use: We replace t = σl by σr (unification). Rewriting could be

deep in the term.
I rewriting on terms:

x + S(y)→ S(x + y)

I and on propositions (predicate symbols):

x ∗ y = 0→ x = 0 ∨ y = 0

I advantage: expressiveness
I we obtain a congruence modulo R (chosen set of rules): ≡

I deduction rules transformation:

axiom
Γ,A ` A becomes axiom, A ≡ B

Γ,A ` B

Deduction modulo: allowed rewriting
I General form (free variables are possible):

l → r
I use: We replace t = σl by σr (unification). Rewriting could be

deep in the term.
I rewriting on terms:

x + S(y)→ S(x + y)

I and on propositions (predicate symbols):

x ∗ y = 0→ x = 0 ∨ y = 0

I advantage: expressiveness
I we obtain a congruence modulo R (chosen set of rules): ≡
I deduction rules transformation:

axiom
Γ,A ` A becomes axiom, A ≡ B

Γ,A ` B

Deduction modulo : natural deduction modulo - first
presentation

Γ,A ` A
axiom

Γ ` A Γ ` B
Γ ` A ∧ B

∧ -i
Γ ` A ∧ B

Γ ` A
∧ -e1

Γ ` A ∧ B
Γ ` B

∧ -e2

Γ,A ` B
⇒-i

Γ ` A ⇒ B
Γ ` A ⇒ B Γ ` A

⇒-e
Γ ` B

Γ ` ∀xA [x]

Γ ` A [t]
∀-e, any t

Γ ` A [x]

Γ ` ∀xA [x]
∀-i, x free

Deduction modulo : first presentation

Add then the following conversion rule:

Γ ` A A ≡ B
Γ ` B

Deduction modulo : natural deduction modulo, reloaded

Γ,A ` B
axiom, A ≡ B

Γ ` A Γ ` B
Γ ` C

∧ -i, C ≡ A ∧ B
Γ ` C
Γ ` A

∧ -e1,C ≡ A ∧ B
Γ ` C
Γ ` B

∧ -e2,C ≡ A ∧ B

Γ,A ` B
⇒-i, C ≡ A ∧ B

Γ ` C
Γ ` C Γ ` A

⇒-e, C ≡ A ∧ B
Γ ` B

Γ ` A [x]

Γ ` B
∀-i, x free,B ≡ ∀xA [x]

Γ ` B
Γ ` A [t]

∀-e, any t ,B ≡ ∀xA [x]

Example: 3

I consider the rewriting system R:

P(0) → A

P(1) → B

∀xP(x) ` A ∧ B

Example: 3

I consider the rewriting system R:

P(0) → A

P(1) → B

∀xP(x) ` A ∀xP(x) ` B
∧-i

∀xP(x) ` A ∧ B

Example: 3

I consider the rewriting system R:

P(0) → A

P(1) → B

∀xP(x) ` ∀xP(x)
∀-e

∀xP(x) ` A
∀xP(x) ` ∀xP(x)

∀-e
∀xP(x) ` B

∧-r
∀xP(x) ` A ∧ B

Example: 3

I consider the rewriting system R:

P(0) → A

P(1) → B

∀xP(x) ` ∀xP(x)
∀-e

∀xP(x) ` P(0)
conv

∀xP(x) ` A

∀xP(x) ` ∀xP(x)
∀-e

∀xP(x) ` P(1)
conv

∀xP(x) ` B
∧-r

∀xP(x) ` A ∧ B

Example: 3

I consider the rewriting system R:

P(0) → A

P(1) → B

∀xP(x) ` ∀xP(x)
∀-e

∀xP(x) ` A
∀xP(x) ` ∀xP(x)

∀-e
∀xP(x) ` B

∧-r
∀xP(x) ` A ∧ B

Example: 3

I consider the rewriting system R:

P(0) → A

P(1) → B

axiom
∀xP(x) ` ∀xP(x)

∀-e
∀xP(x) ` A

axiom
∀xP(x) ` ∀xP(x)

∀-e
∀xP(x) ` B

∧-r
∀xP(x) ` A ∧ B

A Cut: a detour

Γ ` A
Γ,A ` B

⇒-i
Γ ` A ⇒ B

⇒-e
Γ ` B

I show Γ ` A and Γ,A ` B
I then, you have showed Γ ` B
I it is the application of a lemma.

A cut: a detour

π1

Γ ` A
π2

Γ ` B
∧-i

Γ ` A ∧ B
∧-e

Γ ` A

General pattern of a cut: an introduction rule, followed by an
elimination on the same symbol.
This is unnecessary, consider only π1.

π1

Γ ` A

A cut: a detour

And in the other proof:

θ
Γ ` A

π
Γ,A ` B

⇒-i
Γ ` A ⇒ B

⇒-e
Γ ` B

Look in π what is happening:

axiom
Γ,A ,∆ ` C1

axiom
Γ,A ,∆ ` Ci

axiom
Γ,A ,∆ ` Cn. .

