
Automated Deduction in the B Set Theory using

Typed Proof Search and Deduction Modulo?

Guillaume Bury1, David Delahaye1, Damien Doligez2,
Pierre Halmagrand1, and Olivier Hermant3

1 Cedric/Cnam/Inria, Paris, France,
Guillaume.Bury@inria.fr

David.Delahaye@cnam.fr

Pierre.Halmagrand@inria.fr
2 Inria, Paris, France,

Damien.Doligez@inria.fr
3 CRI, MINES ParisTech, PSL Research University, Fontainebleau, France,

Olivier.Hermant@mines-paristech.fr

Abstract. We introduce an encoding of the set theory of the B method
using polymorphic types and deduction modulo, which is used for the
automated veri�cation of proof obligations in the framework of the BWare

project. Deduction modulo is an extension of predicate calculus with
rewriting both on terms and propositions. It is well suited for proof
search in theories because it turns many axioms into rewrite rules. We
also present the associated automated theorem prover Zenon Modulo, an
extension of Zenon to polymorphic types and deduction modulo, along
with its backend to the Dedukti universal proof checker, which also relies
on types and deduction modulo, and which allows us to verify the proofs
produced by Zenon Modulo. Finally, we assess our approach over the
proof obligation benchmark of BWare.

Keywords: Automated Deduction, Set Theory, BMethod, Typed Proof
Search, Deduction Modulo, Zenon Modulo, Dedukti.

1 Introduction

Reasoning within theories, whether decidable or not, has become a crucial point
in automated theorem proving. A theory, commonly formulated as a collection
of axioms, is often necessary to specify, in a concise and understandable way,
the properties of objects manipulated in software proofs, such as lists or arrays.
Each theory has its own features and speci�cities, but a small number of them
appear recurrently, among which arithmetic and set theory. For example, the B
method relies on a variant of set theory [1], and this theory is supported by some
tool sets, such as Atelier B [15], which are used in industry to specify and build,
by stepwise re�nements, software that is correct by design.

? This work is supported by the BWare project [17, 21] (ANR-12-INSE-0010) funded
by the INS programme of the French National Research Agency (ANR).

The Atelier B tool set still lacks automation: it comes with built-in automated
theorem provers but in general a lot of Proof Obligations (POs), often generated
during the re�nement process, are left to the user. He/she must then discharge
POs using the interactive theorem prover or by coming, with new proof rules that
must be veri�ed at a later stage, to the rescue of the automated theorem provers.
Due to the large practical impact of the B method in particular in industry, the
BWare project [17, 21] has committed itself to solve this issue by providing a proof
platform with several Automated Theorem Provers (ATPs) aiming to support
the veri�cation of POs coming from the development of industrial applications.

Leaving the axioms and de�nitions of set theory at the same level as the
hypotheses is not a reasonable option: �rst, it induces a combinatorial explosion
in the search space and second, axioms do not bear any speci�c meaning that
an ATP can take advantage of. To avoid these drawbacks, we replace axioms by
rewrite rules, along the lines of deduction modulo [18], a framework combining
�rst order proof systems with a congruence generated by rewrite rules on terms
and propositions. This last distinctive feature allows us to go beyond pure �rst
order reasoning. However, we must take care of preserving desirable properties
for proof search, such as consistency, cut elimination, or completeness.

In this paper, we de�ne an encoding of the set theory of the B method as a
theory modulo, i.e. a rewrite system rather than a set of axioms. As deduction
modulo applies to proof search methods in classical �rst order logic [6, 18], we
also provide this encoding with an extension of the Zenon tableau-based ATP [7]
to deduction modulo, getting a tool called Zenon Modulo [16]. In addition, this
tool features a backend [16, 13] to Dedukti [5], an universal proof checker that
also relies on deduction modulo, in order to verify the produced proofs [13].

To cope properly with the POs provided by the industrial partners of the
BWare project, we extend, in this paper, Zenon to typed proof search. We there-
fore provide Zenon with a polymorphic type system, which o�ers more �exibility,
and in particular which allows us to deal with theories that rely on elaborate type
systems, like the B set theory. If integrating types to tableaux has already been
proposed in [22, 19, 9], the novelty consists in considering polymorphic types à
la ML, through a type system in the spirit of [2]. In addition and compared to
those previous approaches, we also provide one of the very few concrete imple-
mentations of ATPs with polymorphic types.

The paper is organized as follows: in Sec. 2, we describe the extension of
Zenon to typed proof search using a polymorphic type system; we then intro-
duce, in Sec. 3, the adaptation of Zenon to deduction modulo, as well as our
formulation of the B set theory as a theory modulo; �nally, in Sec. 4, we de-
scribe the experimental results obtained on the benchmark of BWare.

2 Typed Proof Search for Zenon

In this section, we describe an extension of the Zenon ATP to typed proof search
with a polymorphic type system. This extension allows the user to feed the tool
with high-level theories as expressed in a �exible way thanks to polymorphism.

Term-level Types

τ ::= α (type variable)
| AType (type metavariable)
| ε(α : Type).e(α) (type ε-term)
| f(τ1, . . . , τm) (type constructor application)

Type Schemes

σ ::= Πα1 : Type . . . αm : Type.τ1 → . . .→ τn → τ (polymorphic terms)
| Πα1 : Type . . . αm : Type.τ1 → . . .→ τn → o (polymorphic formulas)
| Πα1 : Type . . . αm : Type.Type (polymorphic types)

Expressions

e ::= x (variable)
| Xτ (metavariable)
| ε(x : τ).e(x) (ε-term)
| e1 =τ e2 (equality)
| f(τ1, . . . , τm; e1, . . . , en) (application)
| > | ⊥ (true and false)
| ¬e | e1 ∧ e2 | e1 ∨ e2 | e1 ⇒ e2 | e1 ⇔ e2 (logical connectives)
| ∀x : τ .e(x) | ∃x : τ .e(x) (quanti�ers over terms)
| ∀α : Type.e(α) | ∃α : Type.e(α) (quanti�ers over types)

Fig. 1. Types, Type Schemes, and Expressions

2.1 Polymorphic Type System

Before introducing the proof search rules of Zenon, which deal with classical �rst
order logic with equality, we extend expressions to polymorphic types à la ML,
through a type system in the spirit of [2]. The language of �rst-order expres-
sions with polymorphic types is provided in Fig. 1, where τ is a term-level type,
σ a type scheme that may bind type variables, used for polymorphic symbols,
and e an expression (term or formula), in which functions and predicates may
now be polymorphic and bear type arguments. In this context, formulas may be
quanti�ed over types, as long as these quanti�cations occur before any quanti�-
cation over terms (not enforced in our simpli�ed Fig. 1). It should be noted that
the very expressions of Fig. 1 are used during proof search. This explains why
there are metavariables (capitalized here, often named free variables in tableau-
related literature), which are used to �nd instantiations by uni�cation, as well as
Hilbert's ε-terms (ε(x).P (x) is a term/type meaning some x that satis�es P (x),
if it exists), an alternative to Skolem terms. In the sequel, we write e 6=τ e′ for
¬(e =τ e′), and f for f() when f has arity 0.

