A Linear Logic Modulo

Olivier Hermant

June 29, 2007

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- Linear Logic has much to say about connectors.
- Deduction Modulo has much to say about (first-order) quantifiers.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Linear Logic has much to say about connectors.
- Deduction Modulo has much to say about (first-order) quantifiers.

let's combine them.

The language

- Usual first-order logic language.
- logical connectors

multiplicatives additives exponentials

$$\otimes, \ \vartheta, \multimap, \ \&, \oplus, \ !,$$

logical constants

multiplicatives additives
$$\overbrace{\mathbf{1},\perp}^{\mathsf{multiplicatives}}$$
, $\overleftarrow{\top,\mathbf{0}}$

► first-order quantifiers ∀, ∃

The language

- Usual first-order logic language.
- Iogical connectors

multiplicatives additives exponentials

$$\widetilde{\otimes, \vartheta, \multimap}$$
, $\widetilde{\&, \oplus}$, $\widetilde{!, ?}$

logical constants

multiplicatives additives $\overbrace{\mathbf{1},\perp}^{\mathsf{multiplicatives}}$, $\overleftarrow{\top,\mathbf{0}}$

- first-order quantifiers \forall , \exists
- the negation symbol \perp is not a primitive symbol
- ► atoms A and negated atoms A[⊥]
- we work with negation normal forms (classical LL, one sided sequent calculus)

Dualities in Linear Logic

$$A^{\perp\perp} = (A^{\perp})^{\perp} = A$$

Multiplicatives

$$\perp^{\perp} = 1 \qquad 1^{\perp} = \perp$$

$$(A \otimes B)^{\perp} = A^{\perp} \ \Im B^{\perp} \qquad (A \ \Im B)^{\perp} = A^{\perp} \otimes B^{\perp}$$

$$A \multimap B = A^{\perp} \ \Im B$$

Additives

$$\top^{\perp} = 0 \qquad 0^{\perp} = \top$$

$$(A \oplus B)^{\perp} = A^{\perp} \& B^{\perp} \qquad (A \& B)^{\perp} = A^{\perp} \oplus B^{\perp}$$

Exponentials

$$(!A)^{\perp} = ?(A^{\perp}) \qquad (?A)^{\perp} = !(A^{\perp})$$

Quantifiers

$$(\forall xA)^{\perp} = \exists xA^{\perp} \qquad (\exists xA)^{\perp} = \forall xA^{\perp}$$

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 - のへの

Deduction rules

- sequent style
- one-sided (duality): $\Gamma \vdash \Delta$ is written $\vdash \Gamma^{\perp}, \Delta$ (negation NF)

• axiom looks like $\vdash A^{\perp}, A$

Deduction rules

- sequent style
- one-sided (duality): $\Gamma \vdash \Delta$ is written $\vdash \Gamma^{\perp}, \Delta$ (negation NF)
- axiom looks like $\vdash A^{\perp}, A$
- independent groups of connectors (substructural logics)

- multiplicatives separate the context (perfect world)
- additives do not (imperfect world)
- contexts: sets (no permutation needed)

Deduction rules of Linear Logic

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Adding rewrite rules

- rewrite rules are of the two following forms:
 - on terms

$$\begin{array}{rrrr} x * 0 & \rightarrow & 0 \\ x + 0 & \rightarrow & 0 \end{array}$$

on propositions

$$P(0) \rightarrow \forall x P(x)$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

▶ a set of rewrite rules \mathcal{R} defines a congruence =

Adding rewrite rules

- rewrite rules are of the two following forms:
 - on terms

$$\begin{array}{rrrr} x * 0 & \rightarrow & 0 \\ x + 0 & \rightarrow & 0 \end{array}$$

on propositions

$$P(0) \rightarrow \forall x P(x)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- a set of rewrite rules \mathcal{R} defines a congruence =
- it is taken into account in the rules (side condition):

axiom
$$\overline{+ A^{\perp}, A}$$
 turns into $\overline{+ B, A}$ axiom, $B \equiv A^{\perp}$