[NJ rules]
Γ,A ` B

Now, assume C1 = A (and no other Ci is).

A cut: a detour

And in the other proof:

θ
Γ ` A

π
Γ,A ` B

⇒-i
Γ ` A ⇒ B

⇒-e
Γ ` B

Look in π what is happening:

θ
Γ,∆ ` C1

axiom
Γ,∆ ` Ci

axiom
Γ,∆ ` Cn. .

[NJ rules]
Γ ` B

Now, assume C1 = A (and no other Ci is). We eliminated A from the
hypothesis. π is directly a proof of Γ ` B replace uses of A (nb: axioms)
by θ. In clear: don’t use the lemma, reprove its instances.

A cut: a detour

In deduction modulo:

θ
Γ ` A ′

π
Γ,A ` B

⇒-i, C ≡ A ⇒ B
Γ ` C

⇒-e, C ≡ A ′ ⇒ B′
Γ ` B′

I need for cut elimination: the heart of logic.

I two main methods:
I semantic: cut admissibility.
I syntactic: proof normalization.

I indecidable, need for conditions on R.

A cut: a detour

In deduction modulo:

θ
Γ ` A ′

π
Γ,A ` B

⇒-i, C ≡ A ⇒ B
Γ ` C

⇒-e, C ≡ A ′ ⇒ B′
Γ ` B′

I need for cut elimination: the heart of logic.
I two main methods:

I semantic: cut admissibility.
I syntactic: proof normalization.

I indecidable, need for conditions on R.

A cut: a detour

In deduction modulo:

θ
Γ ` A ′

π
Γ,A ` B

⇒-i, C ≡ A ⇒ B
Γ ` C

⇒-e, C ≡ A ′ ⇒ B′
Γ ` B′

I need for cut elimination: the heart of logic.
I two main methods:

I semantic: cut admissibility.
I syntactic: proof normalization.

I indecidable, need for conditions on R.

The semantical method

Γ ` A
soundness

-
�

completeness
Γ |= A

Γ `cf A

Gentzen
Tait-Girard

Dowek-Werner
... ?

The semantical method

Γ ` A
soundness

- Γ |= A

Γ `cf A

Gentzen
Tait-Girard

Dowek-Werner
... ? � strong completeness

Heyting algebras

I a universe Ω

I an order

I operations on it: lowest upper bound (join: ∪), greatest lower
bound (meet: ∩).

a ∩ b ≤ a a ∩ b ≤ b c ≤ a and c ≤ b implies c ≤ a ∩ b

a ≤ a ∪ b b ≤ a ∪ b a ≤ c and b ≤ c implies a ∪ b ≤ c

I like Boolean algebras, with weaker complement

Heyting algebras

I a universe Ω

I an order
I operations on it: lowest upper bound (join: ∪), greatest lower

bound (meet: ∩).

a ∩ b ≤ a a ∩ b ≤ b c ≤ a and c ≤ b implies c ≤ a ∩ b

a ≤ a ∪ b b ≤ a ∪ b a ≤ c and b ≤ c implies a ∪ b ≤ c

I like Boolean algebras, with weaker complement

an example

I R and open sets (infinite g.l.b. is not infinite intersection)

I complement is weaker:

−∞
¬A

[|
0

]
A

- ∞

an example

I R and open sets (infinite g.l.b. is not infinite intersection)
I complement is weaker:

−∞
¬A

[|
0

]
A

- ∞

A model
I a domain D to interpret the first-order terms.
I a Heyting algebra
I a interpretation function for each symbol:

f̂ : Dn → D

P̂ : Dm → D

I that we extend readily to all terms and all formulae and terms:

(x)∗φ := φ(x)

(f(t1, · · · , tn))∗φ := f̂(((t1)∗φ, · · · , (tn)
∗
φ))

(P(t1, · · · , tn))∗φ := P̂(((t1)∗φ, · · · , (tn)
∗
φ))

(A ∧ B)∗φ := (A)∗φ ∩ (B)∗φ

I degree of freedom: how to choose f̂ and P̂.
I in deduction modulo, additional condition:

A ≡R B implies A∗ = B∗

A model
I a domain D to interpret the first-order terms.
I a Heyting algebra
I a interpretation function for each symbol:

f̂ : Dn → D

P̂ : Dm → D

I that we extend readily to all terms and all formulae and terms:

(x)∗φ := φ(x)

(f(t1, · · · , tn))∗φ := f̂(((t1)∗φ, · · · , (tn)
∗
φ))

(P(t1, · · · , tn))∗φ := P̂(((t1)∗φ, · · · , (tn)
∗
φ))

(A ∧ B)∗φ := (A)∗φ ∩ (B)∗φ

I degree of freedom: how to choose f̂ and P̂.
I in deduction modulo, additional condition:

A ≡R B implies A∗ = B∗

Cannonical model: Lindenbaum algebra

I defined for provability
I elements of Ω: the equivalence class of formulae [A].

