A Linear Logic Modulo

Olivier Hermant

June 29, 2007

- Linear Logic has much to say about connectors.
- Deduction Modulo has much to say about (first-order) quantifiers.
- Linear Logic has much to say about connectors.
- Deduction Modulo has much to say about (first-order) quantifiers.
- let's combine them.

The language

- Usual first-order logic language.
- logical connectors
multiplicatives additives exponentials
$\overbrace{\otimes, \mathcal{\gamma}, \multimap}, \overbrace{\&, \oplus}, \quad \overbrace{!, ?}$
- logical constants
multiplicatives additives

$$
\overbrace{1, \perp}, \overbrace{\mathrm{~T}, \mathbf{0}}
$$

- first-order quantifiers \forall, \exists

The language

- Usual first-order logic language.
- logical connectors
multiplicatives additives exponentials
$\overbrace{\otimes, \mathcal{P}, \multimap}, \overbrace{\&, \oplus}, \quad \overbrace{!, ?}$
- logical constants
multiplicatives additives

$$
\overbrace{1, \perp}, \overbrace{\mathrm{~T}, \mathbf{0}}
$$

- first-order quantifiers \forall, \exists
- the negation symbol \perp is not a primitive symbol
- atoms A and negated atoms A^{\perp}
- we work with negation normal forms (classical LL, one sided sequent calculus)

Dualities in Linear Logic

$$
\begin{gathered}
A^{\perp \perp}=\left(A^{\perp}\right)^{\perp}=A \\
\text { Multiplicatives } \\
\perp^{\perp^{\perp}=1} \begin{array}{l}
1^{\perp}=\perp \\
(A \otimes B)^{\perp}=A^{\perp} \text { \& } B^{\perp} \quad(A \text { \& } B)^{\perp}=A^{\perp} \otimes B^{\perp} \\
A \multimap B=A^{\perp} \text { \& } B
\end{array}
\end{gathered}
$$

Additives

$$
\begin{array}{cc}
\mathrm{T}^{\perp}=\mathbf{0} & 0^{\perp}=\mathrm{T} \\
(A \oplus B)^{\perp}=A^{\perp} \& B^{\perp} & (A \& B)^{\perp}=A^{\perp} \oplus B^{\perp}
\end{array}
$$

Exponentials

$$
(!A)^{\perp}=?\left(A^{\perp}\right) \quad(? A)^{\perp}=!\left(A^{\perp}\right)
$$

Quantifiers

$$
(\forall x A)^{\perp}=\exists x A^{\perp} \quad(\exists x A)^{\perp}=\forall x A^{\perp}
$$

Deduction rules

- sequent style
- one-sided (duality): $\Gamma \vdash \Delta$ is written $\vdash \Gamma^{\perp}, \Delta$ (negation NF)
- axiom looks like $\vdash A^{\perp}, A$

Deduction rules

- sequent style
- one-sided (duality): $\Gamma \vdash \Delta$ is written $\vdash \Gamma^{\perp}, \Delta$ (negation NF)
- axiom looks like $\vdash A^{\perp}, A$
- independent groups of connectors (substructural logics)
- multiplicatives separate the context (perfect world)
- additives do not (imperfect world)
- contexts: sets (no permutation needed)

Deduction rules of Linear Logic

Identities

$$
\overline{\vdash A^{\perp}, A} \text { init }
$$

$$
\overline{r-1}^{1-r}
$$

$$
\frac{\vdash A, \Gamma \quad \vdash B, \Delta}{\vdash A \otimes B, \Gamma, \Delta} \otimes-r
$$

$$
\begin{aligned}
& \text { no } 0-r \\
& \frac{\vdash A, \Delta \quad \vdash B, \Delta}{\vdash A \& B, \Delta} \&-r \\
& \frac{\vdash A, \Delta}{\vdash \forall x A, \Delta} \forall-r, x \text { fresh } \\
& \frac{r ? A, ? A, \Delta}{r ? A, \Delta} \text { contraction } \\
& \frac{\vdash \Delta}{\vdash \Delta, ? A} \text { weakening }
\end{aligned}
$$

$$
\frac{\vdash A^{\perp}, \Gamma \quad \vdash A, \Delta}{\vdash \Gamma, \Delta} \text { cut }
$$

