Complétude en logiques

Habilitation à diriger des recherches

Olivier Hermant MINES ParisTech, PSL Research University

2017, April 20th

Key Questions in Logics

- What is true?
- What is provable?

Key Questions in Logics

- What is true?
 - ★ What is truth?
- What is provable?
 - ★ What is a proof?

Key Questions in Logics

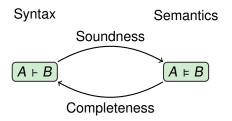
- What is true?
 - ★ What is truth?
- What is provable?
 - What is a proof?
- Are they links between truth (semantics) and provability (syntax) ?

Logical Systems in Computer Science

- automated theorem proving [P. Halmagrand]
- proof checking [R. Saillard]
- application domain: formal methods
 - large (mathematical) proofs
 - safe, bug-free, system conception
- theory of programming languages (type systems, semantics, static analysis)
- and others: model checking, realizability, proof theory, ...

Key Properties of Logical Systems

assume a semantics (truth notion) and a syntax (proof notion)



Theorem (Soundness)

If a statement is provable, it is (universally) true.

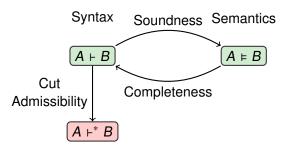
Corollary (Consistency)

Absurd statements have no proofs.

Theorem (Completeness)

If a statement is (universally) true, it is provable.

Key Properties of Logical Systems



Theorem (Cut Admissibility)

If a statement is provable, then it is provable without detour.

- consistency
- automated proof-search
- focus on computation (CS point of view):
 - proof terms
 - normalization (termination of proof-term reduction)

Outline

- Intro
- Playing Around (Classical Tableaux for Propositional Logic)
- Sequent Calculus and Cut Admissibility
- Extensions
- Getting Rid of Tableaux
- Opening the Box
- Conclusion

2. Playing Around

2017, April 20th

Propositional Logic

- atomic formulas A, B, C
- connectives $\land, \lor, \Rightarrow, \neg, \bot, \top$
- semantics:
 - * truth tables

Α	В	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	$\neg A$	T	Т
0	0	0	0	1	1	0	1
0	1	0	1	1	1	0	1
1	0	0	1	0	0	0	1
1	1	1	1	1	0	0	1

- ★ valuation [F] for any formula F
- syntax: a proof-search method called the tableaux method.

2017, April 20th

Tableaux Method in Classical Logic

- refutation-based method: to show F, derive a contradiction from $\neg F$.
- immediate contradictions (closure rule)

$$\frac{\bot}{\odot}$$
 \bot $\frac{\neg \top}{\odot}$ $\neg \top$ $\frac{F, \neg F}{\odot}$ cl

Tableaux Method in Classical Logic

- refutation-based method: to show F, derive a contradiction from $\neg F$.
- immediate contradictions (closure rule)
- conjunctive forms

$$\frac{\bot}{\odot}\bot \qquad \frac{\neg \top}{\odot} \neg \top \qquad \frac{F, \neg F}{\odot} \text{ cl}$$

$$\frac{A \land B}{A, B} \land \qquad \frac{\neg (A \lor B)}{\neg A, \neg B} \neg \lor \qquad \frac{\neg (A \Rightarrow B)}{A, \neg B} \neg \Rightarrow$$

Tableaux Method in Classical Logic

- refutation-based method: to show F, derive a contradiction from $\neg F$.
- immediate contradictions (closure rule)
- conjunctive forms
- disjunctive forms

$$\frac{\bot}{\odot}\bot \qquad \frac{\neg \top}{\odot} \neg \top \qquad \frac{F, \neg F}{\odot} \text{ cl}$$

$$\frac{A \land B}{A, B} \land \qquad \frac{\neg (A \lor B)}{\neg A, \neg B} \neg \lor \qquad \frac{\neg (A \Rightarrow B)}{A, \neg B} \neg \Rightarrow$$

$$\frac{\neg (A \land B)}{\neg A} \neg B \neg \land \qquad \frac{A \lor B}{A} \lor \qquad \frac{A \Rightarrow B}{A} \Rightarrow \Rightarrow$$

► prove
$$(B \lor A) \Rightarrow (A \lor B)$$

$$\neg((B \lor A) \Rightarrow (A \lor B))$$

- tableau as a tree
- choice for rule application
- proof iff each branch is closed
- ▶ notation $F_1, \dots, F_n \hookrightarrow \odot$

$$\frac{\neg((B \lor A) \Rightarrow (A \lor B))}{B \lor A, \neg(A \lor B)} \neg \Rightarrow$$

