
Normalisation by Completeness with Heyting
Algebras

Gaëtan Gilbert12 and Olivier Hermant3

1 ENS Lyon, France
gaetan.gilbert@ens-lyon.fr

2 Inria Paris, France
3 MINES ParisTech, PSL Research University, France

olivier.hermant@mines-paristech.fr

1 Introduction

In logic, a restriction to cut-free proofs makes analysis of a theory and
proof search significantly simpler.
On the programming side, β reduction allows computation. Then normal-
isation of β reduction provides termination of the program and allows the
production of a result.

Under the Curry Howard correspondence, a proof in natural deduction
is cut-free when the associated term is normal.

Normalisation by Evaluation uses features of the meta level, like re-
duction when the meta level is a programming language, to compute on
syntactic objects. Berger and Schwichtenberg used this method to define
an efficient normalisation algorithm for λ calculus [2], and Altenkirch, Dy-
bjer, Hofmann and Scott extended it to λ calculus with strong sums [1].
Coquand noted the similarity to completeness proofs [3].

Hugo Herbelin and his students then developed this principle of strong
completeness.
The logical systems considered are syntactic systems, like natural deduc-
tion NJ , and are also associated with semantic systems like Boole al-
gebras. Syntax and semantics are linked by soundness theorems, taking
derivations in the former to valid statements in the later, and complete-
ness, making derivations from valid statements.
Completeness can be enhanced so as to obtain a theorem of cut admis-
sibility, and therefore cut elimination. Additionally, if all theorems are
constructive then a cut elimination theorem can be extracted.
This extraction work has been accomplished by Herbelin in [4] using
Kripke structures for semantics and extracting the algorithm from a for-
malisation of the proof in the Coq proof assistant.



Based on work by Hermant [5] itself inspired by Okada’s contributions
to linear logic [6], we know that Heyting algebras provide another sound
and complete semantics to natural logic.
If the proof is constructive, the extracted normalisation algorithm should
be compared with that from Kripke based normalisation by evaluation,
regarding their complexities and the values they produce.

In this manuscript we begin to answer these questions by developing a
Coq formalisation of the soundness and strong completeness proofs with
Heyting algebras allowing algorithm extraction and testing. Additionally
we study the links between Heyting algebras and Kripke structures to try
to link the Heyting based algorithms with the Kripke based algorithms.

In the first section we recall definitions and basic lemmas about natural
deduction and cut-free proofs.
In the second, we study the strong completeness of Heyting algebras.
In the third we recall basic properties of Kripke structures.
In the fourth we develop a transformations between Heyting algebras and
Kripke structures.

The Coq sources are available at https://github.com/SkySkimmer/
NormalisationByCompleteness.

2 Natural deduction

In this section, we recall the basic definitions and lemmas of natural de-
duction.

Definition 1 (Terms and formulas). Let V infinite set of variables
and S a set of function symbols. The set of terms T is defined by

t ::= x|f(t1...tn)

for x ∈ V and f ∈ S with arity n.
Let P set of predicate symbols. Formulas F are defined by

A ::= P (t1...tn) | A ∧B | A ∨B | A⇒ B | > | ⊥ | ∀x.A | ∃x.A

where P ∈ P with arity n.

At the time of this writing the Coq development is for the propositional
fragment, i.e. A ::= P | A ∧B | A ∨B | A⇒ B | > | ⊥.

Remark 1. Formulas are considered modulo α-conversion.

https://github.com/SkySkimmer/NormalisationByCompleteness
https://github.com/SkySkimmer/NormalisationByCompleteness


Definition 2 (Substitutions). A substitution is a partial function σ
from variables to terms.
We expand it inductively to a function from terms to terms and formulas
to formulas, taking σ(x) = x for x not in the domain of σ.
Notably for Q ∈ {∀, ∃}, σ(Q x.A) := Q x.σ(A), assuming x fresh w.r.t.
the image of σ by α-conversion. This is always possible since dom(σ) is
finite, and so the image of σ is also finite.

