Complétude en logiques

Habilitation à diriger des recherches

université
 PARIS
 DIDEROT

Olivier Hermant
MINES ParisTech, PSL Research University

2017, April $20^{\text {th }}$

Institut Mines-Télécom

Completeness in Logics

Major role of the Completeness Theorem:

- Gödel sense
- exhaustive proof-search succeeds (eventually)
- fundamental property: cut elimination

Logics:

- automated theorem proving [P. Halmagrand]
- proof checking [R. Saillard]
- application domain: formal methods
* large (mathematical) proofs
* safe, bug-free, system conception
- theory of programming languages (type systems, semantics, static analysis) [T. Giang-Le, V. Maisonneuve]
- model checking, realizability, ...

Key Properties of Logical Systems

Proofs
(Syntax)

Truth
(Semantics)

Soundness

Completeness

Theorem (Soundness)
If a statement is provable, it is (universally) true.

Corollary (Consistency)

Not all statements have proofs.
Theorem (Completeness)
If a statement is (universally) true, it is provable.

Key Properties of Logical Systems

Theorem (Cut Admissibility)

If a statement is provable, then it is provable without cut.

- consistency
- automated proof-search
- focus on computation (CS point of view):
\star the site for interaction
* proof terms
^ normalization (termination of proof-term reduction)

Outline

(1) Introduction
(2) Extension to Other Logics
(3) Getting Rid of Tableaux
(4) Opening the Box
(5) Conclusion

Propositional Logic

- atomic formulas, connectives $\wedge, \vee, \Rightarrow, \neg, \perp, \top$
- semantics, truth tables

A	B	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	$\neg A$	\perp	T
0	0	0	0	1	1	0	1
0	1	0	1	1	1	0	1
1	0	0	1	0	0	0	1
1	1	1	1	1	0	0	1

- syntax, a proof-search method called the tableaux method.
- refutation-based method: to show F, derive a contradiction from $\neg F$.
- one rule per connective, another for its negation

$$
\begin{array}{ccc}
\frac{\perp}{\odot} \perp & \frac{\neg \top}{\odot} \neg \top & \frac{F, \neg F}{\odot} \mathrm{cl} \\
\frac{A \wedge B}{A, B} \wedge & \frac{\neg(A \vee B)}{\neg A, \neg B} \neg \vee & \frac{\neg(A \Rightarrow B)}{A, \neg B} \neg \Rightarrow \\
\frac{\neg(A \wedge B)}{\neg A \quad \neg B} \neg \wedge & \frac{A \vee B}{A} \vee B & \frac{A \Rightarrow B}{A} \neg B
\end{array}
$$

Example

- $\operatorname{prove}(B \vee A) \Rightarrow(A \vee B)$

$$
\neg((B \vee A) \Rightarrow(A \vee B))
$$

- tableau as a tree
- choice for rule application
- proof iff each branch is closed
- notation $F_{1}, \cdots, F_{n} \hookrightarrow \odot$

Example

- $\operatorname{prove}(B \vee A) \Rightarrow(A \vee B)$

$$
\frac{\neg((B \vee A) \Rightarrow(A \vee B))}{B \vee A, \neg(A \vee B)} \neg \Rightarrow
$$

- tableau as a tree
- choice for rule application
- proof iff each branch is closed
- notation $F_{1}, \cdots, F_{n} \hookrightarrow \odot$

Example

- $\operatorname{prove}(B \vee A) \Rightarrow(A \vee B)$

$$
\frac{\neg((B \vee A) \Rightarrow(A \vee B))}{\frac{B \vee A, \neg(A \vee B)}{B} \neg \Rightarrow}
$$

- tableau as a tree
- choice for rule application
- proof iff each branch is closed
- notation $F_{1}, \cdots, F_{n} \hookrightarrow \odot$

Example

- $\operatorname{prove}(B \vee A) \Rightarrow(A \vee B)$

$$
\frac{\neg((B \vee A) \Rightarrow(A \vee B))}{\frac{B \vee A, \neg(A \vee B)}{\frac{B}{\neg A, \neg B} \neg \vee} \neg \Rightarrow}
$$