To introduce typing judgments, we need contexts. They contain pairs of
symbols with a type: the global context ΓG contains function/predicate symbols
and constructors, while the local context ΓL contains term and type variables.
A typing context Γ is a pair ΓG;ΓL.

Well-Formedness Rules

WF0
(∅; ∅) wf

ΓG;ΓL ` κ : Kind
WF1

(ΓG;ΓL, x : κ) wf

ΓG; ∅ ` f : σ
WF2

(ΓG, f : σ; ∅) wf

Typing Rules

Γ, x : κ wf
Var

Γ, x : κ ` x : κ

Γ ` κ : Kind
Meta

Γ ` Xκ : κ
Γ wf

Type
Γ ` Type : Kind

Γ ` τ : Type
Sub

Γ ` τ : Kind

Γ ` κ : Kind Γ, x : κ ` P (x) : o
ε

Γ ` ε(x : κ).P (x) : κ

Γ ` τ : Type Γ ` a : τ Γ ` b : τ
=

Γ ` a =τ b : o

ΓG;α1 : Type, . . . , αm : Type ` τi : Type, i = 1 . . . n

ΓG;α1 : Type, . . . , αm : Type ` κo : Kind (or κo = o)
Sym

ΓG; ∅ ` f : Πα1 : Type . . . αm : Type.τ1 → . . .→ τn → κo

(f : Πα1 : Type . . . αm : Type.τ1 → . . .→ τn → κo) ∈ Γ
Γ ` τ ′i : Type, i = 1 . . .m Γ ` ei : τi[α1/τ

′
1, . . . , αm/τ

′
m], i = 1 . . . n

App
Γ ` f(τ ′1, . . . , τ

′
m; e1, . . . , en) : κo[α1/τ

′
1, . . . , αm/τ

′
m]

Γ wf >
Γ ` > : o

Γ wf ⊥
Γ ` ⊥ : o

Γ ` P : o ¬
Γ ` ¬P : o

Γ ` P : o Γ ` Q : o
∧

Γ ` P ∧Q : o

Γ ` P : o Γ ` Q : o
∨

Γ ` P ∨Q : o

Γ ` P : o Γ ` Q : o ⇒
Γ ` P ⇒ Q : o

Γ ` P : o Γ ` Q : o ⇔
Γ ` P ⇔ Q : o

Γ ` κ : Kind Γ, x : κ ` P (x) : o
∀

Γ ` ∀x : κ.P (x) : o

Γ ` κ : Kind Γ, x : κ ` P (x) : o
∃

Γ ` ∃x : κ.P (x) : o

Fig. 2. Typing Rules

Fig. 2 presents the rules for a single (as customary for pure type systems) typ-
ing judgment for expressions, types, constructors, function/predicate symbols,
and the Type constant. The relation Γ ` t : σ means that, in the context Γ , the
term (type, expression, etc.) t is well-typed of type (scheme) σ. To factorize rules
(e.g., ∀, Meta or Sym), we embed the term-level types into Kind by the Sub rule.
So, κ : Kind is either a term-level type, or Type. Similarly, κo is either κ, or o
(the type of formulas). The usual freshness condition holds in the rules WF1/2,
App, Var, ∀, ∃, ε, where in the four last cases, Γ, x : κ denotes ΓG;ΓL, x : κ.

ΓG being provided by the built-in theory once and for all, we often elide it,
writing t : σ for ΓG; ∅ ` t : σ, and t1, . . . , tn : σ for ti : σ, i = 1 . . . n. In addition,
we write ∀x1, . . . , xn : κ.e for ∀x1 : κ.∀xn : κ.e, where κ is a Kind, as well as
for the other binders ∃ and Π.

Closure Rules

⊥ �⊥�
P,¬P

��
¬Rr(τ1, . . . , τm; a, a)

�r�

¬> �¬>�
Rs(τ1, . . . , τm; a, b),¬Rs(τ1, . . . , τm; b, a)

�s�

Analytic Rules

¬¬P α¬¬
P

P ∧Q
α∧

P,Q

¬(P ∨Q)
α¬∨¬P,¬Q

¬(P ⇒ Q)
α¬⇒

P,¬Q
P ∨Q

β∨
P | Q

¬(P ∧Q)
β¬∧¬P | ¬Q

P ⇒ Q
β⇒¬P | Q

P ⇔ Q
β⇔¬P,¬Q | P,Q

¬(P ⇔ Q)
β¬⇔¬P,Q | P,¬Q

∃x : κ.P (x)
δ∃

P (ε(x : κ).P (x))

¬∀x : κ.P (x)
δ¬∀¬P (ε(x : κ).¬P (x))

γ-Rules

∀x : κ.P (x)
γ∀M

P (Xκ)

¬∃x : κ.P (x)
γ¬∃M

¬P (Xκ)

∀x : κ.P (x)
γ∀inst
t : κP (t)

¬∃x : κ.P (x)
γ¬∃inst
t : κ¬P (t)

Fig. 3. Proof Search Rules (Part 1)

2.2 Proof Search Rules

The rules summarized in Figs. 3 and 4 are an adaptation of the rules of Zenon [7]
to typed formulas. For the sake of simplicity, we have omitted the unfolding and
extension rules. The ��� symbol is used for closure, while � |� separates two dis-
tinct nodes to be created, and Rr, Rs, Rt, and Rts respectively denote re�exive,
symmetric,transitive, and transitive-symmetric relations, including equality. It
should be noted that the δ and γ rules also deal with quanti�cation over types.

