Double Negation Translations as Morphisms

Olivier Hermant
CRI, MINES ParisTech

December 1, 2014

UFRN, Natal

Double-Negation Translations

Double-Negation translations:

- a shallow way to encode classical logic into intuitionistic
- Zenon's backend for Dedukti
- existing translations: Kolmogorov's (1925), Gentzen-Gödel's (1933), Kuroda's (1951), Krivine's (1990), …
Minimizing the translations:
- turns more formulæ into themselves;
- shifts a classical proof into an intuitionistic proof of the same formula.

Morphisms

- A morphism preserves the operations between two structures:

$$
\text { Group morphism: }\left\{\begin{array}{ccc}
(\mathbb{Z},+, 0) & \mapsto & \left(\mathbb{R}^{*}, *, 1\right) \\
h(0) & \rightarrow & 1 \\
h(a+b) & \rightarrow & h(a) * h(b)
\end{array}\right.
$$

- a translation that is a morphism:

$$
\begin{aligned}
h(P) & = \\
h(A \wedge B) & =h(A) \wedge h(B) \\
h(A \vee B) & =h(A) \vee h(B) \\
h(A \Rightarrow B) & =h(A) \Rightarrow h(B) \\
h(\forall x A) & =\forall \times h(A) \\
h(\exists x A) & =\exists \times h(A)
\end{aligned}
$$

(of course this is the identity)

Morphisms

- A morphism preserves the operations between two structures:

$$
\text { Group morphism: }\left\{\begin{array}{ccc}
(\mathbb{Z},+, 0) & \mapsto & \left(\mathbb{R}^{*}, *, 1\right) \\
h(0) & \rightarrow & 1 \\
h(a+b) & \rightarrow & h(a) * h(b)
\end{array}\right.
$$

- a more interesting translation that is a morphism:

$$
\begin{array}{clc}
h(P) & = & P \\
h(A \wedge B) & =h(A) \wedge_{c} h(B) \\
h(A \vee B) & =h(A) \vee_{c} h(B) \\
h(A \Rightarrow B) & =h(A) \Rightarrow_{c} h(B) \\
h(\forall x A) & =\forall_{c} \times h(A) \\
h(\exists x A) & =\exists_{c} \times h(A)
\end{array}
$$

two kinds of connectives: the classical and the intuitionistic ones.

Morphisms

- A morphism preserves the operations between two structures:

$$
\text { Group morphism: }\left\{\begin{array}{ccc}
(\mathbb{Z},+, 0) & \mapsto & \left(\mathbb{R}^{*}, *, 1\right) \\
h(0) & \rightarrow & 1 \\
h(a+b) & \rightarrow & h(a) * h(b)
\end{array}\right.
$$

- a more interesting translation that is a morphism:

$$
\begin{array}{clc}
h(P) & = & P \\
h(A \wedge B) & =h(A) \wedge_{c} h(B) \\
h(A \vee B) & =h(A) \vee_{c} h(B) \\
h(A \Rightarrow B) & =h(A) \Rightarrow_{c} h(B) \\
h(\forall x A) & =\forall_{c} \times h(A) \\
h(\exists x A) & =\exists_{c} \times h(A)
\end{array}
$$

two kinds of connectives: the classical and the intuitionistic ones.

- Design a unified logic, where we can reason both classically and intuitionistically:

$$
\frac{\Gamma \vdash A}{\Gamma+A \vee_{i} B} \quad \frac{\text { strange premises }}{\Gamma \vdash A \vee_{c} B}
$$

Translations that are Morphisms

- None of the previous translations is a morphism.
- Dowek has shown one, it is very verbose.
- We make it lighter.

Plan:
(1) Classical and Intuitionistic Logic
(2) Sequent Calculus
(3) Double Negation Translations
(4) Morphisms

Classical vs. Intuitionistic

- The principle of excluded-middle. Should

$$
A \vee \neg A
$$

be provable? Yes or no?

- Yes. This is what is called classical logic.
- Wait a minute !

The Drinker's Principle

In a bar, there is somebody such that, if he drinks, then everybody drinks.
Two Irrationals
There exists $i_{1}, i_{2} \in \mathbb{R} \backslash \mathbb{Q}$ such that $i_{1}^{i_{2}} \in \mathbb{Q}$.
A Manicchean World
You are with us, or against us.
Rashomon (A. Kurosawa).