Adding rewrite rules

- rewrite rules are of the two following forms:
 - on terms

$$\begin{array}{rrrr} x * 0 & \rightarrow & 0 \\ x + 0 & \rightarrow & 0 \end{array}$$

on propositions

$$P(0) \rightarrow \forall x P(x)$$

- a set of rewrite rules \mathcal{R} defines a congruence =
- it is taken into account in the rules (side condition):

axiom $\overline{+ A^{\perp}, A}$ turns into $\overline{+ B, A}$ axiom, $B \equiv A^{\perp}$

many interesting examples, e.g. Church's simple types theory: first-order encoding of higher-order LL by rewrite rules.

Rules of Linear Logic modulo

Identities - $\vdash A.B$ init, $A \equiv B^{\perp}$ $\frac{\vdash A, \Gamma \vdash B, \Delta}{\vdash \Gamma, \Delta} \text{ cut, } A \equiv B^{\perp}$ **Multiplicatives** $\frac{\vdash \Delta}{\vdash A, \Delta} \perp -r, A \equiv \perp$ $\frac{\vdash A, B, \Delta}{\vdash C, \Delta} \ \mathcal{D}-r, C \equiv A \ \mathcal{D}B$ - + A **1**-r, $A \equiv \mathbf{1}$ $\frac{\vdash A, \Gamma \vdash B, \Delta}{\vdash C, \Gamma, \Lambda} \otimes \text{-r, } C \equiv A \otimes B$ Additives $\begin{array}{c} \operatorname{no} \mathbf{0} \operatorname{-r} & \overline{} \operatorname{+} A, \Lambda & \overline{} \operatorname{+} B, \Lambda \\ \hline + C, \Lambda & + C, \Lambda \end{array} & \& \operatorname{-r}, \ C \equiv A \& B & \begin{array}{c} \operatorname{+} A, \Lambda \\ \overline{} & + C, \Lambda \end{array} & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \top \\ \hline + C, \Lambda & \textcircled{+} \operatorname{-r}, \ A \equiv \operatorname{-r$ Quantifiers $\frac{+A,\Delta}{-C,\Lambda}$ \forall -r, $C \equiv \forall xA, x$ fresh $\frac{+(t/x)A,\Delta}{-+C}$ \exists -r, $C \equiv \exists xA, t$ term **Exponentials** $\frac{\vdash A, B, \Delta}{\vdash C, \Delta} \text{ contr.}, A \equiv B \equiv C \equiv ?D$ $\frac{\stackrel{\vdash \Delta, A}{\vdash \Delta, B}}{\stackrel{\vdash \Delta, A}{\vdash \Delta, B}} \text{ derel., } B \equiv ?A$ $\frac{\vdash \Delta}{\vdash \Lambda B}$ weak., $B \equiv ?A$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

A toy example

Rewrite system:

$$\begin{array}{rcl} P(0) & \to & A \\ P(1) & \to & B \end{array}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▶ Proof of \vdash ? $\exists x(P(x)^{\perp}), A \otimes B$ (two sided: $! \forall x P(x) \vdash A \otimes B$)

A toy example

Rewrite system:

$$\begin{array}{rcl} P(0) & \to & A \\ P(1) & \to & B \end{array}$$

▶ Proof of \vdash ? $\exists x(P(x)^{\perp}), A \otimes B$ (two sided: $! \forall x P(x) \vdash A \otimes B$)

Studying cut elimination

theoretic power of DM: in some cases, no cut elimination.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Studying cut elimination

- theoretic power of DM: in some cases, no cut elimination.
- counterexample

$$\mathsf{A} \to (!\mathsf{A}) \multimap \mathsf{A}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

can type every (untyped) λ -term (especially $\Omega = \lambda x.(xx)$)

Studying cut elimination

- theoretic power of DM: in some cases, no cut elimination.
- counterexample

$$\mathsf{A} \to (!\mathsf{A}) \multimap \mathsf{A}$$

can type every (untyped) λ -term (especially $\Omega = \lambda x.(xx)$)