- tableau as a tree
- choice for rule application
- proof iff each branch is closed
- notation $F_{1}, \cdots, F_{n} \hookrightarrow \odot$

Example

- $\operatorname{prove}(B \vee A) \Rightarrow(A \vee B)$

$$
\begin{aligned}
& \frac{\neg((B \vee A) \Rightarrow(A \vee B))}{\frac{B \vee A, \neg(A \vee B)}{B} \vee \vee} \neg \Rightarrow \\
& \frac{\neg A, \neg B}{\odot} \\
& \odot
\end{aligned}
$$

- tableau as a tree
- choice for rule application
- proof iff each branch is closed
- notation $F_{1}, \cdots, F_{n} \hookrightarrow \odot$

Example

- $\operatorname{prove}(B \vee A) \Rightarrow(A \vee B)$

$$
\frac{\neg((B \vee A) \Rightarrow(A \vee B))}{\frac{B \vee A, \neg(A \vee B)}{B} \neg \Rightarrow} \begin{aligned}
& \frac{\neg A, \neg B}{\odot} \\
& \odot \\
& \neg A, \neg B \\
&
\end{aligned}
$$

- tableau as a tree
- choice for rule application
- proof iff each branch is closed
- notation $F_{1}, \cdots, F_{n} \hookrightarrow \odot$

Example

- $\operatorname{prove}(B \vee A) \Rightarrow(A \vee B)$

$$
\frac{\neg((B \vee A) \Rightarrow(A \vee B))}{\frac{B \vee A, \neg(A \vee B)}{B} \neg \Rightarrow \frac{A}{\square}} \neg \frac{\neg A, \neg B}{\odot} \neg \frac{\neg A, \neg B}{\odot} \neg \vee
$$

- tableau as a tree
- choice for rule application
- proof iff each branch is closed
- notation $F_{1}, \cdots, F_{n} \hookrightarrow \odot$

Soundness and Completeness for Tableaux

Soundness

If $F_{1}, \cdots, F_{n} \hookrightarrow \odot$, then $F_{1} \wedge \cdots \wedge F_{n}$ is unsatisfiable.

- no model of F_{1}, \cdots, F_{n}
- induction on the tableau proof and case analysis.
- refutation: $\neg F$ unsatisfiable \sim for all interpretations, $\llbracket F \rrbracket=1$

Completeness

If a tableau F_{1}, \cdots, F_{n} cannot be closed, then $F_{1} \wedge \cdots \wedge F_{n}$ is satisfiable.

- another view of tableaux rules:
* exhaustively searching for a countermodel
\star if for all interpretations, $\llbracket F \rrbracket=1$, then search finds no consistent countermodel on input $\neg F \sim$ closable tableau.

Countermodel from Exhaustion

- try to prove $A \Rightarrow(A \wedge B)$

$$
\frac{\neg(A \Rightarrow(A \wedge B))}{\frac{A, \neg(A \wedge B)}{\frac{\neg A}{\odot} \quad \neg B}}
$$

- right branch open and complete

Complete Branch

A branch of a tableau is complete if all applicable rules have been applied.

- need to construct an exhaustive proof-search algorithm
\star collect litterals (plain and negated atoms), A and $\neg B$,
\star assign the truth values accordingly, $\llbracket A \rrbracket=1$ and $\llbracket B \rrbracket=0$,
\star yields $\llbracket \neg(A \Rightarrow(A \wedge B)) \rrbracket=1$ (falsifies $A \Rightarrow(A \wedge B)$).

Completeness and Cut Admissilibity

???