Definition 3 (Updated substitution). For σ substitution, x ∈ V\dom(σ)
and t ∈ T , σ[x 7→ t] is the substitution with domain dom(σ) ∪ {x} such
that ∀y ∈ dom(σ), σ[x 7→ t](y) = σ(y) and σ[x 7→ t](x) = t.

Definition 4 (Empty substitution and single variable substitu-
tion). The empty substitution ∅ is the substitution with the empty set as
domain.
For t term (resp. A formula), for x variable and u term, we define t[u/x] :=
∅[x 7→ u](t) (resp. A[t/x] := ∅[x 7→ u](A)).

Definition 5 (Context). A context Γ is a list of formulas: Γ = [A1, ..., An], n ≥
0.
For Γ = [A1, ..., An] context and A formula, Γ,A := [A1, ..., An, A].
For Γ = [A1, ..., An] context and B formula, we let B ∈ Γ if and only if
B is one of the Ai for some i. Then we can define a binary relation on
contexts ⊆ such that Γ ⊆ Σ when any formula in Γ is also in Σ.

Remark 2. The ⊆ relation is more general than the notion of contraction:
Γ,A,A ⊆ Γ,A.
This also shows that while it is a preorder, it is not an order.

Definition 6 (Cut free proofs). The following figure 1 defines the rules
of natural deduction as well as relations `ne (neutral proof) and `∗ (cut-
free proof) by mutual induction. Rules on the left are introduction rules
which produce cut-free proofs, while rules on the right are elimination rules
and produce neutral proofs.

Definition 7 (Natural deduction NJ). The judgement Γ ` A has the
same rules as both Γ `∗ A and Γ `ne A.
Then trivially if Γ `∗ A then Γ ` A and if Γ `ne A then Γ ` A.

Lemma 1 (Weakening). For Γ context and A formula, if Γ `∗ A (resp.
Γ `ne A, resp. Γ ` A) is derivable, then for any Σ context with Γ ⊆ Σ,
Σ `∗ A (resp. Σ `ne A, resp. Σ ` A) is derivable.



Fig. 1. Rules of Natural Deduction
Γ `ne A coerce
Γ `∗ A

A ∈ Γ
ax

Γ `ne A

Γ `∗ A Γ `∗ B ∧I
Γ `∗ A ∧B

Γ `ne A ∧B ∧El
Γ `ne A

Γ `ne A ∧B ∧Er
Γ `ne B

Γ `∗ A ∨Il
Γ `∗ A ∨B

Γ `∗ B ∨Ir
Γ `∗ A ∨B

Γ `ne A ∨B A,Γ `∗ C B,Γ `∗ C ∨E
Γ `ne C

Γ,A `∗ B ⇒I
Γ `∗ A⇒ B

Γ `ne A⇒ B Γ `∗ A ⇒E
Γ `ne B

>I
Γ `∗ >

Γ `ne ⊥ ⊥E
Γ `ne A

Γ `∗ A x /∈ FV (Γ )
∀I

Γ `∗ ∀x.A
Γ `ne ∀x.A ∀E
Γ `ne A[t/x]

Γ `∗ A[t/x]
∃I

Γ `∗ ∃x.A
Γ `ne ∃x.A A, Γ `∗ C x /∈ FV (C, Γ )

∃E
Γ `ne C

Proof. By mutual induction on the derivation of Γ `∗ A and Γ `ne A
(resp. by induction on Γ ` A).

Remark 3. Since the notion of contraction of a context is included in the
⊆ relation, the weakening lemma can also be used as a contraction lemma.

Neutral proofs are such that they can replace axioms in cut-free proofs
without introducing cuts.

Lemma 2 (Axiom replacement). Let Γ and Σ contexts, if for each
formula C ∈ Γ we can derive Σ `ne C (Σ ` C if we admit cuts),
Then for any A formula, if Γ `∗ A (resp. Γ `ne A, resp. Γ ` A) we can
derive Σ `∗ A (resp. Σ `ne A, resp. Σ ` A).

Proof. By mutual induction on Γ `∗ A and Γ `ne A (resp. by induction
on Γ ` A). We need the weakening lemma when the context is modified
in a premise of a rule.