The proof-search algorithm is the usual tableau method: starting from the
negation of the goal, apply the rules in a top-down fashion to build a tree. When
all branches end with a closure rule, the tree is closed, and it is a proof of the goal.
Search is done in strict depth-�rst order: we close the current branch before we
start working on another branch. Moreover, we work in a non-destructive way:
extending a branch never changes the formulas elsewhere.

Given an initially well-typed formula, it should be noted that the proof search
rules generate only well-typed formulas. All these generated formulas can be

Relational Rules

P (τ1, . . . , τm; a1, . . . , an),¬P (τ1, . . . , τm; b1, . . . , bn)
pred
ai, bi : τ ′i , i = 1 . . . na1 6=τ ′1

b1 | . . . | an 6=τ ′n bn

f(τ1, . . . , τm; a1, . . . , an) 6= f(τ1, . . . , τm; b1, . . . , bn)
fun
ai, bi : τ ′i , i = 1 . . . na1 6=τ ′1

b1 | . . . | an 6=τ ′n bn

Rs(τ1, . . . , τm; a, b),¬Rs(τ1, . . . , τm; c, d)
sym
a, b, c, d : τa 6=τ d | b 6=τ c

¬Rr(τ1, . . . , τm; a, b)
¬refl
a, b : τ

a 6=τ b

Rt(τ1, . . . , τm; a, b),¬Rt(τ1, . . . , τm; c, d)
trans
a, b, c, d : τc 6=τ a,¬Rt(τ1, . . . , τm; c, a)

| b 6=τ d,¬Rt(τ1, . . . , τm; b, d)

Rts(τ1, . . . , τm; a, b),¬Rts(τ1, . . . , τm; c, d)
transsym
a, b, c, d : τd 6=τ a,¬Rt(τ1, . . . , τm; d, a)

| b 6=τ c,¬Rts(τ1, . . . , τm; b, c)

a =τ b,¬Rt(τ1, . . . , τm; c, d)
transeq
a, b, c, d : τc 6=τ a,¬Rt(τ1, . . . , τm; c, a)

| ¬Rt(τ1, . . . , τm; c, a),¬Rt(τ1, . . . , τm; b, d)
| b 6=τ d,¬Rt(τ1, . . . , τm; b, d)

a =τ b,¬Rts(τ1, . . . , τm; c, d)
transeqsym
a, b, c, d : τd 6=τ a,¬Rts(τ1, . . . , τm; d, a)

| ¬Rts(τ1, . . . , τm; a, d),¬Rts(τ1, . . . , τm; b, c)
| b 6=τ c,¬Rts(τ1, . . . , τm; b, c)

Fig. 4. Proof Search Rules (Part 2)

typed in the empty local context (we use Church-style ε-terms, decorating the
bound variable with its type, and the metavariables carry their types), which
explains the simpli�ed form of the typing side conditions.

Within polymorphic theories, the typed version of Zenon allows us to narrow
the search space and produce smaller proofs, since the typing constraints are
handled at the metalevel, while the untyped version of Zenon needs an encoding
of the polymorphic layer, as in [4]. This will become clear in Sec. 4 with a
comparative benchmark in the B set theory, which is typed.

∀α : Type.∀x, y : α.P (α;x, y),¬P (τ ; a, b)
γ∀M

∀x, y : AType.P (AType;x, y)
γ∀M × 2

P (AType;XAType
, YAType

)
γ∀inst

∀x, y : τ.P (τ ;x, y)
γ∀M × 2

P (τ ;Xτ , Yτ)
pred

Xτ 6=τ a γ∀inst
∀y : τ.P (τ ; a, y)

γ∀M
P (τ ; a, Y ′τ)

pred
a 6=τ a �r�

Y ′τ 6=τ b γ∀inst
P (τ ; a, b)

��

Yτ 6=τ b

Fig. 5. Proof Search Example with Metavariables

2.3 Handling Metavariables

In Zenon, metavariables, introduced by the rules γ∀M and γ¬∃M , play a special
role. They serve to simulate a closure rule to determine a substitution by uni-
�cation. But we do not substitute them everywhere in the tableau, instead we
instantiate the formulas that introduced the metavariables (using the rules γ∀inst
and γ¬∃inst). A single metavariable may therefore generate several instances.

In presence of polymorphism, type metavariables may also be introduced (by
the same rules). In contrast with terms, we can a�ord more simplicity. Figs. 3
and 4 have rules with non-linearity constraints (e.g., the type arguments of P
in the pred rule) and side conditions (e.g., in the γ∀inst rule) on types. Type
constraints do not turn into regular formulas (in contrast with the ai, bi in pred),
so uni�cation is not postponed to closure. Instead, when trying to apply such
a rule, we directly look for a (type metavariable) substitution that satis�es the
constraints. In case of success, we instantiate the initial formulas. This shortcut
minimizes both the search space and the size of proof trees.

As an example, consider a relation P : Πα : Type.α→ α→ o, and constants
τ : Type and a, b : τ . Assuming ∀α : Type.∀x, y : α.P (α;x, y), we prove P (τ ; a, b).
The proof is given in Fig. 5 (before pruning of useless formulas; see [7]) where,
once the formula P (AType;XAType

, YAType
) is introduced, we try to apply the pred

rule, which requires �rst instantiating the type metavariable AType with τ .

3 A Theory Modulo for the B Set Theory

In this section, we introduce the notion of deduction modulo, as well as the
corresponding extension of Zenon, and show how to express the set theory of the
B method in this framework.

3.1 Deduction Modulo

Deduction modulo [18] reasons over equivalence classes of formulas under a con-
gruence generated by rewrite rules. Compared to [18], we extend deduction mod-
ulo to �rst order logic with polymorphic types, so as to properly extend the typed
proof search method of Zenon of Sec. 2. The language is that of Fig. 1, without
metavariables and ε-terms. A term is an expression that is either a variable or
an application, a proposition or formula is an expression that is not a term. In
the following, given an expression e, FV(e) and FVτ (e) respectively stand for
the set of (type and term) free variables and the set of free type variables of e.