Sequent Calculus

$$
\begin{aligned}
& \overline{\Gamma, A \vdash A, \Delta} \text { axiom } \\
& \frac{\Gamma \vdash A, \Delta \quad \Gamma, A \vdash \Delta}{\Gamma \vdash \Delta} \mathrm{cut} \\
& \frac{\Gamma A, B \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta} \wedge_{L} \quad \frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \vee B, \Delta} \vee_{R} \quad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \Rightarrow B, \Delta} \Rightarrow_{R} \\
& \left.\frac{\Gamma \vdash A, \Delta \quad \Gamma \vdash B, \Delta}{\Gamma \vdash A \wedge B, \Delta} \wedge_{R} \quad \Gamma, A \vdash \Delta \quad \Gamma, B+\Delta \vee_{L} \quad \Gamma, A \vdash \Delta \quad \Gamma \vdash B, \Delta\right)
\end{aligned}
$$

- upside down tableaux (two-sided and context duplication)
$\star \neg_{\square}$ tableau rule $\sim \square_{R}$ rule
$\star \quad$ tableau rule $\sim \square_{L}$ rule
\star no cut in the translation

$$
\begin{array}{ll}
\frac{\neg((B \vee A) \Rightarrow(A \vee B))}{B \vee A, \neg(A \vee B)} \vee \Rightarrow & \frac{B}{B} \neg \vee \frac{A}{\neg A, \neg B} \\
\odot \\
\frac{\neg A, \neg B}{\odot} & \vee_{R} \\
\text { Tableaux } & \vee_{L} \frac{\frac{B \vdash A, B}{B \vdash A \vee B}}{\frac{B \vee A \vdash A \vee B}{A \vdash A \vee B}} \\
\Rightarrow_{R} \frac{\overline{A \vdash A, B}}{+(B \vee A) \Rightarrow(A \vee B)} \\
& \text { Sequent Calculus }
\end{array}
$$

2. Extensions to Other Logics

Switching to First-Order

- variables, terms and quantifiers

$$
\forall x(P(x) \Rightarrow P(s(0)))
$$

- first-order tableaux, first-order sequent calculus
- cut admissibility by the previous method
- but the complete exhaustive proof-search is highly inefficient
\star enumerates all the terms of the language t_{0}, t_{1}, \cdots
\star complete branch with $\forall x F$ must have $F\left[t_{0} / x\right], F\left[t_{1} / x\right], \cdots$
\star some sweat to keep proof-search fair

Efficiency in First-Order Tableaux

- unefficient naive enumeration, what if $F\left[t_{2017} / x\right]$ right choice?
- do not know: wait to instantiate!
- free variable tableaux

$$
\frac{\neg(\exists x(D(x) \Rightarrow \forall y D(y)))}{\frac{\neg(D(X) \Rightarrow \forall y D(y))}{D(X), \neg \forall y D(y)} \neg \Rightarrow}
$$

- Exponential speedups, connection lost with sequent calculus
\star freshness condition globally ensured, not locally
* re-expand, double inverted induction, duplication

Switching to Deduction Modulo Theory

Rewrite Rule

A term (resp. proposition) rewrite rule is a pair of terms (resp. formulæ) $I \rightarrow r$, where $\mathcal{F} \mathcal{V}(I) \subseteq \mathcal{F} \mathcal{V}(r)$ and, in the propositiona case, I is atomic.

Examples:

- term rewrite rule:

$$
A \cup \emptyset \rightarrow A
$$

- proposition rewrite rule:

$$
A \subseteq B \rightarrow \forall x x \in A \Rightarrow x \in B
$$

Conversion modulo a Rewrite System

We consider the congruence \equiv generated by a set of proposition rewrite rules \mathcal{R} and a set of term rewrite rules \mathcal{E} (often implicit)

Example:

$$
A \cup \emptyset \subseteq A \equiv \forall x x \in A \Rightarrow x \in A
$$

(Classical) Sequent Calculus modulo

We add two conversion rules:

$$
\frac{\Gamma \vdash A, \Delta}{\Gamma \vdash B, \Delta} \operatorname{conv}_{R},[A \equiv B] \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, B+\Delta} \operatorname{conv}_{L},[A \equiv B]
$$

Or embed conversions modulo $\mathcal{R E}$ directly inside the rules (next slide).