Multiplicatives

$$
\begin{aligned}
& \frac{\vdash \Delta}{\vdash \perp, \Delta} \perp-r \\
& \frac{\vdash A, B, \Delta}{\vdash A \mathcal{P} B, \Delta} \mathcal{P}-r
\end{aligned}
$$

Additives

$$
\frac{\vdash A, \Delta}{\overbrace{}^{\vdash A \oplus B, \Delta}} \begin{aligned}
& \text { Quantifiers }
\end{aligned} \mathrm{T}^{\mathrm{T}-\mathrm{r}} \quad \frac{\vdash B, \Delta}{\vdash A \oplus B, \Delta} \oplus-\mathrm{r} 2
$$

$$
\frac{\vdash(t / x) A, \Delta}{\vdash \exists x A, \Delta} \exists-r, t \text { any term }
$$

Exponentials

$$
\begin{aligned}
& \frac{\vdash \Delta, A}{\vdash \Delta, ? A} \text { dereliction } \\
& \frac{\vdash ? \Delta, A}{\vdash ? \Delta,!A} \text { promotion }
\end{aligned}
$$

Adding rewrite rules

- rewrite rules are of the two following forms:
- on terms

$$
\begin{aligned}
x * 0 & \rightarrow 0 \\
x+0 & \rightarrow 0
\end{aligned}
$$

- on propositions

$$
P(0) \rightarrow \forall x P(x)
$$

- a set of rewrite rules \mathcal{R} defines a congruence \equiv

Adding rewrite rules

- rewrite rules are of the two following forms:
- on terms

$$
\begin{array}{ll}
x * 0 & \rightarrow 0 \\
x+0 & \rightarrow
\end{array}
$$

- on propositions

$$
P(0) \rightarrow \forall x P(x)
$$

- a set of rewrite rules \mathcal{R} defines a congruence \equiv
- it is taken into account in the rules (side condition):

Adding rewrite rules

- rewrite rules are of the two following forms:
- on terms

$$
\begin{aligned}
x * 0 & \rightarrow 0 \\
x+0 & \rightarrow 0
\end{aligned}
$$

- on propositions

$$
P(0) \rightarrow \forall x P(x)
$$

- a set of rewrite rules \mathcal{R} defines a congruence \equiv
- it is taken into account in the rules (side condition):

$$
\text { axiom } \overline{\vdash A^{\perp}, A} \quad \text { turns into } \quad \overline{\vdash B, A} \text { axiom, } B \equiv A^{\perp}
$$

- many interesting examples, e.g. Church's simple types theory: first-order encoding of higher-order LL by rewrite rules.

Rules of Linear Logic modulo

Identities

$$
\frac{\vdash A, \Gamma \quad \vdash B, \Delta}{\vdash \Gamma, \Delta} \text { cut, } A \equiv B^{\perp}
$$

Multiplicatives

$$
\begin{aligned}
& \frac{\vdash \Delta}{\vdash_{B} A, \Delta} \perp-r, A \equiv \perp \\
& \frac{\vdash A, B, \Delta}{\vdash C, \Delta} \text { ช }-r, C \equiv A \ngtr B \\
& \overline{+A, \Gamma} \mathrm{~T}-\mathrm{r}, \mathrm{~A} \equiv \mathrm{~T}
\end{aligned}
$$

Additives

Quantifiers

$$
\frac{\vdash(t / x) A, \Delta}{\vdash C, \Delta} \exists-r, C \equiv \exists x A, t \text { term }
$$

Exponentials

$$
\begin{gathered}
\frac{\vdash \Delta, A}{\vdash \Delta, B} \text { derel., } B \equiv ? A \\
\frac{\vdash \Delta, A}{\vdash \Delta, B} \text { promo., } B \equiv!A, \Delta \equiv ? \Gamma
\end{gathered}
$$

A toy example

- Rewrite system:

$$
\begin{aligned}
& P(0) \rightarrow A \\
& P(1) \rightarrow B
\end{aligned}
$$

- Proof of $\vdash ? \exists x\left(P(x)^{\perp}\right), A \otimes B$ (two sided: $\left.!\forall x P(x) \vdash A \otimes B\right)$

A toy example

- Rewrite system:

$$
\begin{aligned}
& P(0) \rightarrow A \\
& P(1)
\end{aligned} \rightarrow B
$$

- Proof of $\vdash ? \exists x\left(P(x)^{\perp}\right), A \otimes B$ (two sided: $\left.!\forall x P(x) \vdash A \otimes B\right)$

Studying cut elimination

- theoretic power of DM: in some cases, no cut elimination.