De�nition 1 (Class Rewrite System). A term (resp. proposition) rewrite
rule is a pair of terms (resp. formulas) l and r together with a local typing
context ΓL, denoted l −→ΓL

r, verifying FV(r) ⊆ FV(l) ⊆ ΓL, and s.t. if l is a
term, then it is not a variable, and if l is a formula, then it is atomic.
An equational axiom is a pair of terms l and r together with a local typing context
ΓL, denoted l =ΓL

r.
Rewrite rules and equational axioms are said to be well-formed in a global typing
context ΓG if l and r have the same type in ΓG;ΓL.
A class rewrite system, denoted RE, consists of a set of proposition rewrite rules
R and a set of term rewrite rules and equational axioms E. It is well-formed in
a global typing context ΓG if all the rewrite rules are well-formed in ΓG.

Given a class rewrite system RE , the relations =E and =RE are the congru-
ences respectively generated by E and R∪ E .

De�nition 2 (RE-Rewriting). Given a global typing context ΓG and a class
rewrite system RE well-formed in ΓG, a formula ϕ RE-rewrites to ϕ′, denoted
ϕ −→RE ϕ′, if ϕ =E ψ, ψ|ω = σ(ρ(l)) and ϕ′ = ψ[σ(ρ(r))]ω, for some rule
l −→ΓL

r ∈ R, some formula ψ, some occurrence ω in ϕ, some type substitution
ρ, some term substitution σ, and where ψ|ω is the expression at occurrence ω in
ψ, and ψ[σ(ρ(r))]ω is the expression ψ where ψ|ω is replaced by σ(ρ(r)).

If the formula ϕ is well-typed in ΓG, then the type and term substitutions ρ
and σ are well-formed in the sense that they replace types or terms with types
or terms of the same type, and ϕ′ has the same type than ϕ in ΓG.

The relation =RE is not decidable in general, but this is in particular the
case when −→RE is con�uent and (weakly) terminating, and =E is decidable.

3.2 Extension of Zenon to Deduction Modulo

Given a global typing context ΓG and a class rewrite system RE well-formed in
ΓG, extending Zenon to deduction modulo then consists in adding to the proof
search rules of Figs. 3 and 4 the following conversion rule:

P conv, P=REQ
Q

This presentation is more modular than the one described in [16], where the
congruence =RE is part of every proof search rule.

The metavariable instantiation mechanism of Sec. 2.3 needs adaptation: we
look for formulas P and Q s.t. P =RE P

′, Q =RE ¬Q′, and there exist a type
substitution ρ and a term substitution σ s.t. σ(ρ(P ′)) =E σ(ρ(Q′)). To have
a complete rewriting algorithm, we also extend metavariable instantiation to
propositional narrowing: we look for a formula P , a type substitution ρ, and a
term substitution σ s.t. P =RE P

′, and there exist P ′
|ω and a rule l −→ΓL

r of

RE s.t. σ(ρ(P ′
|ω)) =E σ(ρ(l)).

3.3 Rules for a B Set Theory Modulo

Expressing the B set theory as a theory modulo amounts to building an adequate
class rewrite system. To do so, we transform whenever possible the axioms and
de�nitions of Chap. 2 of the B-Book [1] into rewrite rules (equational axiom are
not needed), reusing the in�x notation of the B-Book. The resulting theory is
summarized in Figs. 6 and 7, where we omit the set BIG (an arbitrary in�nite
set, only used to build natural numbers in the foundational theory), and the sets
de�ned in extension (we only consider the singleton set, which can be used to
derive sets de�ned in extension, and which is also used in other de�nitions). It
should be noted that the constructs and notations are, for a large part of them,
speci�c to the B method, as they are used for the modeling of industrial projects,
and are not necessarily standard in set theory.

This theory is typed. The type constructors, i.e. tup for tuples and set for
sets, and type schemes of the considered set constructs are provided in Fig. 8
of Appx. A. Type arguments are subscript annotations of the construct; for
example, given two expressions s, t : set(τ), where τ is a type, the intersection
of s and t is noted s ∩τ t, and is s.t. s ∩τ t : set(τ). To improve readability,
we remove the type annotations in tuples when they are redundant with the
membership construct, i.e. given the expressions e1, e2, and e3, s.t. e1 : τ1 and
e2 : τ2, where τ1 and τ2 are two types, (e1, e2)τ1,τ2 ∈tup(τ1,τ2) e3 is simply noted
(e1, e2) ∈tup(τ1,τ2) e3.

As can be seen, we only consider �rst order constructs. This means that we
do not handle comprehension (Axiom SET 3 of the B-Book) or lambda abstrac-
tions. We therefore eliminate comprehension from the axioms where it appears.
For example, the left-hand side formula below is the initial de�nition of the
intersection construct, while the right-hand side formula is its unraveled variant:

s ∩α t =̂ {x : α | x ∈α s ∧ x ∈α t} ∀x : α.x ∈α s ∩α t⇔ x ∈α s ∧ x ∈α t

This comprehension-free axiom (the right-hand side formula) can then be
easily turned into the following rewrite rule:

x ∈α s ∩α t −→ x ∈α s ∧ x ∈α t

It should be noted that expressing the B set theory in a polymorphic way is
necessary to transform it into a theory modulo. In pure �rst-order logic (without

Axioms of Set Theory

(x, y) ∈tup(α1,α2) s×α1,α2 t −→ x ∈α1 s ∧ y ∈α2 t
s ∈set(α) Pα(t) −→ ∀x : α.x ∈α s⇒ x ∈α t
s =set(α) t −→ ∀x : α.x ∈α s⇔ x ∈α t

Set Inclusion

s ⊆α t −→ s ∈set(α) Pα(t) s ⊂α t −→ s ⊆α t ∧ s 6=set(α) t

Derived Constructs

x ∈α s ∪α t −→ x ∈α s ∨ x ∈α t x ∈α s ∩α t −→ x ∈α s ∧ x ∈α t
x ∈ s−α t −→ x ∈α s ∧ x 6∈α t x ∈α ∅α −→ ⊥
x ∈α {a}α −→ x =α a P1 α(s) −→ Pα(s)−α {∅α}set(α)

Binary Relation Constructs: First Series

p ∈set(tup(α1,α2)) u↔α1,α2 v −→
∀x : α1.∀y : α2.(x, y) ∈tup(α1,α2) p⇒ x ∈α1 u ∧ y ∈α2 v