[A] := {B | ` A ⇔ B}

I meet: [A] ∩ [B] iff [A ∧ B]

I order: [A] ≤ [B] iff ` A ⇒ B

I and so on ... (domain D: open terms).
I with this model, one proves completeness

Cannonical model: Lindenbaum algebra

I defined for provability
I elements of Ω: the equivalence class of formulae [A].

[A] := {B | ` A ⇔ B}

I meet: [A] ∩ [B] iff [A ∧ B]

I order: [A] ≤ [B] iff ` A ⇒ B
I and so on ... (domain D: open terms).

I with this model, one proves completeness

Cannonical model: Lindenbaum algebra

I defined for provability
I elements of Ω: the equivalence class of formulae [A].

[A] := {B | ` A ⇔ B}

I meet: [A] ∩ [B] iff [A ∧ B]

I order: [A] ≤ [B] iff ` A ⇒ B
I and so on ... (domain D: open terms).
I with this model, one proves completeness

Cannonical model: Lindenbaum algebra

I defined for provability with cuts
I elements of Ω: the equivalence class of formulae [A].

[A] := {B | ` A ⇔ B}

I “intersection”: [A] ∩ [B] iff [A ∧ B]

I “order”: [A] ≤ [B] iff ` A ⇒ B
I and so on ... (domain D: open terms)
I with this model, one proves completeness: cuts are needed

for transitivity of the order.

Cut-free cannonical model

I defined for provability without cuts
I elements of Ω: the contexts proving A cut-free.

[A] := {Γ | Γ `∗ A }

I the [A] are the basis. Saturate then Ω with their (arbitrary)
intersection and pseudo-union (l.u.b.):

a ∪ b =
⋂
{[A] | a ⊆ [A] and b ⊆ [A]}

I order: a ≤ b iff a ⊆ b
I and so on ...
I with this model, one proves cut-free completeness.

Deduction modulo

I what about the domain ?
I what about the validity of the rewrite rules ?

A ≡R B implies A∗ = B∗

Deduction modulo

I what about the domain: it depends on R - usually the open
term is sufficient.

I what about the validity of the rewrite rules: choose carefully
the interpretation of predicates and function symbols,
depends on R.

An example: Simple Theory of Types

I aka higher-order (intuitionistic) logic.
I basic types o, ι, and arrow: o → o, o → ι, ...
I constants of each type
I application (t u) and λ-abstraction or combinators: S,K
I logical connectors: constants ∧ : o → o → o, ...
I e.g. we can form the formula: ∀P.P

cut admissibility in STT (no modulo)
I problem number one, circularity:

...
` (P⇒ P)

` ∀.P(P ⇒ P)

I no more induction on the size of the formulae.
I solution, same as slide 32 of Dowek:

Define RA : quantify over all RB : Circular

Avoid circularity: define C a priori, quantify over C instead,
Prove a posteriori that RB ∈ C.

I define “semantic candidates” [Okada] for (A)∗ without
induction:

{α ∈ Ω | A ∈ α ⊆ [A]}

I then quantify over all truth-values candidates. Identifies which
of the α is (A)∗.

cut admissibility in STT (no modulo)
I problem number one, circularity:

...
` (∀P.(P ⇒ P)⇒ ∀P.(P ⇒ P))

` ∀.P(P ⇒ P)
I no more induction on the size of the formulae.

I solution, same as slide 32 of Dowek:

Define RA : quantify over all RB : Circular

Avoid circularity: define C a priori, quantify over C instead,
Prove a posteriori that RB ∈ C.

I define “semantic candidates” [Okada] for (A)∗ without
induction:

{α ∈ Ω | A ∈ α ⊆ [A]}

I then quantify over all truth-values candidates. Identifies which
of the α is (A)∗.

cut admissibility in STT (no modulo)

I problem number one, circularity:
I no more induction on the size of the formulae.
I solution, same as slide 32 of Dowek:

Define RA : quantify over all RB : Circular

Avoid circularity: define C a priori, quantify over C instead,
Prove a posteriori that RB ∈ C.

I define “semantic candidates” [Okada] for (A)∗ without
induction:

{α ∈ Ω | A ∈ α ⊆ [A]}

I then quantify over all truth-values candidates. Identifies which
of the α is (A)∗.

cut admissibility in STT (no modulo)

I problem number one, circularity:
I no more induction on the size of the formulae.
I solution, same as slide 32 of Dowek:

Define RA : quantify over all RB : Circular

Avoid circularity: define C a priori, quantify over C instead,
Prove a posteriori that RB ∈ C.