Lemma 3 (Kleene’s inversion lemma). Let Γ context, A and B for-
mulas.
If Γ `ne A⇒ B then Γ,A `ne B.
If Γ `∗ A⇒ B then Γ,A `∗ B.

Proof. If Γ `ne A⇒ B, by weakening Γ,A `ne A⇒ B and Γ,A `∗ A by
axiom and coercion. then Γ,A `ne B by ⇒E .



If Γ `∗ A⇒ B, the final rule may be the coercion, in which case we have
Γ `ne A⇒ B then Γ,A `ne B and by coercion Γ,A `∗ B, otherwise it is
the ⇒I rule with premise Γ,A `∗ B.

3 Strong completeness by Heyting algebras

3.1 Heyting algebra

Definition 8 (Complete lattice). A complete lattice is a tuple

A = (A,≤,∧,∨,>,⊥,
∧
,
∨

)

such that (A,≤) is a partial order with binary meet ∧ and join ∨, arbitrary
meet

∧
and join

∨
and global maximum > and minimum ⊥.

Definition 9 (Heyting algebra). A Heyting algebra is a structure H =
(H,≤,∧,∨,⇒,>,⊥,

∧
,
∨
) such that (H,≤,∧,∨,>,⊥,

∧
,
∨
) is a complete

lattice and verifies the implication property

∀a b c, a ≤ b⇒ c if and only if a ∧ b ≤ c

When working with propositional logic we forget
∧

and
∨

and the con-
ditions involving them.

Lemma 4. In a Heyting algebra, binary meet and join distribute over
each other.

Proof. Let a, b, c ∈ H

– a ∧ (b ∨ c) ≤ (a ∧ b) ∨ (a ∧ c):
a ∧ b ≤ (a ∧ b) ∨ (a ∧ c) and a ∧ c ≤ (a ∧ b) ∨ (a ∧ c).
By the implication property, b ≤ a⇒ ((a ∧ b) ∨ (a ∧ c)) and c ≤ a⇒
((a ∧ b) ∨ (a ∧ c)).
Then b∨c ≤ a⇒ ((a∧b)∨ (a∧c)) and we conclude by the implication
property.

– (a ∧ b) ∨ (a ∧ c) ≤ a ∧ (b ∨ c): true in all lattices
– a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c): true in all lattices
– (a ∨ b) ∧ (a ∨ c) ≤ a ∨ (b ∧ c):

By the implication property, equivalent to a∨b ≤ (a∨c)⇒ (a∨(b∧c))
⇐⇒ a ≤ (a ∨ c)⇒ (a ∨ (b ∧ c)) and b ≤ (a ∨ c)⇒ (a ∨ (b ∧ c))
⇐⇒ a ∧ (a ∨ c) ≤ a ∨ (b ∧ c) (true) and b ∧ (a ∨ c) ≤ a ∨ (b ∧ c)
⇐⇒ a ∨ c ≤ b⇒ (a ∨ (b ∧ c))
⇐⇒ a ≤ b⇒ (a ∨ (b ∧ c)) and c ≤ b⇒ (a ∨ (b ∧ c))
⇐⇒ a ∧ b ≤ a ∨ (b ∧ c) (true) and c ∧ b ≤ a ∨ (b ∧ c) (true)



3.2 Interpretations and soundness

Definition 10 (Interpretation of a formula for propositional logic).
An interpretation in a Heyting algebra H is a function J_K from atomic
formulas to elements of H, which is extended to propositional formulas in
the natural way.
If Γ is a context, we let JΓ K :=

∧
A∈Γ JAK.

JΓ K = J
∧
A∈Γ AK by definition of J_K.

Theorem 1 (Soundness of Heyting algebras for propositional logic).
For Γ context and A formula, if Γ ` A is derivable then for any Heyting
algebra H and interpretation J_K,

JΓ K ≤ JAK

Proof. Trivial by induction on the derivation of Γ ` A.