Studying cut elimination

- theoretic power of DM: in some cases, no cut elimination.
- counterexample

$$
A \rightarrow(!A) \multimap A
$$

can type every (untyped) λ-term (especially $\Omega=\lambda x$.(xx))

Studying cut elimination

- theoretic power of DM: in some cases, no cut elimination.
- counterexample

$$
A \rightarrow(!A) \multimap A
$$

can type every (untyped) λ-term (especially $\Omega=\lambda x$.(xx))

- worse: this rule admits cuts but no normalization
- we give semantic ways to prove cut elimination (admissibility)

Phase spaces

- a topological interpretation
- idea behind: sets of contexts (i.e. $A^{*}=\{\Gamma \mid \Gamma \vdash A$ provable $\}$)
- like Boolean algebras, Heyting algebras (pseudo-complement: think about open sets !). "Natural" interpretation:

$$
(A \wedge B)^{*}=A^{*} \cap B^{*}
$$

intended meaning:

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \wedge B}
$$

Phase spaces

- a topological interpretation
- idea behind: sets of contexts (i.e. $A^{*}=\{\Gamma \mid \Gamma \vdash A$ provable $\}$)
- like Boolean algebras, Heyting algebras (pseudo-complement: think about open sets !). "Natural" interpretation:

$$
(A \wedge B)^{*}=A^{*} \cap B^{*}
$$

intended meaning:

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \wedge B}
$$

- in LL: two conjunctions \otimes and \& : which one is the intersection?

Phase spaces

- a topological interpretation
- idea behind: sets of contexts (i.e. $A^{*}=\{\Gamma \mid \Gamma \vdash A$ provable $\}$)
- like Boolean algebras, Heyting algebras (pseudo-complement: think about open sets !). "Natural" interpretation:

$$
(A \wedge B)^{*}=A^{*} \cap B^{*}
$$

intended meaning:

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \wedge B}
$$

- in LL: two conjunctions \otimes and \& : which one is the intersection?
- Hint: look at the previous rule. But what for the other ?

Phase spaces

- ($M,$.): a commutative monoid, 1 : unit, \perp : a fixed subset of M (intended meaning: contexts with concatenation, empty context and some fixed subset - the pole)

Phase spaces

- (M, .): a commutative monoid, 1 : unit, \perp : a fixed subset of M (intended meaning: contexts with concatenation, empty context and some fixed subset - the pole)
- plus special treatment for exponentials (modalities): set J...
- basic construct: orthogonal of subsets $\alpha \subseteq M$

$$
\alpha^{\perp}=\{\mathbf{a} \mid \alpha \cdot \mathbf{a} \subseteq \perp\}
$$

- consider only sets closed by bi-orthogonality ($\alpha=\alpha^{\perp \perp}$): facts. (involutive closure operator: (_) ${ }^{\perp \perp}$)

Phase spaces

- ($M,$.): a commutative monoid, 1 : unit, \perp : a fixed subset of M (intended meaning: contexts with concatenation, empty context and some fixed subset - the pole)
- plus special treatment for exponentials (modalities): set J...
- basic construct: orthogonal of subsets $\alpha \subseteq M$

$$
\alpha^{\perp}=\{\mathbf{a} \mid \alpha \cdot \mathbf{a} \subseteq \perp\}
$$

- consider only sets closed by bi-orthogonality ($\alpha=\alpha^{\perp \perp}$): facts. (involutive closure operator: (_) ${ }^{\perp \perp}$)
- semantic operators
- $\mathrm{T}=\mathrm{M}$
- $\mathbf{0}=\mathrm{T}^{\perp}=\{\mathbf{a} \mid M \cdot \mathbf{a} \subseteq \perp\}$
- $\alpha \& \beta=\alpha \cap \beta$
- $\alpha \otimes \beta=(\alpha . \beta)^{\perp \perp}$

Phase models

- defining a model: usual business
- base interpretation for terms and predicates
- connectors as operators
- quantifiers: \forall infinite intersection (on domain), \exists closure of infinite union
- specific condition on models. Rewrite rules valid:

$$
A \equiv B \text { should imply } A^{*}=B^{*}
$$

Phase models

- defining a model: usual business
- base interpretation for terms and predicates
- connectors as operators
- quantifiers: \forall infinite intersection (on domain), \exists closure of infinite union
- specific condition on models. Rewrite rules valid:

$$
A \equiv B \text { should imply } A^{*}=B^{*}
$$

- soundness holds (well ... confluence of rewrite rules required)

$$
\Gamma \vdash A \text { implies } \Gamma^{*} \leq A^{*} \quad\left(\text { one sided version: } \Gamma^{* \perp} \subseteq A^{*}\right)
$$

- completeness also ...