I define “semantic candidates” [Okada] for (A)∗ without
induction:

{α ∈ Ω | A ∈ α ⊆ [A]}

I then quantify over all truth-values candidates. Identifies which
of the α is (A)∗.

cut admissibility in STT (no modulo)

I problem number one, circularity:
I no more induction on the size of the formulae.
I solution, same as slide 32 of Dowek:

Define RA : quantify over all RB : Circular

Avoid circularity: define C a priori, quantify over C instead,
Prove a posteriori that RB ∈ C.

I define “semantic candidates” [Okada] for (A)∗ without
induction:

{α ∈ Ω | A ∈ α ⊆ [A]}

I then quantify over all truth-values candidates. Identifies which
of the α is (A)∗.

Cut admissibility in STT

I public ennemy Number 2: intensionality. In STT, as in λProlog:

P(A ∧ A)= P(A)

I implicates: although semantic truth value of A is in Ω, its
domain of interpretation should not be Ω.

I usual trick: pairing.
I interpret everything within those domains, e.g.:

∧̂ := 〈∧, λ〈B , b〉.〈∧ · B , λ〈C , c〉.〈∧ · B · C , b ∩ c〉〉〉

I then, “extract” the truth value:

ω(A∗) = π2(A∗)

Cut admissibility in STT

I public ennemy Number 2: intensionality. In STT, as in λProlog:

P(A ∧ A)= P(A)

I implicates: although semantic truth value of A is in Ω, its
domain of interpretation should not be Ω.

I usual trick: pairing.
I interpret everything within those domains, e.g.:

∧̂ := 〈∧, λ〈B , b〉.〈∧ · B , λ〈C , c〉.〈∧ · B · C , b ∩ c〉〉〉

I then, “extract” the truth value:

ω(A∗) = π2(A∗)

Cut admissibility in STT
I public ennemy Number 2: intensionality. In STT, as in λProlog:

P(A ∧ A)= P(A)

I implicates: although semantic truth value of A is in Ω, its
domain of interpretation should not be Ω.

I usual trick: pairing.

{α ∈ Ω | A ∈ α ⊆ [A]}

I interpret everything within those domains, e.g.:

∧̂ := 〈∧, λ〈B , b〉.〈∧ · B , λ〈C , c〉.〈∧ · B · C , b ∩ c〉〉〉

I then, “extract” the truth value:

ω(A∗) = π2(A∗)

Cut admissibility in STT
I public ennemy Number 2: intensionality. In STT, as in λProlog:

P(A ∧ A)= P(A)

I implicates: although semantic truth value of A is in Ω, its
domain of interpretation should not be Ω.

I usual trick: pairing.

Do = {〈A , α〉 | A ∈ α ⊆ [A]}

I interpret everything within those domains, e.g.:

∧̂ := 〈∧, λ〈B , b〉.〈∧ · B , λ〈C , c〉.〈∧ · B · C , b ∩ c〉〉〉

I then, “extract” the truth value:

ω(A∗) = π2(A∗)

Cut admissibility in STT
I public ennemy Number 2: intensionality. In STT, as in λProlog:

P(A ∧ A)= P(A)

I implicates: although semantic truth value of A is in Ω, its
domain of interpretation should not be Ω.

I usual trick: pairing.

Do = {〈A , α〉 | A ∈ α ⊆ [A]}

I interpret everything within those domains, e.g.:

∧̂ := 〈∧, λ〈B , b〉.〈∧ · B , λ〈C , c〉.〈∧ · B · C , b ∩ c〉〉〉

I then, “extract” the truth value:

ω(A∗) = π2(A∗)

Cut admissibility in STT
I public ennemy Number 2: intensionality. In STT, as in λProlog:

P(A ∧ A)= P(A)

I implicates: although semantic truth value of A is in Ω, its
domain of interpretation should not be Ω.

I usual trick: pairing.

Do = {〈A , α〉 | A ∈ α ⊆ [A]}

I interpret everything within those domains, e.g.:

∧̂ := 〈∧, λ〈B , b〉.〈∧ · B , λ〈C , c〉.〈∧ · B · C , b ∩ c〉〉〉

I then, “extract” the truth value:

ω(A∗) = π2(A∗)

STT in deduction modulo
I same types, same symbols ∧̇, ∀̇, · · ·
I application:

K · x · y → x

S · x · y · z → (xz)(yz)

I how to express ∀P.P in a first-order setting ?

I solution: embed P into ε(P), and define:

ε(∧̇ · A · B) → ε(A) ∧ ε(B)

ε(∀̇A) → ∀x.ε(Ax)

I duplication of “connectors”: ∧̇ (of the type hierarchy)
connecting terms and ∧, connecting propositions.

I two “formulae”: P, a term, and ε(P), at the logical level.
I ε is the only predicate symbol.
I ε embeds in the syntax the ω is in the semantics: separates

truth value and propositional content.

STT in deduction modulo
I same types, same symbols ∧̇, ∀̇, · · ·
I application:

K · x · y → x

S · x · y · z → (xz)(yz)

I how to express ∀P.P in a first-order setting ?
I solution: embed P into ε(P), and define:

ε(∧̇ · A · B) → ε(A) ∧ ε(B)

ε(∀̇A) → ∀x.ε(Ax)

I duplication of “connectors”: ∧̇ (of the type hierarchy)
connecting terms and ∧, connecting propositions.