Definition 11 (Interpretation of a first order formula). A first or-
der model on a Heyting algebra H is a set D called domain, with for each
f ∈ S function symbol of arity n a function JfK : Dn → D and for each
predicate symbol P ∈ P of arity n a function JP K : Dn → H.
Then a valuation into the model is a partial function σ : V → D with
finite domain. The syntax for updating valuations is the same as that for
substitutions.
For σ valuation and t term, if FV (t) ⊆ dom(σ) we define JtKσ in the usual
inductive way.
For σ valuation and A formula, if FV (A) ⊆ dom(σ) we define JAKσ in-
ductively on A.
Notably:

– JP (t1...tk)Kσ := JP K(Jt1Kσ...JtkKσ)
– J∀x.AKσ :=

∧
v∈D{JAKσ[x 7→v]}

– J∃x.AKσ :=
∨
v∈D{JAKσ[x 7→v]}

Theorem 2 (Soundness of Heyting algebras for first order logic).
For Γ context and A formula, if Γ ` A is derivable in NJ then for any
Heyting algebra H, for any model on H and valuation σ, JΓ Kσ ≤ JAKσ.

Proof. Standard induction.

3.3 Completeness

Definition 12 (Extraction). The extraction of a formula A is

bAc := {Γ, Γ `∗ A}



Definition 13 (Universal Heyting algebra). The universal Heyting
algebra Ω also called context algebra has the underlying set {

⋂
i∈IbAic, (Ai)i∈I

family of formulas}. Its operations are defined as

– ≤:=⊆
– ∧ := ∩
–

∧
:=

⋂
– a ∨ b :=

⋂
{ω ∈ Ω, a ∪ b ⊆ ω}

–
∨
A :=

⋂
{ω ∈ Ω,

⋃
A ⊆ ω}

– a⇒ b :=
⋂
{ω ∈ Ω,

⋃
{c ∈ Ω, a ∧ c ⊆ b} ⊆ ω} =

∨
{c ∈ Ω, a ∧ c ⊆ b}

– > := {Γ, Γ context} = b>c
– ⊥ := {Γ,∀A,Γ ` A} = b⊥c

Lemma 5. The following identities are true:

– a ∨ b =
⋂
{bDc, a ∪ b ⊆ bDc, D formula}

–
∨
A =

⋂
{bDc,

⋃
A ⊆ bDc, D formula}

– a⇒ b =
⋂
{bDc,

⋃
{c ∈ Ω, a ∧ c ⊆ b} ⊆ bDc, D formula}

Proof. – For any D, bDc ∈ Ω so a∨b ⊆
⋂
{bDc, a∪b ⊆ bDc, D formula}

Then let Γ such that ∀bDc, if a∪b ⊆ bDc then Γ ∈ bDc and let ω ∈ Ω
such that a ∪ b ⊆ ω.
ω =

⋂
i∈IbCic for some (Ci)i∈I . Let i ∈ I. We have a ∨ b ⊆ bCic so

Γ ∈ bCic.
Then Γ ∈ ω.

– Same as above.
– By viewing a⇒ b as

∨
{c ∈ Ω, a ∧ c ⊆ b} and using the result for

∨
.

Lemma 6. Ω forms a Heyting algebra.

Proof. Ω is closed by arbitrary intersection and ∀A, bAc ∈ Ω, so the
operations all produce values in Ω.
Then we need to verify

– ≤ is an order: trivial
– ∧ and

∧
are greatest lower bounds: trivial

– ∨ and
∨

are lowest upper bounds: consider the ∨ case.
For a and b in Ω, let d ∈ Ω. If a ∪ b ⊆ d then a ⊆ d and b ⊆ d. Then
a ⊆ a ∨ b and b ⊆ a ∨ b.
For c ∈ Ω with a ⊆ c and b ⊆ c, we have a ∪ b ⊆ c so a ∨ b ⊆ c.