Classical vs. Intuitionistic

- The principle of excluded-middle. Should

$$
A \vee \neg A
$$

be provable? Yes or no ?

- No. This is the constructivist school (Brouwer, Heyting, Kolomogorov).
- Intuitionistic logic is one of those branches. It features the BHK interpretation of proofs:

Witness Property

A proof of $\exists x A$ (in the empty context) gives a witness t for the property A.

Disjunction Property
A proof of $A \vee B$ (in the empty context) reduces eventually either to a proof of A, or to a proof of B.

The Classical Sequent Calculus (LK)

$$
\begin{aligned}
& \overline{\Gamma, A \vdash A, \Delta} \mathrm{ax} \\
& \frac{\Gamma, A, B+\Delta}{\Gamma, A \wedge B+\Delta} \wedge_{L} \\
& \frac{\Gamma \vdash A, \Delta \quad \Gamma \vdash B, \Delta}{\Gamma \vdash A \wedge B, \Delta} \wedge_{R} \\
& \frac{\Gamma, A \vdash \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \vee B \vdash \Delta} \vee_{L} \\
& \frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \vee B, \Delta} \vee_{R} \\
& \frac{\Gamma \vdash A, \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \Rightarrow B \vdash \Delta} \Rightarrow L \\
& \frac{\Gamma \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta} \neg\llcorner \\
& \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta} \neg R \\
& \frac{\Gamma, A[c / x]+\Delta}{\Gamma, \exists x A+\Delta} \exists_{L} \\
& \frac{\Gamma \vdash A[t / x], \Delta}{\Gamma \vdash \exists x A, \Delta} \exists_{R} \\
& \frac{\Gamma, A[t / x]+\Delta}{\Gamma, \forall x A+\Delta} \forall_{L} \\
& \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \Rightarrow B, \Delta} \Rightarrow_{R} \\
& \frac{\Gamma+A[c / x], \Delta}{\Gamma+\forall x A, \Delta} \forall_{R}
\end{aligned}
$$

The Intuitionistic Sequent Calculus (LJ)

$$
\begin{aligned}
& \overline{\Gamma, A \vdash A} \mathrm{ax} \\
& \frac{\Gamma, A, B+\Delta}{\Gamma, A \wedge B+\Delta} \wedge_{L} \\
& \frac{\Gamma, A \vdash \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \vee B \vdash \Delta} \vee_{L} \\
& \frac{\Gamma \vdash A \quad \Gamma, B \vdash \Delta}{\Gamma, A \Rightarrow B \vdash \Delta} \Rightarrow L \\
& \frac{\Gamma \vdash A}{\Gamma, \neg A \vdash \Delta} \neg\llcorner \\
& \frac{\Gamma, A[c / x]+\Delta}{\Gamma, \exists x A+\Delta} \exists_{L} \\
& \frac{\Gamma, A[t / x]+\Delta}{\Gamma, \forall x A+\Delta} \forall_{L} \\
& \frac{\Gamma \vdash A}{\Gamma \vdash A \vee B} \vee \vee_{R 1} \frac{\Gamma \vdash B}{\Gamma+A \vee B} \vee_{R 2} \\
& \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \Rightarrow R \\
& \frac{\Gamma, A \vdash}{\Gamma \vdash \neg A} \neg R \\
& \frac{\Gamma \vdash A[t / x]}{\Gamma \vdash \exists x A} \exists_{R} \\
& \frac{\Gamma \vdash A[c / x]}{\Gamma+\forall x A} \forall_{R}
\end{aligned}
$$

Note on Frameworks

- structural rules are not shown (contraction, weakening)
- left-rules seem very similar in both cases
- so, Ihs formulæ can be translated by themselves
- this accounts for polarizing the translations
- another work [Boudard \& H]:
* does not behave well in presence of cuts
* appeals to focusing techniques

Examples

- proofs that behave identically in classical/intuitionistic logic:

$$
\frac{\overline{A, B+A}}{A+B \Rightarrow A} \text { ax } \Rightarrow_{R} \quad \frac{\overline{A, B \vdash B}_{A \wedge B+B}^{A} \wedge_{L}}{A \wedge B+B \vee C} \vee_{R}
$$