- tableau as a tree
- choice for rule application
- proof iff each branch is closed
- ▶ notation $F_1, \dots, F_n \hookrightarrow \odot$

$$\frac{\neg((B \lor A) \Rightarrow (A \lor B))}{\frac{B \lor A, \neg(A \lor B)}{B} \lor} \neg \Rightarrow$$

- tableau as a tree
- choice for rule application
- proof iff each branch is closed
- ▶ notation $F_1, \dots, F_n \hookrightarrow \odot$

$$\frac{\neg((B \lor A) \Rightarrow (A \lor B))}{\frac{B \lor A, \neg(A \lor B)}{B} \lor} \neg \Rightarrow$$

$$\frac{\neg A, \neg B}{\neg A, \neg B} \neg \lor$$

- tableau as a tree
- choice for rule application
- proof iff each branch is closed
- ▶ notation $F_1, \dots, F_n \hookrightarrow \odot$

$$\frac{\neg((B \lor A) \Rightarrow (A \lor B))}{B \lor A, \neg(A \lor B)} \neg \Rightarrow \frac{B \lor A, \neg(A \lor B)}{A} \lor$$

$$\frac{\neg A, \neg B}{\odot}$$

- tableau as a tree
- choice for rule application
- proof iff each branch is closed
- ▶ notation $F_1, \dots, F_n \hookrightarrow \odot$

$$\frac{\neg((B \lor A) \Rightarrow (A \lor B))}{B \lor A, \neg(A \lor B)} \neg \Rightarrow \frac{B \lor A, \neg(A \lor B)}{\neg A, \neg B} \neg \lor \frac{A}{\neg A, \neg B} \neg \lor$$

- tableau as a tree
- choice for rule application
- proof iff each branch is closed
- ▶ notation $F_1, \dots, F_n \hookrightarrow \odot$

$$\frac{\neg((B \lor A) \Rightarrow (A \lor B))}{\frac{B \lor A, \neg(A \lor B)}{B}} \neg_{\Rightarrow}$$

$$\frac{\neg A, \neg B}{\odot} \neg_{\lor} \frac{A}{\neg A, \neg B} \neg_{\lor}$$

- tableau as a tree
- choice for rule application
- proof iff each branch is closed
- ▶ notation $F_1, \dots, F_n \hookrightarrow \odot$

Soundness and Completeness

Soundness of the Tableaux Method

If there exists a closed tableau containing the formulas F_1, \dots, F_n , the formula $F_1 \wedge \dots \wedge F_n$ is unsatisfiable.

- ▶ no atomic truth value assignment makes $\llbracket F_1 \land \cdots \land F_n \rrbracket = 1$
- ▶ no model of F_1, \dots, F_n
- induction on the tableau proof and case analysis
- ▶ basic concept: each rule is sound. Example on the \vee rule. If $\llbracket F \rrbracket = 0$ and $\llbracket G \rrbracket = 0$, then $\llbracket F \vee G \rrbracket = 0$.

$$\frac{A \lor B}{A B} \lor$$

11/1

Completeness of Tableaux Method

- another view of tableaux rules:
 - ★ exhaustively searching for a countermodel of F
 - * refutation of $F \sim$ a model of $\neg F \sim$ an interpretation with $[\![\neg F]\!] = 1$
- if search fails, all interpretations respect $[\![F]\!] = 1$.

$$\frac{\bot}{\odot} \bot \qquad \frac{\neg \top}{\odot} \neg \top \qquad \frac{F, \neg F}{\odot} \text{ cl}$$

$$\frac{A \land B}{A, B} \land \qquad \frac{\neg (A \lor B)}{\neg A, \neg B} \neg \lor \qquad \frac{\neg (A \Rightarrow B)}{A, \neg B} \neg \Rightarrow$$

$$\frac{\neg (A \land B)}{\neg A} \neg B \neg \land \qquad \frac{A \lor B}{A} \lor \qquad \frac{A \Rightarrow B}{A} \Rightarrow$$

Example: Countermodel from Exhaustion

▶ try to prove $A \Rightarrow (A \land B)$

$$\frac{\neg (A \Rightarrow (A \land B))}{A, \neg (A \land B)}$$

$$\frac{\neg A}{\odot} \neg B$$

right branch open and complete

Complete Branch

A branch of a tableau is complete if all applicable rules have been applied.