– ⇒ verifies the implication property



• If a ≤ b ⇒ c with c =
⋂
k∈KbCkc, let Γ ∈ a ∧ b. Let k ∈ K, we

want Γ ∈ bCkc.
Γ ∈ a so Γ ∈ b ⇒ c and we have for any D, if

⋃
{e ∈ Ω, b ∧ e ⊆

c} ⊆ bDc then Γ ∈ bDc.
Consider D := Γ ⇒ Ck (where Γ ⇒ B := A1 ⇒ ... ⇒ An ⇒ B
with Γ = A1...An and B formula).
Let e ∈ Ω with b ∧ e ⊆ c. Let ∆ ∈ e, {∆,Γ} ∈ b ∧ e by the
weakening lemma, then ∆,Γ ∈ c.
Then ∆,Γ `∗ Ck and ∆ `∗ Γ ⇒ Ck which is ∆ `∗ D. This for any
such ∆, so e ⊆ bDc.
Γ `∗ Γ ⇒ Ck then by repeated application of Kleene’s lemma
Γ, Γ `∗ Ck and by the weakening lemma Γ `∗ Ck.
Finally Γ ∈ c.
• If a∧ b ≤ c, let Γ ∈ a. We want for any d ∈ Ω, if

⋃
{e ∈ Ω, b∧ e ⊆

c} ⊆ d then Γ ∈ d.
Let d such, since a ∧ b = b ∧ a ⊆ c, a ⊆ d then Γ ∈ d.

– > is the greatest element of Ω and ⊥ the least element: trivial.

Definition 14 (Interpretation in the propositional context alge-
bra). Let JAK := bAc for A atomic formula.

Definition 15 (Interpretation in the first order context algebra).
The model on Ω has:

– the set of terms as domain
– for f function symbol of arity n, JfK := (t1, ..., tn) 7→ f(t1...tn)

– for P predicate symbol of arity n, JP K := (t1, ..., tn) 7→ bP (t1, ..., tn)c

Then for any t and σ, JtKσ = σ(t).

Definition 16 (Closure). For any A formula, let cl(A) :=
⋂
{d ∈ Ω, [A] ∈

d}.

Lemma 7. For any A, cl(A) ∈ Ω.

Proof. Ω is stable by arbitrary intersection.

Lemma 8. For any A, cl(A) =
⋂
{bDc, [A] ∈ bDc}.

Proof. – cl(A) ⊆
⋂
{bDc, [A] ∈ bDc}:

Easily since bDc ∈ Ω for any D.



–
⋂
{bDc, [A] ∈ bDc} ⊆ cl(A):

Let Γ such that for any D, if [A] ∈ bDc then Γ ∈ bDc and let ω ∈ Ω
such that [A] ∈ ω.
ω =

⋂
i∈IbCic for some (Ci)i∈I . For i ∈ I, [A] ∈ bCic so Γ ∈ bCic.

Then Γ ∈ ω.

Then Γ ∈ cl(A) means [A] can be replaced by Γ to the left of any sequent
in a derivation. This is similar to the axiom replacement lemma, except
this operation does not necessarily follow the structure of the derivation.

Lemma 9. For Γ context and A formula, if Γ `ne A then Γ ∈ cl(A).

Proof. By axiom replacement, considering the previous lemma.

DBLP:conf/csl/Coquand93

Theorem 3 (Key theorem (propositional case)).

∀A, cl(A) ⊆ JAK ⊆ bAc

Proof. By induction on A:

– A atomic: cl(A) ⊆ bAc = JAK
Let Γ such that for any D if A `∗ D then Γ `∗ D. Then Γ `∗ A with
D := A.

– cl(A ∧B) ⊆ JA ∧BK: by induction we only need cl(A ∧B) ⊆ cl(A) ∩
cl(B).
Let Γ ∈ cl(A ∧ B) and D such that A `∗ D (resp. B `∗ D). Since
A ∧ B `ne A (resp. A ∧ B `ne B) by the axiom replacement lemma
we have A ∧B `∗ D.

JA ∧ BK ⊆ bA ∧ Bc: by the induction hypotheses we have JA ∧ BK ⊆
bAc ∩ bBc. Then the ∧-intro rule concludes the proof.

– cl(A ∨B) ⊆ JA ∨BK: consider C such that JAK ∪ JBK ⊆ bCc.
Then by the induction hypotheses cl(A) ⊆ bCc and cl(B) ⊆ bCc.
We have to show [A ∨B] ∈ bCc.
Since [A] ∈ cl(A) ⊆ bCc (resp. [B] ∈ cl(B) ⊆ bCc) we have A `∗ C
(resp. B `∗ C). Then by ∨-elim and coerce we have A ∨B `∗ C.