I two “formulae”: P, a term, and ε(P), at the logical level.
I ε is the only predicate symbol.
I ε embeds in the syntax the ω is in the semantics: separates

truth value and propositional content.

STT in deduction modulo
I same types, same symbols ∧̇, ∀̇, · · ·
I application:

K · x · y → x

S · x · y · z → (xz)(yz)

I how to express ∀P.P in a first-order setting ?
I solution: embed P into ε(P), and define:

ε(∧̇ · A · B) → ε(A) ∧ ε(B)

ε(∀̇A) → ∀x.ε(Ax)

I duplication of “connectors”: ∧̇ (of the type hierarchy)
connecting terms and ∧, connecting propositions.

I two “formulae”: P, a term, and ε(P), at the logical level.
I ε is the only predicate symbol.

I ε embeds in the syntax the ω is in the semantics: separates
truth value and propositional content.

STT in deduction modulo
I same types, same symbols ∧̇, ∀̇, · · ·
I application:

K · x · y → x

S · x · y · z → (xz)(yz)

I how to express ∀P.P in a first-order setting ?
I solution: embed P into ε(P), and define:

ε(∧̇ · A · B) → ε(A) ∧ ε(B)

ε(∀̇A) → ∀x.ε(Ax)

I duplication of “connectors”: ∧̇ (of the type hierarchy)
connecting terms and ∧, connecting propositions.

I two “formulae”: P, a term, and ε(P), at the logical level.
I ε is the only predicate symbol.
I ε embeds in the syntax the ω is in the semantics: separates

truth value and propositional content.

The normalization method(s)

I Curry-Howard: proofs = programs
I formulas = types
I proof tree = typing tree
I at the heart of proof assistants (PVS, Coq, Isabelle, ...)
I when a program calculates, it performs a cut elimination

procedure.

I show that all typables function terminates.

The normalization method(s)

I Curry-Howard: proofs = programs
I formulas = types
I proof tree = typing tree
I at the heart of proof assistants (PVS, Coq, Isabelle, ...)
I when a program calculates, it performs a cut elimination

procedure.
I show that all typables function terminates.

Curry-Howard correspondence

I Notation for proofs. Give a name to each of the hypothesis:

Γ = x1 : A1, . . . , xn : An

Axiom
Γ, x : A ` x : A

Γ ` π : A ∧ B
∧-e1

Γ ` fst(π) : A

Γ ` π1 : A Γ ` π2 : B
∧-i

Γ ` 〈π1, π2〉 : A ∧ B
Γ ` π : A ∧ B

∧-e2
Γ ` snd(π) : A

Γ, x : A ` π : B
⇒-i

Γ ` λx.π : A ⇒ B
Γ ` π′ : A Γ ` π : A ⇒ B

Γ ` (ππ′) : B

I very similar to a type system
I in deduction modulo, rewrite rules are silent:

Γ ` π : A A ≡ B
Γ ` π : B

Curry-Howard correspondence

I Notation for proofs. Give a name to each of the hypothesis:

Γ = x1 : A1, . . . , xn : An

Axiom
Γ, x : A ` x : A

Γ ` π : A ∧ B
∧-e1

Γ ` fst(π) : A

Γ ` π1 : A Γ ` π2 : B
∧-i

Γ ` 〈π1, π2〉 : A ∧ B
Γ ` π : A ∧ B

∧-e2
Γ ` snd(π) : A

Γ, x : A ` π : B
⇒-i

Γ ` λx.π : A ⇒ B
Γ ` π′ : A Γ ` π : A ⇒ B

Γ ` (ππ′) : B

I very similar to a type system

I in deduction modulo, rewrite rules are silent:

Γ ` π : A A ≡ B
Γ ` π : B

Curry-Howard correspondence

I Notation for proofs. Give a name to each of the hypothesis:

Γ = x1 : A1, . . . , xn : An

Axiom
Γ, x : A ` x : A

Γ ` π : A ∧ B
∧-e1

Γ ` fst(π) : A

Γ ` π1 : A Γ ` π2 : B
∧-i

Γ ` 〈π1, π2〉 : A ∧ B
Γ ` π : A ∧ B

∧-e2
Γ ` snd(π) : A

Γ, x : A ` π : B
⇒-i

Γ ` λx.π : A ⇒ B
Γ ` π′ : A Γ ` π : A ⇒ B

Γ ` (ππ′) : B

I very similar to a type system
I in deduction modulo, rewrite rules are silent:

Γ ` π : A A ≡ B
Γ ` π : B

Cut elimination with proof terms

I Cut elimination is a process, similar to function execution.