(y, x) ∈tup(α2,α1) p
−1
α1,α2

−→ (x, y) ∈tup(α1,α2) p
x ∈α1 domα1,α2(p) −→ ∃b : α2.(x, b) ∈tup(α1,α2) p
x ∈α2 ranα1,α2(p) −→ ∃a : α1.(a, x) ∈tup(α1,α2) p
(x, y) ∈tup(α1,α3) p;α1,α2,α3 q −→ ∃b : α2.(x, b) ∈tup(α1,α2) p ∧ (b, y) ∈tup(α2,α3) q
q ◦α1,α2,α3 p −→ p;α1,α2,α3 q
(x, y) ∈tup(α,α) idα(u) −→ x ∈α u ∧ x =α y
(x, y) ∈tup(α1,α2) sCα1,α2 p −→ (x, y) ∈tup(α1,α2) p ∧ x ∈α1 s
(x, y) ∈tup(α1,α2) pBα1,α2 t −→ (x, y) ∈tup(α1,α2) p ∧ y ∈α2 t
(x, y) ∈tup(α1,α2) s −C α1,α2p −→ (x, y) ∈tup(α1,α2) p ∧ x 6∈α1 s
(x, y) ∈tup(α1,α2) p −B α1,α2t −→ (x, y) ∈tup(α1,α2) p ∧ y 6∈α2 t

Fig. 6. Rules of the B Set Theory Modulo (Part 1)

types), as done in the B-Book, the axiom for intersection is:

∀u, x.s ⊆ u⇒ t ⊆ u⇒ (x ∈ s ∩ t⇔ x ∈ s ∧ x ∈ t)

The rule corresponding to this axiom requires conditional rewriting (namely
the guards s ⊆ u and t ⊆ u, that force s and t to belong to a same superset u:
this is how the B-Book gives types to s and t). This has not yet been studied in
the framework of deduction modulo (a start in this direction is [10]), and guard
conditions must be therefore avoided in the axioms as much as possible.

To sum up, our formulation of the BIG- and extension-free B set theory sticks
closely to the B-Book. Still, we need conservativity results, which boils down
to cross-derivability of the initial axioms and de�nitions in our system (com-
pleteness) and the formulas associated to our rewrite rules in the initial system
(correctness). Correctness of our �inlined� rewrite rules follows from immediate
applications of the comprehension axiom itself, but without further considera-
tions, completeness fails. Sometimes, it is necessary to introduce a set de�ned

Binary Relation Constructs: Second Series

x ∈α2 p[w]α1,α2 −→ ∃a : α1.a ∈α1 w ∧ (a, x) ∈tup(α1,α2) p
(x, y) ∈tup(α1,α2) q +++< α1,α2p −→

((x, y) ∈tup(α1,α2) q ∧ x 6∈α1 domα1,α2(p)) ∨ (x, y) ∈tup(α1,α2) p
(x, (y, z)) ∈tup(α1,tup(α2,α3)) f ⊗α1,α2,α3 g −→ (x, y) ∈tup(α1,α2) f ∧ (x, z) ∈tup(α1,α3) g
((x, y), z) ∈tup(tup(α1,α2),α1) prj1 α1,α2

(s, t) −→
((x, y), z) ∈tup(tup(α1,α2),α1) (s×α1,α2 t)×tup(α1,α2),α1

s ∧ x =α1 z
((x, y), z) ∈tup(tup(α1,α2),α2) prj2 α1,α2

(s, t) −→
((x, y), z) ∈tup(tup(α1,α2),α1) (s×α1,α2 t)×tup(α1,α2),α1

t ∧ y =α1 z
((x, y), (z, w)) ∈tup(tup(α1,α3),tup(α2,α4)) h||α1,α2,α3,α4

k −→
(x, z) ∈tup(α1,α2) h ∧ (y, w) ∈tup(α3,α4) k

Function Constructs: First Series

f ∈set(tup(α1,α2)) s 7→ α1,α2t −→ f ∈set(tup(α1,α2)) s↔α1,α2 t ∧
∀x : α1.∀y, z : α2.(x, y) ∈tup(α1,α2) f ∧ (x, z) ∈tup(α1,α2) f ⇒ y =α2 z

f ∈set(tup(α1,α2)) s→α1,α2 t −→
f ∈set(tup(α1,α2)) s 7→ α1,α2t ∧ domα1,α2(f) =set(α1) s

f ∈set(tup(α1,α2)) s 7� α1,α2t −→
f ∈set(tup(α1,α2)) s 7→ α1,α2t ∧ f−1

α1,α2
∈set(tup(α2,α1)) t 7→ α2,α1s

f ∈set(tup(α1,α2)) s�α1,α2 t −→
f ∈set(tup(α1,α2)) s 7� α1,α2t ∧ f ∈set(tup(α1,α2)) s→α1,α2 t

f ∈set(tup(α1,α2)) s 7� α1,α2t −→
f ∈set(tup(α1,α2)) s 7→ α1,α2t ∧ ranα1,α2(f) =set(α2) t

f ∈set(tup(α1,α2)) s�α1,α2 t −→
f ∈set(tup(α1,α2)) s 7� α1,α2t ∧ f ∈set(tup(α1,α2)) s→α1,α2 t

f ∈set(tup(α1,α2)) s 7�� α1,α2t −→
f ∈set(tup(α1,α2)) s 7� α1,α2t ∧ f ∈set(tup(α1,α2)) s 7� α1,α2t

f ∈set(tup(α1,α2)) s�� α1,α2t −→
f ∈set(tup(α1,α2)) s�α1,α2 t ∧ x ∈set(tup(α1,α2)) s�α1,α2 t

Fig. 7. Rules of the B Set Theory Modulo (Part 2)

by comprehension, for example to prove that �a set is not in bijection with its
power set�. However, this kind of smart trick is seldom met in practice. This is
also related to completeness of the proof search algorithm, which performs in a
cut-free calculus. In fact, elaborating a theory modulo does not only consist in
turning axioms into rewrite rules, but we must be careful to keep cut-free com-
pleteness, especially when this theory is the heart of a proof search method. The
problem of cut elimination is known to be very di�cult in deduction modulo [8],
and we therefore leave these questions for future work.