- Countermodel construction:
 - ★ collect the litterals (plain and negated atoms), A and $\neg B$,
 - * assign the truth values accordingly, [A] = 1 and [B] = 0,
 - * yields $[A \Rightarrow (A \land B)] = 0$.
 - **★** Interpretation that falsifies $A \Rightarrow (A \land B)$.

Completeness Proof Sketch

Theorem (Completeness)

If a tableau with formulas F_1, \dots, F_n cannot be closed, there is an interpretation such that $[F_i] = 1$.

- complete branch mandatory to collect the litterals
- need for a systematic proof-search algorithm

3. Sequent Calculus and Cut Admissibility

Sequent Calculus

- Sequent Calculus: a framework for reasoning [Gentzen]
- ▶ hypotheses Γ , conclusions Δ , notation $\Gamma \vdash \Delta$

$$\frac{\Gamma + A, \Delta \qquad \Gamma, A + \Delta}{\Gamma + \Delta} \text{ cut}$$

$$\frac{\Gamma A, B + \Delta}{\Gamma, A \wedge B + \Delta} \wedge_{L} \qquad \frac{\Gamma + A, B, \Delta}{\Gamma + A \vee B, \Delta} \vee_{R} \qquad \frac{\Gamma, A + \neg B, \Delta}{\Gamma + A \Rightarrow B, \Delta} \Rightarrow_{R}$$

$$\frac{\Gamma + A, \Delta \qquad \Gamma + B, \Delta}{\Gamma + A \wedge B, \Delta} \wedge_{R} \qquad \frac{\Gamma, A + \Delta \qquad \Gamma, B + \Delta}{\Gamma, A \vee B + \Delta} \vee_{L} \qquad \frac{\Gamma, A + \Delta \qquad \Gamma + B, \Delta}{\Gamma, A \Rightarrow B + \Delta} \Rightarrow_{L}$$

example proof.

$$\frac{B \vdash A, B}{B \vdash A \lor B} \qquad \frac{A \vdash A, B}{A \vdash A \lor B}$$

$$\frac{B \lor A \vdash A \lor B}{\vdash (B \lor A) \Rightarrow (A \lor B)}$$

The Cut Rule

the cut rule: a necessary detour

$$\frac{\Gamma \vdash A, \Delta \qquad \Gamma, A \vdash \Delta}{\Gamma \vdash \Delta} \text{ cut}$$

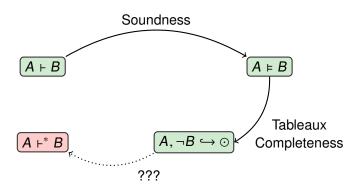
- used by human beings, interaction
- at the heart of logic and Computer Science
 - elimination. Proof transformation mechanisms.
 - admissibility. Show the follwing result

Cut Admissibility

If $\Gamma \vdash A$, Δ and Γ , $A \vdash \Delta$ provable, then $\Gamma \vdash \Delta$ is provable.

★ of course, in s calculus without the cut rule.

Completeness and Cut Admissilibity



Can We Translate Tableaux to Sequents?

- A tableau is a reversed cut-free sequent
 - ★ \neg_X tableau rule $\sim X_B$ rule
 - ★ X tableau rule ~ X_L rule

$$\frac{\neg((B \lor A) \Rightarrow (A \lor B))}{B \lor A, \neg(A \lor B)} \neg_{\Rightarrow}$$

$$\frac{B, \neg(A \lor B)}{B, \neg A, \neg B} \neg_{\lor} \qquad \frac{A, \neg(A \lor B)}{A, \neg A, \neg B} \neg_{\lor}$$

We just proved cut elimination

4. Extensions

Switching to First-Order

we add variables, terms and quantifiers

$$\forall x (P(x) \Rightarrow Q(x))$$

- first-order tableaux, first-order sequent calculus
- cut admissibility by the previous method
- but the complete exhaustive proof-search is highly inefficient
 - ★ enumerates all the terms of the language t_0, t_1, \cdots
 - * complete branch with $\forall xF$ must have $F[t_0/x], F[t_1/x], \cdots$
 - some sweat to keep proof-search fair