Γ ` π1 : A Γ ` π2 : B
∧-i

Γ ` 〈π1, π2〉 : A ∧ B
∧-e

Γ ` fst(〈π1, π2〉) : A
B Γ ` π1 : A

Γ ` θ : A
Γ, x : A ` π : B

⇒-i
Γ ` λx.π : A ⇒ B

⇒-e
Γ ` (λx.π)θ : B

B Γ ` {θ/x}π : B

I showing that every proof normalizes: the cut elimination
process terminates.

Cut elimination with proof terms

I Cut elimination is a process, similar to function execution.

Γ ` π1 : A Γ ` π2 : B
∧-i

Γ ` 〈π1, π2〉 : A ∧ B
∧-e

Γ ` fst(〈π1, π2〉) : A
B Γ ` π1 : A

Γ ` θ : A
Γ, x : A ` π : B

⇒-i
Γ ` λx.π : A ⇒ B

⇒-e
Γ ` (λx.π)θ : B

B Γ ` {θ/x}π : B

I showing that every proof normalizes: the cut elimination
process terminates.

Normalization [Dowek,Werner]

I deduction modulo is high-level: reducibility candidates.

I A reducibility candidate: a set of proofs that are normalizing
(and some other properties).

I to each formula A , associates a candidate ~A�. Show that if
Γ ` π : A then π ∈ ~A�.

I in deduction modulo, if A ≡ B, additional constraint:

~A� = ~B�

Normalization [Dowek,Werner]

I deduction modulo is high-level: reducibility candidates.
I A reducibility candidate: a set of proofs that are normalizing

(and some other properties).

I to each formula A , associates a candidate ~A�. Show that if
Γ ` π : A then π ∈ ~A�.

I in deduction modulo, if A ≡ B, additional constraint:

~A� = ~B�

Normalization [Dowek,Werner]

I deduction modulo is high-level: reducibility candidates.
I A reducibility candidate: a set of proofs that are normalizing

(and some other properties).
I to each formula A , associates a candidate ~A�. Show that if

Γ ` π : A then π ∈ ~A�.

I in deduction modulo, if A ≡ B, additional constraint:

~A� = ~B�

Normalization [Dowek,Werner]

I deduction modulo is high-level: reducibility candidates.
I A reducibility candidate: a set of proofs that are normalizing

(and some other properties).
I to each formula A , associates a candidate ~A�. Show that if

Γ ` π : A then π ∈ ~A�.
I in deduction modulo, if A ≡ B, additional constraint:

~A� = ~B�

Towards “usual” semantics

I such methods are defined in deduction modulo (Heyting
arithmetic, higher-order logic, Zermelo’s set theory, ...)

I the sets of candidates have a structure: pseudo Heyting
algebras, or truth value algebras (TVA) [Dowek].

Towards “usual” semantics

I such methods are defined in deduction modulo (Heyting
arithmetic, higher-order logic, Zermelo’s set theory, ...)

I the sets of candidates have a structure: pseudo Heyting
algebras, or truth value algebras (TVA) [Dowek].

Heyting algebras

I a universe Ω

I an order
I operations on it: lowest upper bound (join: ∪), greatest lower

bound (meet: ∩ – intersection).

a ∩ b ≤ a a ∩ b ≤ b c ≤ a and c ≤ b implies c ≤ a ∩ b

a ≤ a ∪ b b ≤ a ∪ b a ≤ c and b ≤ c implies a ∪ b ≤ c

I like Boolean algebras, with weaker complement

pseudo-Heyting algebras, aka Truth Values Algebras

I a universe Ω

I a pre-order: a ≤ b and b ≤ a with a , b possible.
I operations on it: lowest upper bound (join: ∪ – pseudo union),

greatest lower bound (meet: ∩ – intersection).

a ∩ b ≤ a a ∩ b ≤ b c ≤ a and c ≤ b implies c ≤ a ∩ b

a ≤ a ∪ b b ≤ a ∪ b a ≤ c and b ≤ c implies a ∪ b ≤ c

Candidates form a pseudo-Heyting algebra

I > = ⊥ = SN

I ~A� ∩ ~B� = ~A ∧ B�
I and so on.
I pre-order: trivial one.
I But ~A ∧ A� ≤≥ ~A� only.

Super consistency

I consistency: there exists a model.

I super-consistency: for every TVA, there exists a model
(interpretation): construction has to be uniform.

I condition in DM: A ≡ B implies ~A� = ~B�

Super consistency

I consistency: there exists a model.
I super-consistency: for every TVA, there exists a model

(interpretation): construction has to be uniform.
I condition in DM: A ≡ B implies ~A� = ~B�

Super consistency

I e.g. higher-order logic is super-consistent:

Mι = ι (dummy)

Mo = Ω

Mt→u = MMt
u

I hence, it has a model in the
pseudo-Heying Algebra of candidates

I Γ ` π : A implies π ∈ ~A�.
I the system enjoys proof normalization.