4 Experimental Results

To assess the extensions of Zenon and the design of the B set theory modulo (see
Secs. 2 and 3), we use a benchmark of POs provided by the industrial partners of

the BWare project [17, 21]. This benchmark comes from four anonymized indus-
trial projects that were selected by the industrial partners for the representativity
of their POs. The POs are not necessarily tricky mathematical properties, their
di�culty comes from their size, the large context provided, or the number of
quanti�ed variables (the mean size of the statements of these POs in TFF1 for-
mat is 515 KiB, with a maximum of 2,690 KiB). To run the tests, we rely on
the BWare veri�cation platform, which we outline brie�y. The POs are initially
produced by Atelier B. They are then translated intoWhy3 �les [3], using aWhy3

encoding of the B set theory [20]. Next, from these �les, the Why3 platform pro-
duces (through appropriate drivers) the POs for the automated deduction tools.
Why3's B set theory is interpreted as rewrite rules (according to Sec. 3) for tools
compliant with deduction modulo, otherwise as axioms. As this theory appeals
to polymorphism, the output format may be either the new TFF1 format [2] of
the TPTP community for the �rst order polymorphic ATPs, or the regular FOF
format with an encoding of the polymorphic layer [4] for the other �rst-order
ATPs, or the SMT-LIB format with the same encoding for SMT solvers, except
for Alt-Ergo, which features a native format and polymorphism.

The benchmark consists in 12,876 POs4, and the experiment was run on an
Intel Xeon E5-2660 v2 2.20 GHz computer, with a timeout of 120 s and a memory
limit of 1 GiB. The results are summarized in Tab. 1. In these results, the �rst
table focuses on the results for �ve di�erent versions of Zenon, mainly based
on Zenon 0.8.0 and compared to the main prover (mp) of Atelier B 4.0. The
second table compares all the tools of BWare, i.e. mp, Zenon, Alt-Ergo 0.99.1,
and iProver Modulo v0.7+0.2 (an extension of iProver v0.7 to deduction modulo),
with a representative panel of �rst-order ATPs, such as Vampire 2.6 and E 1.8,
and SMT solvers, like CVC4 1.4 and Z3 4.3.2. Among these tools, only Zenon with
deduction modulo and iProver Modulo implement deduction modulo, while only
Zenon with types and Alt-Ergo have polymorphic types. Further information
regarding this experiment can be found in Appx. C (in particular, the input
format of the benchmark and the command line used for each tool are provided).

For both tables, we provide the number of proved POs, the corresponding
rate, and the cumulative time for the successfully proved POs (not measured for
mp, since it is not possible to split the timeout by PO). The �Unique� line refers
to the number of POs that are only proved by a given prover; in the second
table, �Uniq. (1)� ranges over the BWare tools, while �Uniq. (2)� considers all the
tools. Coverage is given on top of tables; in the second table, we also distinguish
the coverage for all the tools and among the BWare tools. In addition, Fig. 9 of
Appx. B presents the cumulative times according to the numbers of proved POs,
and shows the trends in terms of proof power w.r.t. the time resource.

In the �rst table, in addition to the regular version of Zenon, we present the
extensions with (polymorphic) types, with types and arithmetic, with types and
deduction modulo, and with types, deduction modulo, and arithmetic, which is
currently the regular version of Zenon Modulo5. The arithmetic extension [12]

4 This benchmark is publicly available at: http://bware.lri.fr/.
5 Available at: https://www.rocq.inria.fr/deducteam/ZenonModulo/.

All Tools (12,738/98.9%)

#POs:

12,876
mp Zenon

Zenon
(T)

Zenon
(T+A)

Zenon
(T+M)

Zenon
(T+M+A)

Proofs 10,995 337 6,251 7,406 10,340 12,281

Rate 85.4% 2.6% 48.5% 57.5% 80.3% 95.4%

Time (s) - 2,316 14,452 18,514 31,665 31,689

Unique 329 0 0 0 34 946

All Tools (12,797/99.4%)

BWare Tools (12,772/99.2%) Other Tools

#POs:

12,876
mp

Zenon
(T+M+A)

iProver

Modulo
Alt-Ergo Vampire E CVC4 Z3

Proofs 10,995 12,281 3,695 12,620 10,154 7,919 12,173 10,880

Rate 85.4% 95.4% 28.7% 98.0% 78.9% 61.2% 94.5% 84.5%

Time (s) - 31,689 20,156 7,129 118,541 36,969 8,378 3,404

Uniq. (1) 109 4 0 65

Uniq. (2) 84 0 0 13 0 0 1 12

T ≡ with types M ≡ with deduction modulo A ≡ with arithmetic

Table 1. Experimental Results over the BWare Benchmark

handles linear arithmetic formulas, and relies on the simplex algorithm to com-
pute solutions for systems over rationals, as well as on the branch and bound
method to deal with integer systems [14]. As can be observed, the more exten-
sions we plug, the more POs we prove. The most signi�cant gain is provided
by the type extension, where we get an increase of about 1755% compared to
Zenon. Plugging deduction modulo gives an additional increase of 65%. Finally,
connecting arithmetic on top allows us to prove 20% more POs, and to improve
by 10 percentage points on mp.

In the second table, we observe that Zenon with types and deduction mod-
ulo (but without arithmetic) obtains better results than the �rst order ATPs
Vampire and E w.r.t. the number of proved POs. Vampire remains close to Zenon
(10,154 proofs compared to 10,340 proofs for Zenon), but Zenon appears to be
about 4 times faster than Vampire over all the proved POs (with a cumulative
time of 31,665 s compared to 118,541 s for Vampire). Similarly, Zenon with all
the extensions proves more POs than the SMT solvers CVC4 and Z3, except
Alt-Ergo. However, it should be noted that CVC4 is close to Zenon (12,173 proofs
compared to 12,281 proofs for Zenon), and has a signi�cant lower cumulative
time (8,378 s compared to 31,689 s for Zenon). The low results of iProver Modulo

can be explained by the encoding of polymorphism, which hampers the analysis
of the theory and the generation of a rewrite system similar to the one of Sec. 3.

As described in [16], Zenon Modulo enjoys a backend that outputs certi�cates
for Dedukti [5], a universal proof checker for the λΠ-calculus modulo. Since it
also relies on deduction modulo, Dedukti natively deals with rewriting and is well-
suited to verify the proofs of Zenon Modulo. In particular, we do not record the
rewriting steps in the proofs (these steps are implicitly done by Dedukti), which
are therefore quite compact. The logic of Dedukti is constructive, and calls for a
translation initially based on an optimized double-negation translation (see [16]).
This translation has been replaced by a more syntactical one using excluded
middle explicitly (see [13]), which is more e�cient in practice. Currently, this
backend deals with all the proofs not involving arithmetic, and all the 10,340
relevant proofs of Tab. 1 have been approved by Dedukti.