(Classical) Sequent Calculus

$$
\begin{array}{cc}
\overline{A \vdash A}^{a x} & \frac{\Gamma \vdash A, \Delta \Gamma, \Gamma \vdash \Delta}{\Gamma \vdash \Delta} \mathrm{cut} \\
\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta} \wedge_{L} & \frac{\Gamma \vdash A, \Delta \quad \Gamma \vdash B, \Delta}{\Gamma \vdash A \wedge B, \Delta} \wedge_{R} \\
\frac{\Gamma, A \vdash \Delta \Gamma, B \vdash \Delta}{\Gamma, A \vee B \vdash \Delta} \vee_{L} & \frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \vee B, \Delta} \vee_{R} \\
\frac{\Gamma, B \vdash \Delta \Gamma \vdash A, \Delta}{\Gamma, A \Rightarrow B \vdash \Delta} \Rightarrow_{L} & \frac{\Gamma, A+B, \Delta}{\Gamma \vdash A \Rightarrow B, \Delta} \Rightarrow_{R}
\end{array}
$$

(Classical) Sequent Calculus Modulo

$$
\begin{array}{cc}
\frac{\Gamma \vdash B}{} \mathrm{ax},[A \equiv B] & \frac{\Gamma \vdash A, \Delta \quad \Gamma, B \vdash \Delta}{\Gamma \vdash \Delta} \mathrm{cut},[A \equiv B] \\
\frac{\Gamma, A, B \vdash \Delta}{\Gamma, C \vdash \Delta} \wedge_{L},[C \equiv A \wedge B] & \frac{\Gamma \vdash A, \Delta \quad \Gamma \vdash B, \Delta}{\Gamma \vdash C, \Delta} \wedge_{R},[C \equiv A \wedge B] \\
\frac{\Gamma, A \vdash \Delta}{\Gamma, C+B \vdash \Delta} \vee_{L},[C \equiv A \vee B] & \frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash C, \Delta} \vee_{R},[C \equiv A \vee B] \\
\frac{\Gamma, B \vdash \Delta}{\Gamma, C} \vdash \vdash A, \Delta \\
\hline, C,[C \equiv A \Rightarrow B] & \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash C, \Delta} \Rightarrow_{R},[C \equiv A \Rightarrow B]
\end{array}
$$

Proof of $A \subseteq A$ with and without DM

- without:

$$
\begin{gathered}
\frac{\frac{A \subseteq A \Rightarrow[\cdots], x \in A \vdash x \in A, A \subseteq A}{A \subseteq A \Rightarrow[\cdots] \vdash x \in A \Rightarrow x \in A, A \subseteq A}}{A \subseteq A \Rightarrow[\cdots] \vdash \forall x(x \in A \Rightarrow x \in A), A \subseteq A} \quad \\
\frac{A \subseteq A \Rightarrow \forall x(x \in A \Rightarrow x \in A), \forall x(x \in A \Rightarrow x \in A) \Rightarrow A \subseteq A \vdash A \subseteq A}{A \subseteq A \Rightarrow[\cdots], A \subseteq A \vdash A \subseteq A} \\
\\
\frac{A \subseteq A \Leftrightarrow \forall x(x \in A \Rightarrow x \in A) \vdash A \subseteq A}{\forall Y(A \subseteq Y \Leftrightarrow \forall x(x \in A \Rightarrow x \in Y)) \vdash A \subseteq A} \\
\\
\quad \forall X \forall Y(X \subseteq Y \Leftrightarrow \forall x(x \in X \Rightarrow x \in Y))+A \subseteq A
\end{gathered}
$$

- with:

$$
\frac{\frac{x \in A \vdash x \in A}{\vdash x \in A \Rightarrow x \in A}}{\frac{x \in R}{\vdash \forall x(x \in A \Rightarrow x \in A)}} \forall_{R} \operatorname{conv}_{R}[A \subseteq A \equiv \forall x(x \in A \Rightarrow x \in A)]
$$