Super consistency

I e.g. higher-order logic is super-consistent:

Mι = ι (dummy)

Mo = Ω

Mt→u = MMt
u

I hence, it has a model in the
pseudo-Heying Algebra of candidates

I Γ ` π : A implies π ∈ ~A�.
I the system enjoys proof normalization.

Towards usual semantics

Γ ` A
soundness

- Γ |= A

Γ `cf A

Gentzen
Tait-Girard

Dowek-Werner
... ? � strong completeness

Super consistency

I e.g. higher-order logic is super-consistent:

Mι = ι (dummy)

Mo = Ω

Mt→u = MMt
u

I hence, it has a model in the pseudo-Heying Algebra
of sequents

~A� = {Γ ` Bsuch that ...}

Super consistency

I e.g. higher-order logic is super-consistent:

Mι = ι (dummy)

Mo = Ω

Mt→u = MMt
u

I hence, it has a model in the pseudo-Heying Algebra
of sequents

~A� = {Γ ` Bsuch that ...}

Towards usual semantics

I How to transform a TVA into a Heyting algebra.
I assume we have a modelM, ~ � in the previous

pseudo-Heyting algebra of sequents.
I first idea: pseudo-Heyting to Heyting by quotienting.

I trivial pseudo order implies > = ⊥.

Towards usual semantics

I How to transform a TVA into a Heyting algebra.
I assume we have a modelM, ~ � in the previous

pseudo-Heyting algebra of sequents.
I first idea: pseudo-Heyting to Heyting by quotienting.
I trivial pseudo order implies > = ⊥.

The link: fibering

define

[A]σφ = {B1, · · · ,Bn | ∀∆, if ∆ ` Bi ∈ ~Bi�, then ∆ ` A ∈ ~A�φ}

I ~A�φ contains sequents ∆ ` B. Extract the contexts
corresponding to A .

I this forms a Heyting algebra ([A]: basis)
I interpretation of formulas in it:

A∗ = [A]σφ

The link: fibering

define

[A]σφ = {B1, · · · ,Bn | ∀∆, if ∆ ` Bi ∈ ~Bi�, then ∆ ` A ∈ ~A�φ}

I ~A�φ contains sequents ∆ ` B. Extract the contexts
corresponding to A .

I this forms a Heyting algebra ([A]: basis)

I interpretation of formulas in it:

A∗ = [A]σφ

The link: fibering

define

[A]σφ = {B1, · · · ,Bn | ∀∆, if ∆ ` Bi ∈ ~Bi�, then ∆ ` A ∈ ~A�φ}

I ~A�φ contains sequents ∆ ` B. Extract the contexts
corresponding to A .

I this forms a Heyting algebra ([A]: basis)
I interpretation of formulas in it:

A∗ = [A]σφ

Wait a minute !
I interpretation ? [A]σφ .

I Need for one single substitution. hybridization: σ × φ.

D = T ×M

I interpretation for symbols

f̂D(〈t1, d1〉, ..., 〈tn, dn〉) = 〈f(t1, ..., tn), f̂M(d1, ..., dn)〉

P̂D(〈t1, d1〉, ..., 〈tn, dn〉) = [(t1/x1, ..., tn/xn)P](d1/x1,...,dn/xn)

= {Γ | (Γ ` P(t1, ..., tn)) ∈ ~P�(d1/x1,...,dn/xn)}

I pointwise application

〈t , v〉 � 〈t ′, v′〉 = 〈(tt ′), (vv′)〉

I Need to prove [A ∧ B] = [A] ∩ [B] for (A ∧ B)∗ to be defined.
Usually, only:

A ∧ B ∈ [A] ∩ [B] ⊂ [A ∧ B]

I proof resembles the proof for normalization.

Wait a minute !
I interpretation ? [A]σφ .
I Need for one single substitution. hybridization: σ × φ.

D = T ×M

I interpretation for symbols

f̂D(〈t1, d1〉, ..., 〈tn, dn〉) = 〈f(t1, ..., tn), f̂M(d1, ..., dn)〉

P̂D(〈t1, d1〉, ..., 〈tn, dn〉) = [(t1/x1, ..., tn/xn)P](d1/x1,...,dn/xn)

= {Γ | (Γ ` P(t1, ..., tn)) ∈ ~P�(d1/x1,...,dn/xn)}

I pointwise application

〈t , v〉 � 〈t ′, v′〉 = 〈(tt ′), (vv′)〉

I Need to prove [A ∧ B] = [A] ∩ [B] for (A ∧ B)∗ to be defined.
Usually, only:

A ∧ B ∈ [A] ∩ [B] ⊂ [A ∧ B]

I proof resembles the proof for normalization.

Wait a minute !
I interpretation ? [A]σφ .
I Need for one single substitution. hybridization: σ × φ.