- proof of the excluded-middle:

Classical Logic	Intuitionistic Logic
$\frac{}{\frac{A \vdash A}{\vdash A, \neg A} \neg R}$	
$\frac{\mathrm{ax}}{\vdash A \vee \neg A} \vee_{R}$	

Examples

- proofs that behave identically in classical/intuitionistic logic:

$$
\frac{\overline{A, B+A}}{A+B \Rightarrow A} \text { ax } \Rightarrow_{R} \quad \frac{\overline{A, B \vdash B}_{A \wedge B+B}^{A} \wedge_{L}}{A \wedge B+B \vee C} \vee_{R}
$$

- proof of the excluded-middle:

Classical Logic	Intuitionistic Logic
$\frac{}{\frac{A \vdash A}{\vdash A, \neg A} \neg R}$	
$\frac{? x}{\vdash A \vee \neg A} \vee R$	$\frac{? ?}{\vdash A \vee \neg A}$

The Excluded-Middle in Intuitionistic Logic

- is not provable. However, its negation is inconsistent.

$$
\begin{gathered}
\frac{\frac{\overline{A \vdash A}}{A \vdash A \vee \neg A} \vee_{R 1}}{\neg(A \vee \neg A), A \vdash} \neg L \\
\frac{\frac{\neg(A \vee \neg A) \vdash \neg A}{\neg R}}{\frac{\neg(A \vee \neg A) \vdash A \vee \neg A}{\neg(A \vee \neg A), \neg(A \vee \neg A) \vdash} \vee_{R 2}} \neg L \\
\neg(A \vee \neg A) \vdash \\
\text { contraction }
\end{gathered}
$$

- given a classical proof $\Gamma \vdash \Delta$, store Δ on the lhs, and translate: Clas.

The Excluded-Middle in Intuitionistic Logic

- is not provable. However, its negation is inconsistent.
- this suggests a scheme for a translation between int. and clas. logic:
- given a classical proof $\Gamma \vdash \Delta$, store Δ on the lhs, and translate:

Clas.
rule $r \frac{\Gamma \vdash A_{1}, \Delta}{\Gamma \vdash A, \Delta} \quad \Gamma \vdash A_{2}, \Delta\left(\frac{\Gamma, \neg A_{1}, \neg \Delta \vdash}{\Gamma, \neg \Delta \vdash \neg \neg A_{1}} \neg \mathbf{R} \quad \frac{\Gamma, \neg A_{2}, \neg \Delta \vdash}{\Gamma, \neg \Delta \vdash \neg \neg A_{2}} \neg \mathbf{R}\right.$

- need: $\neg \neg$ everywhere in Δ (and Γ)
- the proof of the "negation of the excluded middle" requires duplication (contraction), which partly explain why we allow several formulæ on the rhs in LK.

Kolmogorov's Translation

Kolmogorov's $\neg \neg$-translation introduces $\neg \neg$ everywhere:

$$
\begin{align*}
B^{K o} & =\neg \neg B \tag{atoms}\\
(B \wedge C)^{K o} & =\neg \neg\left(B^{K o} \wedge C^{K o}\right) \\
(B \vee C)^{K o} & =\neg \neg\left(B^{K o} \vee C^{K o}\right) \\
(B \Rightarrow C)^{K o} & =\neg \neg\left(B^{K o} \Rightarrow C^{K o}\right) \\
(\forall x A)^{K o} & =\neg \neg\left(\forall x A^{K o}\right) \\
(\exists x A)^{K o} & =\neg \neg\left(\exists x A^{K o}\right)
\end{align*}
$$

Theorem
$\Gamma \vdash \Delta$ is provable in LK iff $\left.\Gamma^{K o},\right\lrcorner \Delta^{K o} \vdash$ is provable in LJ.