Efficiency in First-Order Tableaux

- unefficient naive enumeration, maybe was $F[t_{2017}/x]$ the right choice ?
- do not know: wait to instantiate!
- free variable tableaux

$$\frac{\neg(\exists x (D(x) \Rightarrow \forall y D(y)))}{\neg(D(X) \Rightarrow \forall y D(y))} \neg_{\exists}$$

$$\frac{\neg(D(X) \Rightarrow \forall y D(y))}{\neg(D(X), \neg \forall y D(y))} \forall$$

$$\frac{\neg D(c)}{\neg(X \approx c)} \circ$$

- FV tableaux: exponential speedups
- sequent calculus connection lost
 - ★ freshness condition *globally* ensured, not *locally*
 - ★ re-expand, double inverted induction, duplication

Switching to Deduction Modulo Theory

Rewrite Rule

A term (resp. proposition) rewrite rule is a pair of terms (resp. formulæ) $l \to r$, where $\mathcal{FV}(l) \subseteq \mathcal{FV}(r)$ and, in the propositiona case, l is atomic.

Examples:

term rewrite rule:

$$A \cup \emptyset \rightarrow A$$

proposition rewrite rule:

$$A \subseteq B \rightarrow \forall x \ x \in A \Rightarrow x \in B$$

Conversion modulo a Rewrite System

We consider the congruence \equiv generated by a set of proposition rewrite rules \mathcal{R} and a set of term rewrite rules \mathcal{E} (often implicit)

Example:

$$A \cup \emptyset \subseteq A \equiv \forall x \ x \in A \Rightarrow x \in A$$

(Classical) Sequent Calculus modulo

We add two conversion rules:

$$\frac{\Gamma \vdash A, \Delta}{\Gamma \vdash B, \Delta} \operatorname{conv}_{R}, [A \equiv B] \qquad \frac{\Gamma, A \vdash \Delta}{\Gamma, B \vdash \Delta} \operatorname{conv}_{L}, [A \equiv B]$$

Or embed conversions modulo \mathcal{RE} directly inside the rules (next slide).

(Classical) Sequent Calculus

$$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta} \land_{L} \qquad \frac{\Gamma \vdash A, \Delta}{\Gamma \vdash A, \Delta} \land_{R} \qquad \frac{\Gamma \vdash A, \Delta}{\Gamma \vdash A \land B, \Delta} \land_{R}$$

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, A \lor B \vdash \Delta} \lor_{L} \qquad \frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \lor B, \Delta} \lor_{R}$$

$$\frac{\Gamma, B \vdash \Delta}{\Gamma, A \Rightarrow B \vdash \Delta} \Rightarrow_{L} \qquad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \Rightarrow B, \Delta} \Rightarrow_{R}$$

(Classical) Sequent Calculus Modulo

$$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, C \vdash \Delta} \text{ ax, } [A \equiv B] \qquad \frac{\Gamma \vdash A, \Delta}{\Gamma \vdash \Delta} \text{ cut, } [A \equiv B]$$

$$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, C \vdash \Delta} \land_{L}, [C \equiv A \land B] \qquad \frac{\Gamma \vdash A, \Delta}{\Gamma \vdash C} \land_{\Delta} \land_{R}, [C \equiv A \land B]$$

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, C \vdash \Delta} \land_{L}, [C \equiv A \lor B] \qquad \frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash C} \land_{\Delta} \lor_{R}, [C \equiv A \lor B]$$

$$\frac{\Gamma, B \vdash \Delta}{\Gamma, C \vdash \Delta} \qquad \Gamma \vdash A, \Delta \Rightarrow_{L}, [C \equiv A \Rightarrow B] \qquad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash C} \Rightarrow_{R}, [C \equiv A \Rightarrow B]$$

Proof of $A \subseteq A$ with and without **DM**

without:

$$\frac{A \subseteq A \Rightarrow [\cdots], x \in A + x \in A, A \subseteq A}{A \subseteq A \Rightarrow [\cdots] \vdash x \in A \Rightarrow x \in A, A \subseteq A}$$

$$\frac{A \subseteq A \Rightarrow [\cdots] \vdash \forall x (x \in A \Rightarrow x \in A), A \subseteq A}{A \subseteq A \Rightarrow [\cdots], A \subseteq A \vdash A \subseteq A}$$

$$\frac{A \subseteq A \Rightarrow \forall x (x \in A \Rightarrow x \in A), \forall x (x \in A \Rightarrow x \in A) \Rightarrow A \subseteq A \vdash A \subseteq A}{A \subseteq A \Rightarrow \forall x (x \in A \Rightarrow x \in A), \forall x (x \in A \Rightarrow x \in A) \vdash A \subseteq A}$$

$$\frac{A \subseteq A \Rightarrow \forall x (x \in A \Rightarrow x \in A) \vdash A \subseteq A}{\forall Y (A \subseteq Y \Leftrightarrow \forall x (x \in A \Rightarrow x \in Y)) \vdash A \subseteq A}$$

$$\frac{\forall X \forall Y (X \subseteq Y \Leftrightarrow \forall x (x \in X \Rightarrow x \in Y)) \vdash A \subseteq A}{\forall X \forall X (x \in X \Rightarrow x \in Y)) \vdash A \subseteq A}$$

with:

Proof of $A \subseteq A$ with and without **DM**

without:

$$\frac{A \subseteq A \Rightarrow [\cdots], x \in A \vdash x \in A, A \subseteq A}{A \subseteq A \Rightarrow [\cdots] \vdash x \in A \Rightarrow x \in A, A \subseteq A}$$

$$A \subseteq A \Rightarrow [\cdots] \vdash \forall x (x \in A \Rightarrow x \in A), A \subseteq A$$

$$A \subseteq A \Rightarrow [\cdots] \vdash \forall x (x \in A \Rightarrow x \in A), A \subseteq A$$

$$A \subseteq A \Rightarrow [\cdots], A \subseteq A \vdash A \subseteq A$$

$$A \subseteq A \Rightarrow \forall x (x \in A \Rightarrow x \in A), \forall x (x \in A \Rightarrow x \in A) \Rightarrow A \subseteq A \vdash A \subseteq A$$

$$\frac{A \subseteq A \Rightarrow \forall x (x \in A \Rightarrow x \in A), \forall x (x \in A \Rightarrow x \in A) \Rightarrow A \subseteq A \vdash A \subseteq A}{\forall Y (A \subseteq Y \Leftrightarrow \forall x (x \in A \Rightarrow x \in Y)) \vdash A \subseteq A}$$

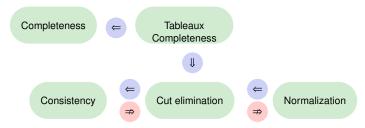
$$\frac{\forall X \forall Y (X \subseteq Y \Leftrightarrow \forall x (x \in X \Rightarrow x \in Y)) \vdash A \subseteq A}{\forall X \forall X (x \in X \Rightarrow x \in Y)) \vdash A \subseteq A}$$

with:

$$\begin{array}{c}
x \in A \vdash x \in A \\
\vdash x \in A \Rightarrow x \in A \\
\vdash A \subseteq A
\end{array}$$

Tableaux and Cuts in Deduction Modulo Theory

- beyond first order (axiomless higher-order logic, arithmetic, ...)
- everything depends on $R\mathcal{E}$.
 - ★ consistency $(A \rightarrow \neg A)$
 - ★ cut elimination $(A \rightarrow (A \Rightarrow A))$
 - cut admissibility
 - ★ undecidable, even if RE confluent terminating.



Semantics for Deduction Modulo Theory

- your favorite semantics
- add one constraint

Model of RE

An interpretation $[\![]\!]$ is a model of \mathcal{RE} if for any F, F', such that $F \equiv F'$, we have $[\![F]\!] = [\![F']\!]$.

straightforward Soundness Theorem

Generic Approach for Tableaux

- as far as possible
 - needs only confluence
 - everything except countermodel construction
- difficulties (besides models)
 - fair and exhausting proof-search design (STEP)
 - ★ interleave quantifier instantiation and rewriting
 - add free-variables
- optimized proof-seach, holes on the branch
 - ★ fill the gaps to get a (semi-)valuation
 - not forgetting rewriting

Specific Countermodel Constructions

Completeness of tableaux, hence cut admissibility for

positive rewrite systems

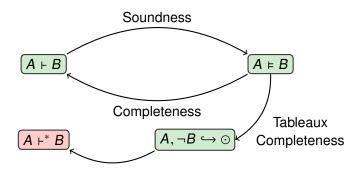
$$\begin{array}{ll} \operatorname{even}(0) & \to & \top \\ \operatorname{even}(S(x)) & \to & \neg \operatorname{odd}(x) \\ \operatorname{odd}(S(x)) & \to & \neg \operatorname{even}(x) \end{array}$$

- ordered rewrite systems
- higher-order logic as a rewrite system

5. Getting Rid of Tableaux

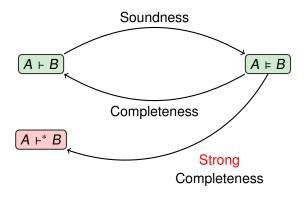
Direct Completeness

most difficulties in Tableaux Completeness



Direct Completeness

- most difficulties in Tableaux Completeness
- most difficulties in Strong Completeness
 - ★ more flexibility in the semantics
 - ★ 0/1 Boolean algebra imposed by tableaux (intuitionistic case, Kripke structures).