JA ∨BK ⊆ bA ∨Bc: by definition of JAK ∨ JBK, we need to show that
JAK ∪ JBK ⊆ bA ∨Bc.
JAK ∪ JBK ⊆ bAc ∪ bBc, then the ∨-intro rules concludes the proof.



– cl(A ⇒ B) ⊆ JA ⇒ BK: by the implication rule we need cl(A ⇒
B)∧JAK ⊆ JBK, then with the induction hypotheses cl(A⇒ B)∧bAc ⊆
cl(B) suffices.
Let Γ ∈ cl(A⇒ B) ∧ bAc.

Γ `∗ A and for any C, if A⇒ B `∗ C then Γ `∗ C

Let D such that B `∗ D. We need Γ `∗ D.
By weakening this is equivalent to Γ, Γ `∗ D and then by Kleene’s
lemma Γ `∗ Γ ⇒ D suffices.
We can prove this if A ⇒ B `∗ Γ ⇒ D, and by ⇒-intro this boils
down to showing A⇒ B,Γ `∗ D.
A⇒ B,Γ `ne B by ⇒-elim and B `∗ D so by the axiom replacement
lemma A⇒ B,Γ `∗ D.

JA ⇒ BK ⊆ bA ⇒ Bc: by the induction hypotheses cl(A) ⇒ bBc ⊆
bA⇒ Bc suffices.
DBLP:conf/csl/Coquand93 Let Γ ∈ cl(A)⇒ bBc. We need Γ `∗ A⇒
B. We have

∀D, (∀c ∈ Ω, cl(A) ∩ c ⊆ bBc → c ⊆ bDc)→ Γ `∗ D

Take D := A ⇒ B. Let c ∈ Ω such that cl(A) ∩ c ⊆ bBc then let
Σ ∈ c.
By weakening A,Σ ∈ cl(A) ∧ c. Then A,Σ `∗ B and Σ `∗ A⇒ B.
This for any Σ ∈ c so c ⊆ bA⇒ Bc
Then Γ `∗ A⇒ B.

– > and ⊥ are trivial cases.

Theorem 4 (Key theorem (first order case)). For any A formula
and σ valuation into Ω, σ is also a substitution and

cl(σ(A)) ⊆ JAKσ ⊆ bσ(A)c

Proof. By induction on A. Cases A ∧ B,A ∨ B,A ⇒ B and atomic case
work the same as in the propositional case.

– cl(σ(∀x.A)) ⊆ J∀x.AKσ:
σ(∀x.A) = ∀x.σ[x 7→ x](A) (we can assume that x does not appear
free in the image of FV (∀x.A) by σ). Note σ′ := σ[x 7→ x].
Let Γ ∈ cl(σ(∀x.A)). That means for any D, if [∀x.σ′(A)] `∗ D then
Γ `∗ D.
We need to prove that for all d term, Γ ∈ JAKσ[x 7→d]. Let d a term.



Γ ∈ cl(σ[x 7→ d](A)) suffices.
Let D such that σ[x 7→ d](A) `∗ D, we need to prove Γ `∗ D which
follows from [∀x.σ′(A)] `∗ D.
σ[x 7→ d](A) = (σ′(A))[d/x] so [∀x.σ′(A)] `ne σ[x 7→ d](A).
Then by axiom replacement [∀x.σ′(A)] `∗ D.

J∀x.AKσ ⊆ bσ(∀x.A)c:
Let Γ such that Γ ∈ J∀x.AKσ. By α-conversion we can assume x fresh.
∀d, Γ ∈ JAKσ[x 7→d]. Then Γ ∈ JAKσ[x 7→x] ⊆ bσ[x 7→ x](A)c.
Then by the ∀I rule Γ `∗ ∀x.σ[x 7→ x](A), and since ∀x.σ[x 7→ x](A) =
σ(∀x.A), Γ ∈ bσ(∀x.A)c.