5 Conclusion

In this paper, we have observed the bene�ts of typing and rewriting for auto-
mated deduction, implemented in the Zenon Modulo tool, and applied to the B
set theory. We have assessed this claim on thousands of POs provided by the
BWare project. Our tool competes with state-of-the-art �rst order ATPs (with-
out arithmetic) and SMT solvers (with arithmetic), and obtain better results
than a large part of them. This tends to show that our tool scales up, and is
ready to be applied in any industrial project using the B method. More generally,
this work could also be adapted to any framework of formal method based on
set theory modeling, as the B set theory includes few speci�cities compared to
Zermelo-Fraenkel set theory for example.

As future work, we aim to integrate conditional rewrite rules to Zenon Modulo

along the lines of [10], so as to turn more axioms of the B set theory into rewrite
rules (currently, some axioms remain, for instance function application). We
also plan to study theoretical properties, in particular cut-free completeness.
As there is no general way to ensure this in deduction modulo [11], we will
probably use speci�c techniques to our case. We also plan to enhance the Dedukti
backend of Zenon Modulo with arithmetic, and make Dedukti understand these
computations. We foresee an extension of the conversion rule of Dedukti, shifting
from rewriting to reasoning modulo a decision procedure. This would allow us
to produce yet more compact certi�cates. Finally, within the BWare project, we
will increase the variety of available domains and applications of the benchmark,
by integrating a new large project. The �nal benchmark will contain more than
80,000 proof obligations, which will be one of the largest academic benchmarks
in the domain of program veri�cation. Still in the objectives of BWare, we intend
to make this work usable in industry. A �rst step has been done in this direction
in the latest version of Atelier B, which now proposes a Why3 output. To obtain
a similar integration of Zenon Modulo, we need to certify it, which should be
eased by its ability to produce certi�cate checkable by Dedukti.

References

1. J.-R. Abrial. The B-Book, Assigning Programs to Meanings. Cambridge University
Press, Cambridge (UK), 1996. ISBN 0521496195.

2. J. C. Blanchette and A. Paskevich. TFF1: The TPTP Typed First-Order Form
with Rank-1 Polymorphism. In CADE, volume 7898 of LNCS, pages 414�420.
Springer, June 2013.

3. F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. Why3: Shepherd Your Herd
of Provers. In Boogie, Aug. 2011.

4. F. Bobot and A. Paskevich. Expressing Polymorphic Types in a Many-Sorted
Language. In FroCoS, volume 6989 of LNCS, pages 87�102. Springer, Oct. 2011.

5. M. Boesp�ug, Q. Carbonneaux, and O. Hermant. The λΠ-Calculus Modulo as a
Universal Proof Language. In PxTP, pages 28�43, June 2012.

6. R. Bonichon. TaMeD: A Tableau Method for Deduction Modulo. In IJCAR,
volume 3097 of LNCS, pages 445�459. Springer, July 2004.

7. R. Bonichon, D. Delahaye, and D. Doligez. Zenon: An Extensible Automated The-
orem Prover Producing Checkable Proofs. In LPAR, volume 4790 of LNCS/LNAI,
pages 151�165. Springer, Oct. 2007.

8. R. Bonichon and O. Hermant. A Semantic Completeness Proof for Tableaux Mod-
ulo. In LPAR, volume 4246 of LNCS, pages 167�181. Springer, Nov. 2006.

9. C. E. Brown and G. Smolka. Analytic Tableaux for Simple Type Theory and its
First-Order Fragment. LMCS, 6(2), June 2010.

10. G. Burel. Cut Admissibility by Saturation. In RTA-TLCA, volume 8560 of LNCS,
pages 124�138. Springer, July 2014.

11. G. Burel and C. Kirchner. Regaining Cut Admissibility in Deduction Modulo using
Abstract Completion. Information and Computation, 208(2):140�164, Feb. 2010.

12. G. Bury and D. Delahaye. Integrating Simplex with Tableaux. In TABLEAUX,
LNCS. Springer, Sept. 2015. To appear.

13. R. Cauderlier and P. Halmagrand. Checking Zenon Modulo Proofs in Dedukti. In
PxTP, EPTCS, Aug. 2015. To appear.

14. V. Chvátal. Linear Programming. Series of Books in the Mathematical Sciences.
W. H. Freeman and Company, New York (USA), 1983. ISBN 0716715872.

15. ClearSy. Atelier B 4.2.1, Mar. 2015. http://www.atelierb.eu/.
16. D. Delahaye, D. Doligez, F. Gilbert, P. Halmagrand, and O. Hermant. Zenon Mod-

ulo: When Achilles Outruns the Tortoise using Deduction Modulo. In LPAR,
volume 8312 of LNCS/ARCoSS, pages 274�290. Springer, Dec. 2013.

17. D. Delahaye, C. Dubois, C. Marché, and D. Mentré. The BWare Project: Building
a Proof Platform for the Automated Veri�cation of B Proof Obligations. In ABZ,
LNCS, pages 126�127. Springer, June 2014.

18. G. Dowek, T. Hardin, and C. Kirchner. Theorem Proving Modulo. JAR, 31(1):33�
72, Sept. 2003.

19. M. Giese. A Calculus for Type Predicates and Type Coercion. In TABLEAUX,
volume 3702 of LNCS, pages 123�137. Springer, Sept. 2005.

20. D. Mentré, C. Marché, J.-C. Filliâtre, and M. Asuka. Discharging Proof Obligations
from Atelier B using Multiple Automated Provers. In ABZ, volume 7316 of LNCS.
Springer, June 2012.

21. The BWare Project, 2012. http://bware.lri.fr/.
22. C. Weidenbach. First-Order Tableaux with Sorts. Logic Journal of the IGPL,

3(6):887�906, Oct. 1995.