Proof of $A \subseteq A$ with and without DM

- without:

$$
\begin{gathered}
\frac{A \subseteq A \Rightarrow[\cdots], x \in A \vdash x \in A, A \subseteq A}{A \subseteq A \Rightarrow[\cdots] \vdash x \in A \Rightarrow x \in A, A \subseteq A} \\
\hline A \subseteq A \Rightarrow[\cdots] \vdash \forall x(x \in A \Rightarrow x \in A), A \subseteq A \\
\\
\hline \frac{A \subseteq A \Rightarrow \forall x(x \in A \Rightarrow x \in A), \forall x(x \in A \Rightarrow x \in A) \Rightarrow A \subseteq A \vdash A \subseteq A}{} \\
\frac{A \subseteq A \Leftrightarrow \forall x(x \in A \Rightarrow x \in A) \vdash A \subseteq A}{\forall Y(A \subseteq Y \Leftrightarrow \forall x(x \in A \Rightarrow x \in Y)) \vdash A \subseteq A} \\
\frac{A X \forall Y(X \subseteq Y \Leftrightarrow \forall x(x \in X \Rightarrow x \in Y)) \vdash A \subseteq A}{}
\end{gathered}
$$

- with:

$$
\frac{\frac{x \in A \vdash x \in A}{\vdash x \in A \Rightarrow x \in A}}{\vdash A \subseteq A} \forall_{R}
$$

Tableaux and Cuts in Deduction Modulo Theory

- beyond first order (axiomless higher-order logic, arithmetic, ...)
- everything depends on $\mathcal{R E}$.
\star consistency $(A \rightarrow \neg A)$
\star cut elimination $(A \rightarrow(A \Rightarrow A))$
* cut admissibility
\star undecidable, even if $\mathcal{R E}$ confluent terminating.

Completeness
\Leftarrow

Generic Approach for Tableaux

Nevertheless, genericity:

- as far as possible
* needs only confluence
* everything except countermodel construction
- difficulties (besides models)
* fair and exhausting proof-search design (STEP)
* interleave quantifier instantiation and rewriting
* add free-variables
- optimized proof-seach, holes on the complete branch
* fill the gaps to get a (semi-)valuation
* not forgetting rewriting

Semantics for Deduction Modulo Theory

- your favorite semantics
- add one constraint

Model of $\mathcal{R E}$

An interpretation $\llbracket \rrbracket$ is a model of $\mathcal{R E}$ if for any F, F^{\prime}, such that $F \equiv F^{\prime}$, we have $\llbracket F \rrbracket=\llbracket F^{\prime} \rrbracket$.

- straightforward Soundness Theorem

Specific Countermodel Constructions

Completeness of tableaux, hence cut admissibility for

- positive rewrite systems

$$
\begin{array}{ll}
\operatorname{even}(0) & \rightarrow \top \\
\operatorname{even}(S(x)) & \rightarrow \neg \operatorname{odd}(x) \\
\operatorname{odd}(S(x)) & \rightarrow \neg \operatorname{even}(x)
\end{array}
$$

- ordered rewrite systems
- higher-order logic as a rewrite system

3. Getting Rid of Tableaux

Direct Completeness

- most difficulties in Tableaux Completeness

Direct Completeness

- most difficulties in Tableaux Completeness
- most difficulties in Strong Completeness
* more flexibility in the semantics
* 0/1 Boolean algebra (or Kripke structures) imposed by tableaux.

More Flexible Semantics: Algebraic Structures

- propositional intuitionistic logic here (first-order, higher-order possible)
- Heyting algebras
- a universe Ω, operators $\wedge, \vee, \Rightarrow$
- an order $\leq: \Omega$ is a lattice.
- lowest upper bound (join: \wedge), greatest lower bound (meet: \vee)

$$
\begin{array}{lll}
a \wedge b \leq a & a \wedge b \leq b & c \leq a \text { and } c \leq b \text { implies } c \leq a \wedge b \\
a \leq a \vee b & b \leq a \vee b & a \leq c \text { and } b \leq c \text { implies } a \vee b \leq c
\end{array}
$$

- like Boolean algebras (classical case), but
- weak complement (aka implication property):

$$
a \wedge b \leq c \text { iff } a \leq b \Rightarrow c
$$

- example: \mathbb{R} and open sets:

$$
b \Rightarrow c:=\text { the interior of } b \cup \bar{a}
$$

Cut Admissibility: Algebraic Way

Base Elements of the Lindenbaum Algebra

$\lceil A\rceil=\{B \mid A \vdash B$ and $B \vdash A\}$
Lidenbaum algebra:

- interpretation of formulas
$\star \llbracket A \rrbracket=\lceil A\rceil$ on atoms, then induction
$\star\lceil A\rceil \leq\lceil B\rceil$ iff $A+B$

Fundamental Lemma

For any formula $A, \llbracket A \rrbracket=\lceil A\rceil$

- what do we have ?