- worse: this rule admits cuts but no normalization
- we give semantic ways to prove cut elimination (admissibility)

うして ふぼう ふぼう ふほう トーロー

- a topological interpretation
- idea behind: sets of contexts (i.e. $A^* = \{\Gamma \mid \Gamma \vdash A \text{ provable }\})$
- like Boolean algebras, Heyting algebras (pseudo-complement: think about open sets !). "Natural" interpretation:

$$(\mathbf{A} \wedge \mathbf{B})^* = \mathbf{A}^* \cap \mathbf{B}^*$$

intended meaning:

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B}$$

- a topological interpretation
- ▶ idea behind: sets of contexts (i.e. $A^* = \{\Gamma \mid \Gamma \vdash A \text{ provable }\})$
- like Boolean algebras, Heyting algebras (pseudo-complement: think about open sets !). "Natural" interpretation:

$$(\mathbf{A} \wedge \mathbf{B})^* = \mathbf{A}^* \cap \mathbf{B}^*$$

intended meaning:

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

In LL: two conjunctions ⊗ and & : which one is the intersection ?

- a topological interpretation
- ▶ idea behind: sets of contexts (i.e. $A^* = \{\Gamma \mid \Gamma \vdash A \text{ provable }\})$
- like Boolean algebras, Heyting algebras (pseudo-complement: think about open sets !). "Natural" interpretation:

$$(A \wedge B)^* = A^* \cap B^*$$

intended meaning:

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B}$$

- In LL: two conjunctions ⊗ and & : which one is the intersection ?
- Hint: look at the previous rule. But what for the other ?

 (M, .): a commutative monoid, 1: unit, ⊥: a fixed subset of M (intended meaning: contexts with concatenation, empty context and some fixed subset – the pole)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- (M, .): a commutative monoid, 1: unit, ⊥: a fixed subset of M (intended meaning: contexts with concatenation, empty context and some fixed subset – the pole)
- plus special treatment for exponentials (modalities): set J ...
- ▶ basic construct: orthogonal of subsets $\alpha \subseteq M$

$$\alpha^{\perp} = \{ a \mid \alpha.a \subseteq \bot \}$$

うして ふぼう ふぼう ふほう トーロー

consider only sets closed by bi-orthogonality (α = α^{⊥⊥}): facts. (involutive closure operator: (_)^{⊥⊥})

- (M, .): a commutative monoid, 1: unit, ⊥: a fixed subset of M (intended meaning: contexts with concatenation, empty context and some fixed subset – the pole)
- plus special treatment for exponentials (modalities): set J ...
- ▶ basic construct: orthogonal of subsets $\alpha \subseteq M$

$$\alpha^{\perp} = \{ a \mid \alpha. a \subseteq \bot \}$$

A D A D A D A D A D A D A D A D A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- consider only sets closed by bi-orthogonality (α = α^{⊥⊥}): facts. (involutive closure operator: (_)^{⊥⊥})
- semantic operators

$$\blacktriangleright$$
 $\top = M$

- ▶ **0** = \top^{\perp} = {*a* | *M*.*a* ⊆ ⊥}
- $\alpha \& \beta = \alpha \cap \beta$
- $\alpha \otimes \beta = (\alpha . \beta)^{\perp \perp}$

Phase models

- defining a model: usual business
 - base interpretation for terms and predicates
 - connectors as operators
 - ► quantifiers: ∀ infinite intersection (on domain), ∃ closure of infinite union
- specific condition on models. Rewrite rules valid:

 $A \equiv B$ should imply $A^* = B^*$

Phase models

- defining a model: usual business
 - base interpretation for terms and predicates
 - connectors as operators
 - ► quantifiers: ∀ infinite intersection (on domain), ∃ closure of infinite union
- specific condition on models. Rewrite rules valid:

$$A \equiv B$$
 should imply $A^* = B^*$

soundness holds (well ... confluence of rewrite rules required)

 $\Gamma \vdash A \text{ implies } \Gamma^* \leq A^* \quad (\text{one sided version: } \Gamma^{*\perp} \subseteq A^*)$

completeness also ...