A Typing of the Theory Modulo for the B Set Theory

Type Constructors

tup : Πα1, α2 : Type.Type set : Πα : Type.Type

Type Schemes of the Set Constructs

- ∈ - : Πα : Type.α→ set(α)→ o
(-, -) : Πα1, α2 : Type.α1 → α2 → tup(α1, α2)
-× - : Πα1, α2 : Type.set(α1)→ set(α2)→ set(tup(α1, α2))
P(-) : Πα : Type.set(α)→ set(set(α))
- = - : Πα : Type.α→ α→ o
BIG : Πα : Type.set(α)
- ⊆ -, - (- :

Πα : Type.set(α)→ set(α)→ o
- ∪ -, - ∩ -, -− - :

Πα : Type.set(α)→ set(α)→ set(α)
{-} : Πα : Type.α→ set(α)
∅ : Πα : Type.set(α)
P1(-) : Πα : Type.set(α)→ set(set(α))
-↔ - : Πα1, α2 : Type.set(α1)→ set(α2)→ set(set(tup(α1, α2)))
-−1 : Πα1, α2 : Type.set(tup(α1, α2))→ set(tup(α2, α1))
dom(-) : Πα1, α2 : Type.set(tup(α1, α2))→ set(α1)
ran(-) : Πα1, α2 : Type.set(tup(α1, α2))→ set(α2)
-; - : Πα1, α2, α3 : Type.set(tup(α1, α2))→ set(tup(α2, α3))→ set(tup(α1, α3))
- ◦ - : Πα1, α2, α3 : Type.set(tup(α2, α3))→ set(tup(α1, α2))→ set(tup(α1, α3))
id(-) : Πα : Type.set(α)→ set(tup(α, α))
-C - : Πα1, α2 : Type.set(α1)→ set(tup(α1, α2))→ set(tup(α1, α2))
-B - : Πα1, α2 : Type.set(tup(α1, α2))→ set(α2)→ set(tup(α1, α2))
- −C - : Πα1, α2 : Type.set(α1)→ set(tup(α1, α2))→ set(tup(α1, α2))
- −B - : Πα1, α2 : Type.set(tup(α1, α2))→ set(α2)→ set(tup(α1, α2))
-[-] : Πα1, α2 : Type.set(tup(α1, α2))→ set(α1)→ set(α2)
- +++< - : Πα1, α2 : Type.set(tup(α1, α2))→ set(tup(α1, α2))→ set(tup(α1, α2))
-⊗ - : Πα1, α2, α3 : Type.set(tup(α1, α2))→ set(tup(α1, α3))→

set(tup(α1, tup(α2, α3)))
prj1(-) : Πα1, α2 : Type.tup(set(α1), set(α2))→ set(tup(tup(α1, α2), α1))
prj2(-) : Πα1, α2 : Type.tup(set(α1), set(α2))→ set(tup(tup(α1, α2), α2))
-||- : Πα1, α2, α3, α4 : Type.set(tup(α1, α2))→ set(tup(α3, α4))→

set(tup(tup(α1, α3), tup(α2, α4)))
- 7→ -, -→ -, - 7� -, -� -, - 7� -, -� -, - 7�� -, -�� - :

Πα1, α2 : Type.set(α1)→ set(α2)→ set(set(tup(α1, α2)))
-(-) : Πα1, α2 : Type.set(tup(α1, α2))→ α1 → α2

Fig. 8. Type Constructors and Type Schemes of the Set Constructs

B Cumulative Time Graphs of the Experimental Results

10

20

30

0 2000 4000 6000 8000 10000 12000

T
im

e
(M

s)

Number of Proved POs

1

2

3

4 5
1 Zenon

2 Zenon (T)

3 Zenon (T+A)

4 Zenon (T+M)

5 Zenon (T+M+A)

10

20

30

40

0 2000 4000 6000 8000 10000 12000

T
im

e
(M

s)

Number of Proved POs

120

1

2

3

4

5

6

7

1 Zenon (T+M+A)

3 Alt-Ergo

2 iProver Modulo

6 CVC4

7 Z3

5 E

4 Vampire

T ≡ with types M ≡ with deduction modulo A ≡ with arithmetic

Fig. 9. Cumulative Times According to the Numbers of Proved POs

C Detailed Information regarding the Experiment

The experiment results presented in Sec. 4 were performed over a benchmark of
12,876 POs, which has been provided by two industrial partners of the BWare

project. The benchmark is publicly available (under the CeCILL-B license6) at:
http://bware.lri.fr/. Several formats are proposed and divided into several
archives. The considered formats are the following:

� TPTP FOF (regular TPTP format for mono-sorted �rst order logic);
� TPTP TFF1 (TPTP format for �rst order logic with polymorphic types);
� SMT-LIB v2 (regular SMT format for many-sorted �rst order logic);
� Alt-Ergo (input native format of Alt-Ergo).

The experiment was run on an Intel Xeon E5-2660 v2 2.20 GHz computer,
with a timeout of 120 s and a memory limit of 1 GiB. For each tool (except mp,
which was tested directly over the native format of POs coming from Atelier B),
the following input formats and command lines (where %t is the timeout, %m the
memory limit, and %f the �le name) were used:

� Zenon Modulo 0.4.1 (Zenon with types, deduction modulo, and arithmetic):
Input format: TPTP TFF1;
Command line: �zenon_modulo -p0 -itptp -b-rwrt -rwrt -x arith

-max-size %mM -max-time %ts %f�.
� iProver Modulo v0.7+0.2:
Input format: TPTP FOF;
Command line: �iprover_modulo_launcher.sh %f %t --strategies

'Id;Equiv(ClausalAll)' --normalization_type dtree --omit_eq

false --dedukti_out_proof false�.
� Alt-Ergo 0.99.1:
Input format: Alt-Ergo;
Command line: �alt-ergo -timelimit %t %f�.

� Vampire 2.6:
Input format: TPTP FOF;
Command line: �vampire --proof tptp --mode casc -t %t %f�.

� E 1.8:
Input format: TPTP FOF;
Command line: �eprover --auto --tptp3-format %f�.

� CVC4 1.4:
Input format: SMT-LIB v2;
Command line: �cvc4 --lang=smt2 --rlimit %t000 %f�.

� Z3 4.3.2:
Input format: SMT-LIB v2;
Command line: �z3 -smt2 -rs:42 %f�.

6 CeCILL is a French free software license, compatible with the GNU GPL. For more
information, see: http://www.cecill.info/licences.en.html.