– cl(σ(∃x.A)) ⊆ J∃x.AKσ:
Let Γ ∈ cl(σ(∃x.A)), assume x fresh, pose σ′ := σ[x 7→ x].
For D any formula, if [∃x.σ′(A)] `∗ D then Γ `∗ D
Γ ∈ J∃x.AKσ if and only if for all D, if for each d term JAKσ[x 7→d] ⊆ bDc
then Γ `∗ D.
ConsiderD such that ∀d, JAKσ[x 7→d] ⊆ bDc. We need to prove [∃x.σ′(A)] `∗
D.

∃x.σ′(A), σ′(A) `∗ D ∃x.σ′(A) `ne ∃x.σ′(A) ∃E∃x.σ′(A) `ne D

[σ′(A)] ∈ cl(σ′(A)) ⊆ JAKσ′ by the induction hypothesis, then by the
hypothesis on D we have [σ′(A)] ∈ bDc for the first premise. The
second is trivial with the ax rule and the coerce rule completes the
derivation.

J∃x.AKσ ⊆ bσ(∃x.A)c:
Let Γ ∈ J∃x.AKσ: for all D formula, if for each d term JAKσ[x 7→d] ⊆ bDc
then Γ `∗ D.
We show that D := σ(∃x.A) = ∃x.σ[x 7→ x](A) fulfils this condition.
Let d,Σ such that Σ ∈ JAKσ[x 7→d]. Then by the induction hypothesis
Σ ∈ bσ[x 7→ d](A)c.
σ[x 7→ d](A) = (σ[x 7→ x](A))[d/x] so Σ `∗ (σ[x 7→ x](A))[d/x]
Then Σ `∗ ∃x.σ[x 7→ x](A) i.e. Σ `∗ σ(∃x.A).

Theorem 5 (Completeness). Propositional version: for Γ context and
A formula, if in any Heyting algebra JΓ K ⊆ JAK then Γ `∗ A.
First order version: for Γ context and A formula, if in any Heyting algebra
with model and for any σ valuation JΓ Kσ ⊆ JAKσ then Γ `∗ A.



Proof. We work in the universal algebra.
Γ `∗ A is Γ ∈ bAc. In the first order case, let σ the substitution taking
each variable of FV (Γ,A) to itself. then A = σ(A) (by induction on the
structure of A).
Then it is enough to prove Γ ∈ JAK ⊇ JΓ K.
JΓ K =

∧
C∈Γ JCK. Consider C ∈ Γ .

Γ `ne C so Γ ∈ cl(C) ⊆ JCK.
Then Γ ∈ JΓ K ⊆ bAc.
Γ `∗ A.

Theorem 6 (Cut elimination). For Γ context and A formula, if Γ ` A
then Γ `∗ A.

Proof. By completeness since Heyting algebras are sound for natural de-
duction.

Some derivations of Γ ` A will be transformed into cut-free derivations
where the last rule is coerce. Trying to characterise them may be useful.

3.4 Formalisation

If we define Ω as {{Γ : context, ∀A,P A → Γ `∗ A}|P : form → Type}
(the naive definition for arbitrary intersections of extractions of formulas),
arbitrary intersections of elements of Ω cannot be defined due to universe
inconsistencies.
If we replace Type by Prop, the loss of information means we need to
have Γ `∗ A live in Prop also, and we cannot extract the algorithm to
ocaml code. However, the whole proof can then be formalised.
Using the Eval compute command on the algorithm applied to a deriva-
tion we can obtain the result of the algorithm. However, since formulas
are processed by the key lemma which does case analysis, computation
blocks if the derivation involves formula variables.
We can also relax the universe constraints in Coq, deliberately working in
an inconsistent system to get extraction.

Conclusion

Strong completeness of Heyting algebras produces an algorithm for proof
normalisation. The algorithm can be studied by evaluating it on specific
derivations and by Printing the Coq function to study the generated
code. It would be interesting to compare the normalisation with the one



formalised by Danko Ilik.

The transformations between Heyting algebras and Kripke structures
are not a new result, but their formalisation should be helpful when study-
ing their semantics.