Phase models for cut elimination

- ... but we can do more!

Find a model such that $\Gamma^{*} \leq A^{*}$ implies $\vdash_{\text {cf }} A, \Delta$

- Okada's work extended to deduction modulo settings

Context phase spaces

- monoid M : set of finite contexts, composition law . : concatenation.
- define the
(outer value) $\llbracket A \rrbracket=\left\{\Gamma \mid \vdash_{c f} \Gamma, A\right\}$
- take $\llbracket \perp \rrbracket$ for (the semantical) \perp. Exercise: $\{A\}^{\perp}=\llbracket A \rrbracket$

Context phase spaces

- monoid M : set of finite contexts, composition law . : concatenation.
- define the
(outer value) $\llbracket A \rrbracket=\left\{\Gamma \mid \vdash_{c f} \Gamma, A\right\}$
- take $\llbracket \perp \rrbracket$ for (the semantical) \perp. Exercise: $\{A\}^{\perp}=\llbracket A \rrbracket$
- interepret each atomic predicate symbol P by $\llbracket P \rrbracket$.
- this defines a phase space. (would also define Heyting or Boolean algebra)

Context phase spaces

- monoid M : set of finite contexts, composition law . : concatenation.
- define the

$$
\text { (outer value) } \llbracket A \rrbracket=\left\{\Gamma \mid \vdash_{c f} \Gamma, A\right\}
$$

- take $\llbracket \perp \rrbracket$ for (the semantical) \perp. Exercise: $\{A\}^{\perp}=\llbracket A \rrbracket$
- interepret each atomic predicate symbol P by $\llbracket P \rrbracket$.
- this defines a phase space. (would also define Heyting or Boolean algebra)
- aim: $\Gamma \in \llbracket A \rrbracket$.

semantic cut elimination

- show $\Gamma \in \llbracket A \rrbracket$ in a few steps
- Main Lemma: for any A,

$$
A^{\perp} \in A^{*} \subseteq \llbracket A \rrbracket
$$

semantic cut elimination

- show $\Gamma \in \llbracket A \rrbracket$ in a few steps
- Main Lemma: for any A,

$$
A^{\perp} \in A^{*} \subseteq \llbracket A \rrbracket
$$

- consequence:
- $\Gamma^{*} \subseteq \llbracket \Gamma \rrbracket=\{\Gamma\}^{\perp}$
- $\{\Gamma\}^{\perp \perp} \subseteq \Gamma^{* \perp}$ (negating the previous)
- $\Gamma \in\{\Gamma\}^{\perp \perp}$ (exercise)
- $\Gamma^{* \perp} \subseteq A^{*}$ (soundness)
- $A^{*} \subseteq \llbracket A \rrbracket$
- Q.E.D: $\vdash_{c f} \Gamma, A$

semantic cut elimination

- show $\Gamma \in \llbracket A \rrbracket$ in a few steps
- Main Lemma: for any A,

$$
A^{\perp} \in A^{*} \subseteq \llbracket A \rrbracket
$$

- consequence:
- $\Gamma^{*} \subseteq \llbracket \Gamma \rrbracket=\{\Gamma\}^{\perp}$
- $\{\Gamma\}^{\perp \perp} \subseteq \Gamma^{* \perp}$ (negating the previous)
- $\Gamma \in\{\Gamma\}^{\perp \perp}$ (exercise)
- $\Gamma^{* \perp} \subseteq A^{*}$ (soundness)
- $A^{*} \subseteq \llbracket A \rrbracket$
- Q.E.D: $\vdash_{c f} \Gamma, A$
- Stop! Additional constraint: $A^{*}=B^{*}$ when $A \equiv B$
- dependent on \equiv
- we do that for two conditions on rewrite rules: order and positivity. Plus a combination of both.

The positivity condition in short

Core ideas

- define proof nets for linear logic modulo
- study the proof normalization algorithms
- define some pseudo-Phase spaces (as Truth values algebras)