Antinegation

\lrcorner is an operator, such that:

$$
\begin{aligned}
& \lrcorner \neg A=A \\
& \lrcorner B=\neg B \text { otherwise. }
\end{aligned}
$$

Light Kolmogorov's Translation

Moving negation from connectives to formulæ [Dowek\& Werner]:

$$
\begin{aligned}
B^{K} & =B \\
(B \wedge C)^{K} & =\left(\neg \neg B^{K} \wedge \neg \neg C^{K}\right) \\
(B \vee C)^{K} & =\left(\neg \neg B^{K} \vee \neg \neg C^{K}\right) \\
(B \Rightarrow C)^{K} & =\left(\neg \neg B^{K} \Rightarrow \neg \neg C^{K}\right) \\
(\forall x A)^{K} & =\forall x \neg \neg A^{K} \\
(\exists x A)^{K} & =\exists x \neg \neg A^{K}
\end{aligned}
$$

Theorem
$\Gamma \vdash \Delta$ is provable in LK iff $\Gamma^{K}, \neg \Delta^{K} \vdash$ is provable in LJ .

Correspondence

$A^{K o}=\neg \neg A^{K}$

How does the Translation Work ?

Theorem
$\Gamma \vdash \Delta$ is provable in LK iff $\Gamma^{K}, \neg \Delta^{K} \vdash$ is provable in LJ.
Proof: Induction on the LK proof. \neg bounces. Example: rule \wedge_{R}.

$$
\begin{gathered}
\frac{\pi_{1}}{\Gamma \vdash A, \Delta} \\
\wedge_{R} \stackrel{\pi_{2}}{====}========= \\
\Gamma \vdash A \wedge B, \Delta
\end{gathered}
$$

is turned into:

$$
\begin{aligned}
& \frac{\pi_{1}^{\prime}}{\Gamma^{K}, \neg A^{K}, \neg \Delta^{K} \vdash} \frac{\pi_{2}^{\prime}}{\Gamma^{K}, \neg B^{K}, \neg \Delta^{K} \vdash} \\
& =======================\wedge_{R} \\
& \quad \Gamma^{K}, \neg\left(\neg \neg A^{K} \wedge \neg \neg B^{K}\right), \neg \Delta^{K} \vdash
\end{aligned}
$$

How does the Translation Work ?

Theorem
$\Gamma \vdash \Delta$ is provable in LK iff $\Gamma^{K}, \neg \Delta^{K} \vdash$ is provable in LJ.
Proof: Induction on the LK proof. \neg bounces. Example: rule \wedge_{R}.

$$
\begin{gathered}
\frac{\pi_{1}}{\Gamma \vdash A, \Delta} \\
\wedge_{R} \stackrel{\pi_{2}}{====}========= \\
\Gamma \vdash A \wedge B, \Delta
\end{gathered}
$$

is turned into:

$$
\begin{aligned}
& \frac{\pi_{1}^{\prime}}{\Gamma^{K}, \neg A^{K}, \neg \Delta^{K} \vdash} \quad \frac{\pi_{2}^{\prime}}{\Gamma^{K}, \neg B^{K}, \neg \Delta^{K} \vdash} \\
&======\overline{\bar{K}}===\overline{\bar{K}}, \overline{\Delta^{K} \vdash \neg \neg A^{K} \wedge \neg \neg B^{K}}=======\wedge_{R} \\
& \neg\left\llcorner\frac{\bar{K}}{\Gamma^{K}, \neg\left(\neg \neg A^{K} \wedge \neg \neg B^{K}\right), \neg \Delta^{K} \vdash}\right.
\end{aligned}
$$

How does the Translation Work ?

Theorem

$\Gamma \vdash \Delta$ is provable in LK iff $\Gamma^{K}, \neg \Delta^{K} \vdash$ is provable in LJ .
Proof: Induction on the LK proof. \neg bounces. Example: rule \wedge_{R}.

$$
\begin{gathered}
\frac{\pi_{1}}{\Gamma \vdash A, \Delta} \\
\wedge_{R} \stackrel{\pi_{2}}{====}========= \\
\Gamma \vdash A \wedge B, \Delta
\end{gathered}
$$

is turned into:

$$
\begin{aligned}
& \frac{\pi_{1}^{\prime}}{\Gamma^{K}, \neg A^{K}, \neg \Delta^{K} \vdash} \quad \frac{\pi_{2}^{\prime}}{\Gamma^{K}, \neg B^{K}, \neg \Delta^{K} \vdash} \\
& ==\stackrel{\Gamma^{K}, \neg \Delta^{K} \vdash \neg \neg A^{K}}{===\overline{\bar{K}}==\overline{=}====\overline{\Gamma^{K}}, \neg \Delta^{K} \vdash \neg \neg B^{K}} \\
& \\
& \neg\left\llcorner\frac{\Gamma \bar{K}, \neg \Delta^{K} \vdash \neg \neg A^{K} \wedge \neg \neg B^{K}=====\wedge_{R}}{\Gamma K}, \neg\left(\neg \neg A^{K} \wedge \neg \neg B^{K}\right), \neg \Delta^{K} \vdash\right.
\end{aligned}
$$