D = T ×M

I interpretation for symbols

f̂D(〈t1, d1〉, ..., 〈tn, dn〉) = 〈f(t1, ..., tn), f̂M(d1, ..., dn)〉

P̂D(〈t1, d1〉, ..., 〈tn, dn〉) = [(t1/x1, ..., tn/xn)P](d1/x1,...,dn/xn)

= {Γ | (Γ ` P(t1, ..., tn)) ∈ ~P�(d1/x1,...,dn/xn)}

I pointwise application

〈t , v〉 � 〈t ′, v′〉 = 〈(tt ′), (vv′)〉

I Need to prove [A ∧ B] = [A] ∩ [B] for (A ∧ B)∗ to be defined.
Usually, only:

A ∧ B ∈ [A] ∩ [B] ⊂ [A ∧ B]

I proof resembles the proof for normalization.

Wait a minute !
I interpretation ? [A]σφ .
I Need for one single substitution. hybridization: σ × φ.

D = T ×M

I interpretation for symbols

f̂D(〈t1, d1〉, ..., 〈tn, dn〉) = 〈f(t1, ..., tn), f̂M(d1, ..., dn)〉

P̂D(〈t1, d1〉, ..., 〈tn, dn〉) = [(t1/x1, ..., tn/xn)P](d1/x1,...,dn/xn)

= {Γ | (Γ ` P(t1, ..., tn)) ∈ ~P�(d1/x1,...,dn/xn)}

I pointwise application

〈t , v〉 � 〈t ′, v′〉 = 〈(tt ′), (vv′)〉

I Need to prove [A ∧ B] = [A] ∩ [B] for (A ∧ B)∗ to be defined.
Usually, only:

A ∧ B ∈ [A] ∩ [B] ⊂ [A ∧ B]

I proof resembles the proof for normalization.

Wait a minute !
I interpretation ? [A]σφ .
I Need for one single substitution. hybridization: σ × φ.

D = T ×M

I interpretation for symbols

f̂D(〈t1, d1〉, ..., 〈tn, dn〉) = 〈f(t1, ..., tn), f̂M(d1, ..., dn)〉

P̂D(〈t1, d1〉, ..., 〈tn, dn〉) = [(t1/x1, ..., tn/xn)P](d1/x1,...,dn/xn)

= {Γ | (Γ ` P(t1, ..., tn)) ∈ ~P�(d1/x1,...,dn/xn)}

I pointwise application

〈t , v〉 � 〈t ′, v′〉 = 〈(tt ′), (vv′)〉

I Need to prove [A ∧ B] = [A] ∩ [B] for (A ∧ B)∗ to be defined.
Usually, only:

A ∧ B ∈ [A] ∩ [B] ⊂ [A ∧ B]

I proof resembles the proof for normalization.

Wait a minute !
I interpretation ? [A]σφ .
I Need for one single substitution. hybridization: σ × φ.

D = T ×M

I interpretation for symbols

f̂D(〈t1, d1〉, ..., 〈tn, dn〉) = 〈f(t1, ..., tn), f̂M(d1, ..., dn)〉

P̂D(〈t1, d1〉, ..., 〈tn, dn〉) = [(t1/x1, ..., tn/xn)P](d1/x1,...,dn/xn)

= {Γ | (Γ ` P(t1, ..., tn)) ∈ ~P�(d1/x1,...,dn/xn)}

I pointwise application

〈t , v〉 � 〈t ′, v′〉 = 〈(tt ′), (vv′)〉

I Need to prove [A ∧ B] = [A] ∩ [B] for (A ∧ B)∗ to be defined.
Usually, only:

A ∧ B ∈ [A] ∩ [B] ⊂ [A ∧ B]

I proof resembles the proof for normalization.

Cut admissibility

Assume Γ ` A has a proof (with cuts)
I [Γ] ≤ [A] in D by (usual) soundness
I Γ ∈ [Γ]

I Γ ∈ [A] implies Γ `cf A
I Q.E.D.

I compared to: Γ ` π : A implies π ∈ ~A�, and hence π is SN .

Cut admissibility

Assume Γ ` A has a proof (with cuts)
I [Γ] ≤ [A] in D by (usual) soundness
I Γ ∈ [Γ]

I Γ ∈ [A] implies Γ `cf A
I Q.E.D.
I compared to: Γ ` π : A implies π ∈ ~A�, and hence π is SN .

Γ ` A
soundness

- Γ |= A

Γ `cf A

Gentzen
Tait-Girard

Dowek-Werner
... ? �

strong completeness

I This diagram does not commute in deduction modulo.

Further work

I what is the computational content of this algorithm ?
I there is normalization by evaluation work, but in a Kripke

style: links ?
I do the proof terms (candidates) always have a “pseudo-”

structure ?
I realizing rewrite rule not with λx.x (not silently), could recover

(some) normalization and make the previous diagram
commute again.

Γ ` π : A A ≡ B
Γ ` π : B

	Introduction
	Natural Deduction
	rewrite rules
	The cut

	The semantic method
	Normalization
	Curry-Howard correspondence
	Unification