Completeness

if $\llbracket A \rrbracket \leq \llbracket B \rrbracket$ in all models, then $A \vdash B$.
\star this is the definition of \leq in the Lindenbaum algebra.

- need the cut rule

Cut Admissibility: Algebraic Way

Base Elements of the Lindenbaum Algebra

$\lceil A\rceil=\{B \mid A \vdash B$ and $B \vdash A\}$

Cut Admissibility: Algebraic Way

Base Elements of the Context Algebra

$\lceil A\rceil=\{\Gamma \mid \Gamma \vdash A\}$

- \leq is \subseteq and g.l.b. (\wedge) and l.u.b. (\vee) are "intersection" and "union"
- close Ω by arbitrary intersection:

The Algebra Ω

$$
\Omega=\left\{\bigcap_{C \in C}\lceil C\rceil \mid \text { for } C \text { set of formulas }\right\}
$$

Ω is composed of arbitrary intersections of base elements

- Ω not closed by union
* there are other ways to compute a least upper bound ...

Cut Admissibility: Algebraic Way

- set the interpretation of the atoms to be: $\llbracket A \rrbracket=\lceil A\rceil$

Key Theorem

For any formula $A, \llbracket A \rrbracket=\lceil A\rceil$.

Cut Admissibility: Algebraic Way

- set the interpretation of the atoms to be: $\llbracket A \rrbracket=\lceil A\rceil$

Key Theorem

For any formula $A, \llbracket A \rrbracket=\lceil A\rceil$.

- what do we have ?

Completeness

if $\llbracket A \rrbracket \leq \llbracket B \rrbracket$ in all models, then $A \vdash B$.

* (trivial) $A \in\lceil A\rceil$
$\star\lceil A\rceil=\llbracket A \rrbracket$ (Key Theorem)
$\star \llbracket A \rrbracket \subseteq \llbracket B \rrbracket$ (Hypothesis)
$\star \llbracket B \rrbracket=\lceil B\rceil$ (Key Theorem)
* means A - B

Cut Admissibility: Algebraic Way

- set the interpretation of the atoms to be: $\llbracket A \rrbracket=\lceil A\rceil$

Key Theorem

For any formula $A, \llbracket A \rrbracket=\lceil A\rceil$.

- what do we really need ?

Completeness

if $\llbracket A \rrbracket \leq \llbracket B \rrbracket$ in all models, then $A \vdash B$.
$\star A \in \llbracket A \rrbracket$ (Key Theorem)
$\star \llbracket A \rrbracket \subseteq \llbracket B \rrbracket$ (Hypothesis)
$\star \llbracket B \rrbracket \subseteq\lceil B\rceil$ (Key Theorem)

* means A - B

Cut Admissibility: Algebraic Way

- Ω contains arbitrary intersections of base elements.

Base Elements

$\lceil A\rceil=\{\Gamma \mid \Gamma \vdash A\}$

- \leq is \subseteq. Gives a lattice. Also a Heyting algebra.
- set the interpretation of the atoms to be: $\llbracket A \rrbracket=\lceil A\rceil$

Key Theorem

For any formula $A, \llbracket A \rrbracket=\lceil A\rceil$.

- what do we have ?

Completeness

if $\llbracket A \rrbracket \leq \llbracket B \rrbracket$ in all models, then $A \vdash B$.
Proof: $A \in\lceil A\rceil=\llbracket A \rrbracket \subseteq \llbracket B \rrbracket=\lceil B\rceil$.

Cut Admissibility: Algebraic Way

- Ω contains arbitrary intersections of base elements.