How does the Translation Work?

Theorem
$\Gamma \vdash \Delta$ is provable in LK iff $\Gamma^{K}, \neg \Delta^{K} \vdash$ is provable in LJ.
Proof: Induction on the LK proof. \neg bounces. Example: rule \wedge_{R}.

$$
\begin{gathered}
\frac{\pi_{1}}{\Gamma \vdash A, \Delta} \\
\wedge_{R} \stackrel{\pi_{2}}{====}========= \\
\Gamma \vdash A \wedge B, \Delta
\end{gathered}
$$

is turned into:

$$
\begin{aligned}
& \neg R \frac{\pi_{1}^{\prime}}{\Gamma^{K}, \neg A^{K}, \neg \Delta^{K} \vdash} \\
& \Gamma^{K} \frac{\pi_{2}^{\prime}}{\Gamma^{K}, \neg B^{K}, \neg \Delta^{K} \vdash} \\
&==\neg \Delta^{K} \vdash \neg \neg A^{K} \Gamma^{K}, \neg \Delta^{K} \vdash \neg \neg B^{K} \\
&=========\overline{\bar{K}}=====\overline{\bar{K}}=====\wedge_{R} \\
& \neg\left\llcorner\frac{\Gamma^{K}, \neg \Delta^{K} \vdash \neg \neg A^{K} \wedge \neg \neg B^{K}}{\Gamma^{K}, \neg\left(\neg \neg A^{K} \wedge \neg \neg B^{K}\right), \neg \Delta^{K} \vdash}\right.
\end{aligned}
$$

Are they morphisms?

Consider Kolmogorov's translation:

- let:

$$
\begin{aligned}
B \wedge_{c} C & =\neg \neg\left(B \wedge_{i} C\right) \\
B \vee_{c} C & =\neg \neg\left(B \vee_{i} C\right) \\
B \Rightarrow_{c} C & =\neg \neg\left(B \Rightarrow_{i} C\right) \\
\forall_{c} x A & =\neg \neg\left(\forall_{i} x A\right) \\
\exists_{c} x A & =\neg \neg\left(\exists_{i} x A\right)
\end{aligned}
$$

- unfortunately:

$$
\begin{align*}
B^{K o} & =\neg \neg B \tag{atoms}\\
(B \wedge C)^{K o} & =B^{K o} \wedge_{c} C^{K o} \\
(B \vee C)^{K o} & =B^{K o} \vee_{c} C^{K o} \\
(B \Rightarrow C)^{K o} & =B^{K o} \Rightarrow{ }_{c} C^{K o} \\
(\forall x A)^{K o} & =\forall_{c} x A^{K o} \\
(\exists x A)^{K o} & =\exists_{c} x A^{K o}
\end{align*}
$$

- this is not a morphism.

Are they morphisms ?

- No !
\star in the case of $K o$:

$$
B^{K o}=\neg \neg B \text { (atoms) }
$$

\star in the case of K :

Theorem

$\Gamma \vdash \Delta$ is provable in LK iff $\Gamma^{K}, \neg \Delta^{K}+$ is provable in LJ .

* exercise: these negations are necessary (hint: consider the excluded-middle and its derivatives)
- can we be more clever ?
\star some intuitionistic right-rules are the same as classical right-rules. For instance, \wedge_{R} :

$$
\frac{\Gamma \vdash A, \Delta \quad \Gamma \vdash B, \Delta}{\Gamma \vdash A \wedge B, \Delta}
$$

* Translate them by themselves. Gödel-Getzen translation.