Phase models for cut elimination

... but we can do more !

Find a model such that $\Gamma^* \leq A^*$ implies $\vdash_{cf} A, \Delta$

Okada's work extended to deduction modulo settings

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

Context phase spaces

- monoid M: set of finite contexts, composition law . : concatenation.
- define the

(outer value) $\llbracket A \rrbracket = \{ \Gamma \mid \vdash_{cf} \Gamma, A \}$

▶ take $\llbracket \bot \rrbracket$ for (the semantical) \bot . Exercise: $\{A\}^{\bot} = \llbracket A \rrbracket$

Context phase spaces

- monoid M: set of finite contexts, composition law . : concatenation.
- define the

(outer value) $\llbracket A \rrbracket = \{ \Gamma \mid \vdash_{cf} \Gamma, A \}$

うして ふぼう ふぼう ふほう トーロー

- ▶ take $\llbracket \bot \rrbracket$ for (the semantical) \bot . Exercise: $\{A\}^{\bot} = \llbracket A \rrbracket$
- interepret each atomic predicate symbol P by [[P]].
- this defines a phase space. (would also define Heyting or Boolean algebra)

Context phase spaces

- monoid M: set of finite contexts, composition law . : concatenation.
- define the

(outer value) $\llbracket A \rrbracket = \{ \Gamma \mid \vdash_{cf} \Gamma, A \}$

うして ふぼう ふぼう ふほう トーロー

- ▶ take $\llbracket \bot \rrbracket$ for (the semantical) \bot . Exercise: $\{A\}^{\bot} = \llbracket A \rrbracket$
- interepret each atomic predicate symbol P by [[P]].
- this defines a phase space. (would also define Heyting or Boolean algebra)
- aim: Γ ∈ [[A]].

semantic cut elimination

- ▶ show $\Gamma \in \llbracket A \rrbracket$ in a few steps
- Main Lemma: for any A,

$$A^\perp \in A^* \subseteq \llbracket A \rrbracket$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

semantic cut elimination

- show $\Gamma \in \llbracket A \rrbracket$ in a few steps
- Main Lemma: for any A,

$$A^{\perp} \in A^* \subseteq \llbracket A \rrbracket$$

- consequence:
 - $\blacktriangleright \ \Gamma^* \subseteq [\![\Gamma]\!] = \{\Gamma\}^\perp$
 - $\{\Gamma\}^{\perp\perp} \subseteq \Gamma^{*\perp}$ (negating the previous)
 - $\Gamma \in \{\Gamma\}^{\perp\perp}$ (exercise)
 - $\Gamma^{*\perp} \subseteq A^*$ (soundness)

▶ Q.E.D: ⊢_{cf} Γ, Α

semantic cut elimination

- show $\Gamma \in \llbracket A \rrbracket$ in a few steps
- Main Lemma: for any A,

$$A^{\perp} \in A^* \subseteq \llbracket A \rrbracket$$

- consequence:
 - $\blacktriangleright \ \Gamma^* \subseteq [\![\Gamma]\!] = \{\Gamma\}^\perp$
 - $\{\Gamma\}^{\perp\perp} \subseteq \Gamma^{*\perp}$ (negating the previous)
 - $\Gamma \in {\{\Gamma\}^{\perp\perp}}$ (exercise)
 - $\Gamma^{*\perp} \subseteq A^*$ (soundness)
 - A* ⊆ [[A]]
 - ▶ Q.E.D: ⊢_{cf} Γ, Α
- Stop! Additional constraint: $A^* = B^*$ when $A \equiv B$
- dependent on \equiv
- we do that for two conditions on rewrite rules: order and positivity. Plus a combination of both.

The positivity condition in short

Core ideas

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- define proof nets for linear logic modulo
- study the proof normalization algorithms
- define some pseudo-Phase spaces (as Truth values algebras)