Base Elements

$\lceil A\rceil=\left\{\Gamma \mid \Gamma \vdash^{*} A\right\}$

- \leq is \subseteq. Gives a lattice. Also a Heyting algebra (\Rightarrow property difficult)
- set the interpretation of the atoms to be: $\llbracket A \rrbracket=\lceil A\rceil$

Key Theorem

For any formula $A, A \in \llbracket A \rrbracket \subseteq\lceil A\rceil$

- Similarities with Reducibility Candidate-models (Logical Relations)
$N E \subseteq \mathcal{R}_{A} \subseteq S N$ (simplified)

Strong Completeness

if $\llbracket A \rrbracket \leq \llbracket B \rrbracket$ in all models, then $A \vdash^{*} B$.
Proof: $A \in\lceil A\rceil=\llbracket A \rrbracket \subseteq \llbracket B \rrbracket=\lceil B\rceil$.

Cut Admissibility, Second Order: Algebraic Way

- Ω contains arbitrary intersections of base elements.

Base Elements

$\lceil A\rceil=\left\{\Gamma \mid \Gamma \vdash^{*} A\right\}$

- \leq is \subseteq. Gives a lattice. Also a Heyting algebra (\Rightarrow property difficult)
- set the interpretation of the atoms to be: $\llbracket A \rrbracket=\lceil A\rceil$

Key Theorem

For any formula $A, A \sigma \in \llbracket A \rrbracket_{\phi} \subseteq\lceil A \sigma\rceil$,
for any ϕ, σ such that $\sigma\left(X_{i}\right) \in \phi\left(X_{i}\right) \subseteq\left\lceil\sigma\left(X_{i}\right)\right\rceil$

- Similarities with Reducibility Candidate-models (Logical Relations)

$$
\begin{gathered}
N E \subseteq \mathcal{R}_{A} \subseteq S N \text { (simplified) } \\
\llbracket A \rrbracket_{\phi} \in \mathcal{R}_{A \sigma}, \text { for any } \phi, \sigma \text { s.t. } \phi\left(X_{i}\right) \in R_{\sigma\left(X_{i}\right)}
\end{gathered}
$$

Strong Completeness

if $\llbracket A \rrbracket \leq \llbracket B \rrbracket$ in all models, then $A \vdash^{*} B$.

Application to Higher-Order Logics

- does not apply directly to higher-order logic
- intensional logic

$$
P(T) \Leftrightarrow P(T \wedge T)
$$

- $\llbracket T \rrbracket \neq \top$
- V-complexes [Takahashi], [Prawitz], [Andrews]
- adapted to
* intuitionnistic case,
\star linear case (phase semantics),
\star the Deduction modulo theory expression of HOL (classical and intuitionnistic).

4. Opening the Box

Inside Constructive Proofs

- Cut admissibility through tableaux, almost constructive
* rebuild proof from scratch

- Henkin completeness proofs

Computational Content of Algebraic Proofs

- switch to Natural Deduction
- more work existing
\star Normalization by Evaluation
* all Kripke (-like)
- easier to compare
\star and understand (at least, so we thought)
* no problem with disjunction in Heyting algebra

What Had to be Done

- from Sequent Calculus to Natural Deduction

What Had to be Done

- from Sequent Calculus to Natural Deduction
- notion of cut-free proof

Cut-Free Proofs

A proof is neutral it is an elimination with cut-free premises and neutral principal premiss. A proof is cut-free it is an introduction with cut-free premises.

$$
\begin{aligned}
& \frac{\Gamma \vdash \vdash_{n e} A}{\Gamma \vdash^{*} A} \text { coerce } \quad \frac{A \in \Gamma}{\Gamma \vdash_{n e} A} \text { ax } \\
& \frac{\Gamma \vdash^{*} A}{\Gamma \vdash^{*} A \wedge B} \quad \frac{\Gamma \vdash^{*} B}{\Gamma \vdash_{n e} A \wedge B} \wedge_{E_{I}} \quad \frac{\Gamma \vdash_{n e} A \wedge B}{\Gamma \vdash_{n e} B} \wedge_{E_{r}} \\
& \frac{\Gamma \vdash^{*} A}{\Gamma \vdash^{*} A \vee B} \vee_{l /} \frac{\Gamma \vdash^{*} B}{\Gamma \vdash^{*} A \vee B} \vee_{l_{r}} \quad \Gamma \vdash_{n e} A \vee B \quad A, \Gamma \vdash^{*} C \quad B, \Gamma \vdash^{*} C \vee_{E} \\
& \frac{\Gamma, A \vdash^{*} B}{\Gamma \vdash^{*} A \Rightarrow B} \Rightarrow \\
& \frac{\Gamma \vdash_{n e} A \Rightarrow B \quad \Gamma \vdash^{*} A}{\Gamma \vdash_{n e} B} \Rightarrow_{E}
\end{aligned}
$$