Gödel-Gentzen Translation

In this translation, disjunctions and existential quantifiers are replaced by a combination of negation and their De Morgan duals:

$$
\begin{aligned}
B^{g g} & =\neg \neg B \\
(A \wedge B)^{g g} & =A^{g g} \wedge B^{g g} \\
(A \vee B)^{g g} & =\neg\left(\neg A^{g g} \wedge \neg B^{g g}\right) \\
(A \Rightarrow B)^{g g} & =A^{g g} \Rightarrow B^{g g} \\
(\forall x A)^{g g} & =\forall x A^{g g} \\
(\exists x A)^{g g} & =\neg \forall \neg \neg A^{g g}
\end{aligned}
$$

Example of translation

$((A \vee B) \Rightarrow C)^{g g}$ is $(\neg(\neg \neg \neg A \wedge \neg \neg \neg B)) \Rightarrow \neg \neg C$

Theorem

$\Gamma \vdash \Delta$ is provable in LK iff $\left.\Gamma^{g g},\right\lrcorner \Delta^{g g} \vdash$ is provable in LJ .

Are they morphisms?

- No!
* in the case of $K o$:

$$
B^{K o}=\neg \neg B \text { (atoms) }
$$

\star in the case of K :

Theorem

$\Gamma \vdash \Delta$ is provable in LK iff $\Gamma^{K}, \neg \Delta^{K} \vdash$ is provable in LJ.

* exercise: show that those negations are necessary (hint: consider the excluded-middle and its derivatives)
- can we be more clever?
\star some intuitionistic right-rules are the same as classical right-rules. For instance, \wedge_{R} :

$$
\frac{\Gamma \vdash A, \Delta \quad \Gamma \vdash B, \Delta}{\Gamma \vdash A \wedge B, \Delta}
$$

^ Gödel-Getzen translation:

* is still not a morphism !
- etc. for all the other known translations (Krivine, Kuroda)

How to make a morphism: an analysis

- Translation of, say, $A \wedge B$:

Kolmogorov	Light Kolmogorov
$\neg \neg\left(A^{K o} \wedge B^{K o}\right)$	$\left(\neg \neg A^{K o}\right) \wedge\left(\neg \neg A^{K o}\right)$

- Feature, double-negation:

Kolmogorov	Light Kolmogorov
on top of the connective	inside the connective

- Analysis, problem appearing in:

	Kolmogorov	Light Kolmogorov
Problem	atoms: $\neg \neg P$	statement: $\Gamma^{K}, \neg \Delta^{K} \vdash$
Solution	statement: $\left.\Gamma^{K o},\right\lrcorner \Delta^{K o} \vdash$	atoms: P

- Solution: combine them!

Dowek's translation

$$
\begin{aligned}
B^{D} & =B & =B \\
(B \wedge C)^{D} & =B^{D} \wedge_{c} C^{D} & =\neg \neg\left(\neg \neg B^{D} \wedge \neg \neg C^{D}\right) \\
(B \vee C)^{D} & =B^{D} \vee_{c} C^{D} & =\neg \neg\left(\neg \neg B^{D} \vee \neg \neg C^{D}\right) \\
(B \Rightarrow C)^{D} & =B^{D} \Rightarrow{ }_{c} C^{D} & =\neg \neg\left(\neg \neg B^{D} \Rightarrow \neg \neg C^{D}\right) \\
(\forall x A)^{D} & =\forall_{c} x A^{D} & =\neg \neg \forall x \neg \neg A^{D} \\
(\exists x A)^{D} & =\exists_{c} x A^{D} & =\neg \neg \exists x \neg \neg A^{D}
\end{aligned}
$$

Theorem

$\Gamma \vdash \Delta$ is provable in LK iff $\left.\Gamma^{D},\right\lrcorner \Delta^{D} \vdash$ is provable in LJ.

Corollary

Assume A is not atomic. $\Gamma \vdash A$ is provable in LK iff $\Gamma^{D} \vdash A^{D}$ is provable in LJ.