More Flexible Semantics: Algebraic Structures

- propositional intuitionistic logic here (first-order, higher-order possible)
- Heyting algebras
- ▶ a universe Ω , operators \wedge , \vee , \Rightarrow
- an order <: Ω is a lattice.
- Iowest upper bound (join: ∧), greatest lower bound (meet: ∨)

$$a \wedge b \leq a$$
 $a \wedge b \leq b$ $c \leq a$ and $c \leq b$ implies $c \leq a \wedge b$
 $a \leq a \vee b$ $b \leq a \vee b$ $a \leq c$ and $b \leq c$ implies $a \vee b \leq c$

- like Boolean algebras (classical case), but
- weak complement (aka implication property):

$$a \wedge b \leq c$$
 iff $a \leq b \Rightarrow c$

example: R and open sets:

 $b \Rightarrow c := \text{ the interior of } b \cup \overline{a}$

Base Elements of the Lindenbaum Algebra

$$\lceil A \rceil = \{ B \mid A \vdash B \text{ and } B \vdash A \}$$

Lidenbaum algebra:

- interpretation of formulas
 - ★ [A] = [A] on atoms, then induction
 - **★** $\lceil A \rceil \leq \lceil B \rceil$ iff $A \vdash B$

Fundamental Lemma

For any formula A, [A] = [A]

what do we have ?

Completeness

if $[A] \le [B]$ in all models, then $A \vdash B$.

- ★ this is the definition of \leq in the Lindenbaum algebra.
- need the cut rule

Base Elements of the Lindenbaum Algebra

 $\lceil A \rceil = \{ B \mid A \vdash B \text{ and } B \vdash A \}$

Base Elements of the Context Algebra

$$\lceil A \rceil = \{ \Gamma \mid \Gamma \vdash A \}$$

- ▶ \leq is \subseteq and g.l.b. (\land) and l.u.b. (\lor) are "intersection" and "union"
- close Ω by arbitrary intersection:

The Algebra Ω

$$\Omega = \left\{ \bigcap_{C \in C} \lceil C \rceil \mid \text{ for } C \text{ set of formulas} \right\}$$

 Ω is composed of arbitrary intersections of base elements

- Ω not closed by union
 - there are other ways to compute a least upper bound ...

• set the interpretation of the atoms to be: [A] = [A]

Key Theorem

For any formula A, [A] = [A].

▶ set the interpretation of the atoms to be: [A] = [A]

Key Theorem

For any formula A, $[A] = \lceil A \rceil$.

what do we have ?

Completeness

if $[A] \le [B]$ in all models, then $A \vdash B$.

- ★ (trivial) A ∈ [A]
- ★ 「A] = [[A]] (Key Theorem)
- * [A]] ⊆ [B]] (Hypothesis)
- ★ [B] = [B] (Key Theorem)
- ★ means A + B

• set the interpretation of the atoms to be: [A] = [A]

Key Theorem

For any formula A, [A] = [A].

what do we really need ?

Completeness

if $[A] \le [B]$ in all models, then $A \vdash B$.

- *
- **★** *A* ∈ [[*A*]] (Key Theorem)
- **★ [***A***]**] ⊆ **[***B***]**] (Hypothesis)
- \star [B] ⊆ [B] (Key Theorem)
- \star means $A \vdash B$

 $ightharpoonup \Omega$ contains arbitrary intersections of base elements.

Base Elements

$$\lceil A \rceil = \{ \Gamma \mid \Gamma \vdash A \}$$

- > ≤ is \subseteq . Gives a lattice.
- ▶ it is also a Heyting algebra
- set the interpretation of the atoms to be: [A] = [A]

Key Theorem

For any formula A, $[A] = \lceil A \rceil$.

what do we have ?

Completeness

if $||A|| \le ||B||$ in all models, then $A \vdash B$.

Proof: $A \in [A] = [A] \subseteq [B] = [B]$.

 $ightharpoonup \Omega$ contains arbitrary intersections of base elements.