What Had to be Done

- from Sequent Calculus to Natural Deduction
- notion of cut-free proof

Cut-Free Proofs

A proof is neutral it is an elimination with cut-free premises and neutral principal premiss. A proof is cut-free it is an introduction with cut-free premises.

$$
\begin{aligned}
& \frac{\Gamma \vdash \vdash_{n e} A}{\Gamma \vdash^{*} A} \text { coerce } \quad \frac{A \in \Gamma}{\Gamma \vdash_{n e} A} \text { ax } \\
& \frac{\Gamma \vdash^{*} A}{\Gamma \vdash^{*} A \wedge B} \vdash^{*} B \vdash_{1} \quad \frac{\Gamma \vdash_{n e} A \wedge B}{\Gamma \vdash_{n e} A} \wedge_{E_{l}} \quad \frac{\Gamma \vdash_{n e} A \wedge B}{\Gamma \vdash_{n e} B} \wedge_{E_{r}} \\
& \frac{\Gamma \vdash^{*} A}{\Gamma \vdash^{*} A \vee B} \vee_{l /} \frac{\Gamma \vdash^{*} B}{\Gamma \vdash^{*} A \vee B} \vee_{l_{r}} \quad \Gamma \vdash_{n e} A \vee B \quad A, \Gamma \vdash^{*} C \quad B, \Gamma \vdash^{*} C \vee_{E} \\
& \frac{\Gamma, A \vdash^{*} B}{\Gamma \vdash^{*} A \Rightarrow B} \Rightarrow \\
& \frac{\Gamma \vdash_{n e} A \Rightarrow B \quad \Gamma \vdash^{*} A}{\Gamma \vdash_{n e} B} \Rightarrow_{E}
\end{aligned}
$$

- show that constructions are still valid

What had to be Done - 2

- works for first-order logic (probably more)

What had to be Done - 2

- works for first-order logic (probably more)
- formalize in Coq (propositional logic)

What had to be Done - 2

- works for first-order logic (probably more)
- formalize in Coq (propositional logic)
- extract the algorithm:
\star limitations of Coq
* either we face proof-irrelevance
* or universe inconsistency

What had to be Done - 2

- works for first-order logic (probably more)
- formalize in Coq (propositional logic)
- extract the algorithm:
\star limitations of Coq
\star either we face proof-irrelevance
* or universe inconsistency
- we can at least observe inside Coq
- or have a potentially unsound algorithm

On Examples

- how a \Rightarrow-cut is reduced

$$
\frac{\frac{\overline{A, A+A}}{\frac{A+A \Rightarrow A}{A}}{ }^{\frac{\lambda_{1}}{}} \quad \overline{\overline{A+A}}{\underset{ }{A}}^{A+A}}{} \quad \triangleright \quad \frac{}{A+A} a x
$$

On Examples

- how a \vee-cut is reduced

On Examples

- η-expansion

$$
A \vee B \vdash A \vee B
$$

On Examples

- η-expansion

$$
\frac{\frac{\overline{A \vee B \vdash A \vee B}}{} a x \frac{\overline{A \vee B, A \vdash A}}{} \frac{A x}{A \vee B, A+A \vee B} \vee_{l_{l}}}{} \frac{\overline{A \vee B, B \vdash B}}{} a x \vee_{l_{r}}
$$

On Examples

- η-expansion, one more step

Conclusion

Computational content of algebraic methods:

- still to explore
- commutative cuts

A lot of domains:

- logics with constraints (higher order)
- polarized Deduction Modulo Theory
* model theory
\star theoretical results
\star tools
* better Skolem symbols (rewriting)

This is first order, no dependent types

- $\lambda \Pi$-calculus Modulo Theory
- Dedukti