Proof:

- $\neg\lrcorner A^{D}=A^{D}$ (except in the atomic case) \square

The Price to Pay

- heavy: for each connective, 6 negations. $((A \vee B) \Rightarrow C)^{D}$ is $\neg \neg(\neg \neg \neg \neg(\neg \neg A \vee \neg \neg B) \Rightarrow \neg \neg C)$
- most of the time useless, except at the top and at the bottom of the formula
- remember Gödel-Gentzen's idea. Use De Morgan duals:

$$
(A \vee B)^{g g}=\neg\left(\neg A^{g g} \vee \neg B^{g g}\right)
$$

- let us do the same, and divide by two the number of double negations.

A Light Morphism

Remember De Morgan,

$$
\begin{aligned}
A \vee B & =\neg(\neg A \wedge \neg B) \\
A \wedge B & =\neg(\neg A \vee \neg B) \\
A \Rightarrow B & =\neg A \vee B \\
\neg A & =\neg A \\
\forall x A & =\neg \exists x \neg A \\
\exists x A & =\neg \forall \neg A
\end{aligned}
$$

A Light Morphism

Remember De Morgan, and let

$$
\begin{aligned}
A \vee_{c} B & =\neg(\neg A \wedge \neg B) \\
A \wedge_{c} B & =\neg(\neg A \vee \neg B) \\
A \Rightarrow_{c} B & =\neg(\neg \neg A \vee \neg B \\
\neg_{c} A & =\neg \neg \neg A \\
\forall_{c} \times A & =\neg \exists x \neg A \\
\exists_{c} \times A & =\neg \forall x \neg A
\end{aligned}
$$

- this gives rise to a morphism, (. $)^{\ominus}$ together with:

$$
\begin{aligned}
& \top_{c}=\neg \neg \top \\
& \perp_{c}=\neg \neg \perp
\end{aligned}
$$

- and we can prove the theorem:

Theorem

$\Gamma \vdash \Delta$ is provable in LK iff $\left.\Gamma^{\odot},\right\lrcorner \Delta^{\odot} \vdash$ is provable in LJ.

Some Cases

Proof by induction on the proof of $\Gamma \vdash \Delta$.

- last rule \vee_{R} on some $A \vee B \in \Delta$. Remember:
$\lrcorner(A \vee B)^{\odot}=\neg A^{\odot} \wedge \neg B^{\odot}$

$$
\frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \vee B, \Delta}
$$

$\star A$ and B are atomic: $\lrcorner A^{\odot}=\neg A$ and $\lrcorner B^{\odot}=\neg B$.

$$
\frac{\left.\Gamma^{\odot}, \neg A, \neg B,\right\lrcorner \Delta^{\odot} \vdash}{\left.\Gamma^{\odot}, \neg A \wedge \neg B,\right\lrcorner \Delta^{\odot} \vdash}
$$

\star if neither A and B are atomic, then A^{\odot} and B^{\ominus} have a trailing \neg, and we remove it (bouncing):

$$
\frac{\left.\left.\left.\Gamma^{\odot},\right\lrcorner A^{\ominus},\right\lrcorner B^{\odot},\right\lrcorner \Delta^{\odot} \vdash}{\left.\Gamma^{\odot}, \neg A^{\ominus}, \neg B^{\odot},\right\lrcorner \Delta^{\odot} \vdash}(\neg R, \neg\llcorner) \times 2
$$

* mixed case: mixed strategy.

Conclusion, Further Work

- logic with two kinds of connectives: V_{i} and V_{c}

$$
\vee_{R 1} \frac{\Gamma \vdash A}{\Gamma+A \vee_{i} B} \quad \vee_{R 2} \frac{\Gamma+B}{\Gamma+A \vee_{i} B}
$$

- and we have:
$\mathrm{f} \Gamma, \Delta, A$ contain only classical connectives, A non atomic, then $\Gamma \vdash A$ in LK iff $\Gamma \vdash A$. As well, $\Gamma \vdash \Delta$ in LK iff $\Gamma,\lrcorner \Delta \vdash$.
- next, lighter morphisms:
\star from $\neg_{c} A=\neg \neg \neg A$ to $\neg_{c} A=\neg A$?
\star from $A \Rightarrow_{c} B=\neg\left(\neg \neg A \vee \neg B\right.$ to $A \Rightarrow_{c} B=\neg(A \vee \neg B)$?
\star we cannot always maintain the invariant $\Gamma,\lrcorner \Delta \vdash$.
\star Focusing in LK to the rescue.