Base Elements

$$\lceil A \rceil = \{ \Gamma \mid \Gamma \vdash^* A \}$$

- > ≤ is \subseteq . Gives a lattice.
- it is also a Heyting algebra (⇒ property difficult)
- set the interpretation of the atoms to be: [A] = [A]

Key Theorem

For any formula $A, A \in [A] \subseteq A$

 Similarities with Reducibility Candidate-valued models (logical relations)

$$NE \subseteq \mathcal{R}_A \subseteq SN$$
 (simplified)

Cut Admissibility, Second Order: Algebraic Way

Ω contains arbitrary intersections of base elements.

Base Elements

$$\lceil A \rceil = \{ \Gamma \mid \Gamma \vdash^* A \}$$

- < is

 C. Gives a lattice.
 </p>
- it is also a Heyting algebra (⇒ property difficult)
- set the interpretation of the atoms to be: [A] = [A]

Key Theorem

```
For any formula A, A\sigma \in [A]_{\phi} \subseteq [A\sigma],
for any \phi, \sigma such that \sigma(X_i) \in \phi(X_i) \subseteq [\sigma(X_i)]
```

 Similarities with Reducibility Candidate-valued models (logical relations)

$$NE \subseteq \mathcal{R}_A \subseteq SN \text{ (simplified)}$$

 $[\![A]\!]_{\phi} \in \mathcal{R}_{A\sigma}, \text{ for any } \phi, \sigma \text{ s.t. } \phi(X_i) \in \mathcal{R}_{\sigma(X_i)}$

Application to Higher-Order Logics

- does not apply directly to higher-order logic
- intensional logic

$$P(\top) \Leftrightarrow P(\top \wedge \top)$$

- [T]] ≠ T
- V-complexes [Takahashi], [Prawitz], [Andrews]
- adapted to
 - intuitionnistic case,
 - linear case,
 - the Deduction modulo theory expression of HOL (classical and intuitionnistic),

6. Opening the Box

Constructivity of Proofs

- Tableaux: rebuild proof from scratch
- ► Henkin completeness ([Herbelin & Ilik])

Computational Content of Algebraic Proofs

- switch to Natural Deduction
- more work existing
 - Normalization by Evaluation
 - ★ all Kripke (-like)
- easier to compare
 - and understand (at least, so did we thought)
 - no problem with disjunction in Heyting algebra

What Had to be Done

from Sequent Calculus to Natural Deduction

What Had to be Done

- from Sequent Calculus to Natural Deduction
- notion of cut-free proof

Cut-Free Proofs

A proof is neutral it is an elimination with cut-free premises and neutral principal premiss. A proof is cut-free it is an introduction with cut-free premises.

$$\frac{\Gamma \vdash_{ne} A}{\Gamma \vdash_{r} \vdash_{A} A} coerce \qquad \qquad \frac{A \in \Gamma}{\Gamma \vdash_{ne} A} ax$$

$$\frac{\Gamma \vdash_{r} A}{\Gamma \vdash_{r} \vdash_{A} A \land B} \land_{I} \qquad \frac{\Gamma \vdash_{ne} A \land B}{\Gamma \vdash_{ne} A} \land_{E_{I}} \qquad \frac{\Gamma \vdash_{ne} A \land B}{\Gamma \vdash_{ne} B} \land_{E_{\Gamma}}$$

$$\frac{\Gamma \vdash_{r} A}{\Gamma \vdash_{r} \vdash_{A} A \lor B} \lor_{I_{I}} \qquad \frac{\Gamma \vdash_{ne} A \lor B}{\Gamma \vdash_{r} \vdash_{A} A \lor B} \lor_{I_{I}} \qquad \frac{\Gamma \vdash_{ne} A \lor B}{\Gamma \vdash_{ne} C} \lor_{E}$$

$$\frac{\Gamma, A \vdash_{r} B}{\Gamma \vdash_{r} \vdash_{A} A \Rightarrow B} \Rightarrow_{I} \qquad \frac{\Gamma \vdash_{ne} A \Rightarrow B}{\Gamma \vdash_{ne} B} \xrightarrow{\Gamma \vdash_{r} \vdash_{A} A} \Rightarrow_{E}$$

What Had to be Done

- from Sequent Calculus to Natural Deduction
- notion of cut-free proof

Cut-Free Proofs

A proof is neutral it is an elimination with cut-free premises and neutral principal premiss. A proof is cut-free it is an introduction with cut-free premises.