A key direction in future work is additional study of the constructed
normalisation algorithm. The effect of the model transformations when
applied to the universal algebra are also of interest.
Strong completion for higher order logic should also be possible.

Annex

3.5 Atomic axiom

We apply the algorithm to

ax
A ` A

with A atomic.

Term name Term definition Term value Term type Term evaluated type

dA ∗ ax
A ` A A ` A A ` A

SA soundness(dA) λ Γ d.d JAK ≤ JAK ∀Γ, Γ `∗ A→ Γ `∗ A

vA Weakening using A ∈ [A] λ D d.d [A] ∈ cl(A) ∀D,A `∗ D → A `∗ D

KclA Key lemma for A λ Γ H.H A
ax

A `ne A coerce
A `∗ A

cl(A) ⊆ JAK ∀Γ, (∀D,A `∗ D → Γ `∗ D)→ Γ `∗ A

KclA [A] vA
ax

A `ne A coerce
A `∗ A

[A] ∈ JAK A `∗ A

SA (KclA [A] vA)
ax

A `ne A coerce
A `∗ A

[A] ∈ JAK A `∗ A

KexA Key lemma for A λ Γ d.d JAK ⊆ bAc ∀Γ, Γ `∗ A→ Γ `∗ A

KexA [A] (SA(KclA [A] vA))
ax

A `ne A coerce
A `∗ A

[A] ∈ bAc A `∗ A

The last term is the result of the algorithm.



3.6 Disjunction axiom

We apply the algorithm to

ax
A ∨B ` A ∨B

with A and B atomic.

References

1. Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Phil Scott. Normalization
by evaluation for typed lambda calculus with coproducts. In 16th Annual IEEE
Symposium on Logic in Computer Science, pages 303–310, 2001.

2. Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional
for typed λ–calculus. In R. Vemuri, editor, Proceedings of the Sixth Annual IEEE
Symposium on Logic in Computer Science, pages 203–211. IEEE Computer Society
Press, Los Alamitos, 1991.

3. Catarina Coquand. From semantics to rules: A machine assisted analysis. In CSL,
pages 91–105, 1993.

4. Hugo Herbelin and Gyesik Lee. Formalizing logical metatheory: Semantical cut-
elimination using kripke models for first-order predicate logic. http: // formal.
hknu. ac. kr/ Kripke/ , 2014. [Online, accessed 2014-06-11].

5. Olivier Hermant. Sequent calculus, completeness and cut elimination. [Lesson
notes], 2013.

6. Mitsuhiro Okada. An Introduction to Linear Logic: Expressiveness and Phase Se-
mantics, volume Volume 2 of MSJ Memoirs, pages 255–295. The Mathematical
Society of Japan, Tokyo, Japan, 1998.

http://formal.hknu.ac.kr/Kripke/
http://formal.hknu.ac.kr/Kripke/


Term name Term definition Term value Term type Term
eval-
u-
ated
type

dA∨B ∗ ax
A ∨B ` A ∨B A ∨B ` A ∨B A∨

B `
A∨
B

SA∨B soundness(dA∨B) λ Γ H.H JA ∨BK ≤ JA ∨BK ∀Γ, Γ ∈
JA∨
BK→
Γ ∈
JA∨
BK

JA ∨BK λ Γ.∀ω ∈ Ω, bAc ∪ bBc ⊆ ω → Γ ∈ ω Type Type

Weakening for A ∨B λD d.d [A ∨B] ∈ cl(A ∨B) ∀D,A∨
B `∗
D →
A∨
B `∗
D

KclX Key lemma for X atomic λΓ H.H X
ax

X `ne X coerce
X `∗ X

cl(X) ⊆ JXK ∀Γ, (∀D,X `∗
D →
Γ `∗
D)→
Γ `∗
X

KclA∨B Key lemma for A ∨B λΓ Hcl D Hsub.Hcl D (Hsub [A ∨B] ∗) cl(A ∨B) ⊆ JA ∨BK ∀Γ, Γ ∈
cl(A∨
B)→
∀D, JAK∪
JBK ⊆
bDc →
Γ `∗
D


	Normalisation by Completeness with Heyting Algebras