$$\frac{\Gamma \vdash_{ne} A}{\Gamma \vdash_{r} A} coerce \qquad \qquad \frac{A \in \Gamma}{\Gamma \vdash_{ne} A} ax$$

$$\frac{\Gamma \vdash_{ne} A}{\Gamma \vdash_{r} A \land B} \land_{I} \qquad \frac{\Gamma \vdash_{ne} A \land B}{\Gamma \vdash_{ne} A} \land_{E_{I}} \qquad \frac{\Gamma \vdash_{ne} A \land B}{\Gamma \vdash_{ne} B} \land_{E_{r}}$$

$$\frac{\Gamma \vdash_{r} A}{\Gamma \vdash_{r} A \lor B} \lor_{I_{I}} \qquad \frac{\Gamma \vdash_{r} B}{\Gamma \vdash_{r} A \lor B} \lor_{I_{r}} \qquad \frac{\Gamma \vdash_{ne} A \lor B}{\Gamma \vdash_{ne} C} \lor_{E}$$

$$\frac{\Gamma, A \vdash_{r} B}{\Gamma \vdash_{r} A \Rightarrow B} \Rightarrow_{I} \qquad \frac{\Gamma \vdash_{ne} A \Rightarrow B}{\Gamma \vdash_{ne} B} \xrightarrow{\Gamma \vdash_{r} A} \Rightarrow_{E}$$

show that constructions are still valid

works for first-order logic (probably more)

- works for first-order logic (probably more)
- formalize in Coq (propositional logic)

- works for first-order logic (probably more)
- formalize in Coq (propositional logic)
- extract the algorithm:
 - limitations of Coq
 - either we face proof-irrelevance
 - or universe inconsistency

- works for first-order logic (probably more)
- formalize in Coq (propositional logic)
- extract the algorithm:
 - limitations of Coq
 - ★ either we face proof-irrelevance
 - or universe inconsistency
- we can at least observe inside Coq
- or have a potentially unsound algorithm

how a ⇒-cut is reduced

$$\frac{A, A \vdash A}{A \vdash A \Rightarrow A} \Rightarrow_{I} \frac{A}{A \vdash A} \Rightarrow_{E} \Rightarrow_{E} \qquad A \vdash A$$

how a ∨-cut is reduced

$$\frac{\overline{A \vdash A} \stackrel{ax}{\lor}_{I_{l}} \qquad \overline{A, A \vdash A} \stackrel{ax}{\lor}_{I_{l}} \qquad \overline{A, A \vdash A \lor A} \stackrel{A}{\lor}_{I_{r}} \qquad \overline{A, A \vdash A \lor A} \stackrel{A}{\lor}_{I_{l}}}{A \vdash A \lor A} \stackrel{A}{\lor}_{I_{l}} \qquad \triangleright \qquad \frac{\overline{A \vdash A} \stackrel{ax}{\lor}_{I_{l}}}{A \vdash A \lor A} \stackrel{A}{\lor}_{I_{r}}$$

η-expansion

$$A \lor B \vdash A \lor B$$

• η -expansion

$$\frac{A \lor B \vdash A \lor B}{A \lor B \vdash A \lor B} ax \qquad \frac{A \lor B, A \vdash A}{A \lor B, A \vdash A \lor B} \lor_{I_{I}} \qquad \frac{A \lor B, B \vdash B}{A \lor B, B \vdash A \lor B} \lor_{I_{F}}
A \lor B \vdash A \lor B$$

• η -expansion, one more step

$$\frac{A \lor B, A, A \lor B + A}{A \lor B, A, A \lor B + A} \xrightarrow{ax} \underbrace{A \lor B, B, A \lor B + B}_{A \lor B, B, A \lor B + A \lor B} \xrightarrow{\forall I_r} \underbrace{A \lor B, B, A \lor B + A \lor B}_{\forall V_r} \xrightarrow{\forall I_r} \underbrace{A \lor B, B, A \lor B + A \lor B}_{\forall V_r} \xrightarrow{\forall I_r} \underbrace{A \lor B, B, A \lor B + A \lor B}_{\Rightarrow I} \xrightarrow{A \lor B + A \lor B} \xrightarrow{\Rightarrow I}$$

Conclusion

A lot of domains to which apply those techniques

- logics with constraints (higher order)
- polarized Deduction Modulo Theory
 - ★ model theory
 - theoretical results
 - ★ tools
- this is all first order, no dependent types
 - ⋆ λΠ-calculus Modulo Theory
 - Dedukti