From normalization to cut elimination

Olivier Hermant

ISEP

March 8, 2012

O. Hermant (ISEP)

Deduction modulo

March 8, 2012 1 / 46

Deduction modulo [Dowek, Hardin & Kirchner]

Original idea: combine automated theorem proving with rewriting

Generalized to: combine any first-order deduction process with rewriting

Deduction modulo [Dowek, Hardin & Kirchner]

Original idea: combine automated theorem proving with rewriting Generalized to: combine any first-order deduction process with rewriting

Example: Classical Sequent Calculus Modulo

first-order logic: function and predicate symbols, logical connectors
 ∧, ∨, ⇒, quantifiers ∀, ∃ and constants ⊤, ⊥

$$\mathsf{LK} + \frac{\Gamma \vdash A, \Delta}{\Gamma \vdash B, \Delta} \operatorname{Conv-R} + \frac{\Gamma, A \vdash \Delta}{\Gamma, B \vdash \Delta} \operatorname{Conv-L}$$

▶ where Conv rules are applicable whenever $A \equiv B$, the congruence generated by rewriting.

Deduction System I: classical sequent calculus

O. Hermant (ISEP)

March 8, 2012 3 / 46

Deduction System II: intuitionistic natural deduction

$$\overline{\Gamma, A \vdash A} \operatorname{axiom}$$

$$\frac{\Gamma \vdash A \ \Gamma \vdash B}{\Gamma \vdash A \land B} \land -i \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \land -e1 \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \land -e2$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \Rightarrow -i \qquad \frac{\Gamma \vdash A \Rightarrow B \qquad \Gamma \vdash A}{\Gamma \vdash B} \Rightarrow -e$$

$$\frac{\Gamma \vdash A[x]}{\Gamma \vdash \forall x A[x]} \forall -i, x \text{ free} \qquad \frac{\Gamma \vdash \forall x A[x]}{\Gamma \vdash A[t]} \forall -e, \text{ any } t$$

Rewriting relation

on terms:

$$\begin{array}{rccc} x+0 & \longrightarrow & x \\ x+S(y) & \longrightarrow & S(x+y) \end{array}$$

on atomic formulæ:

$$\begin{array}{rcl} \text{Null}(0) & \longrightarrow & \top \\ \text{Null}(S(x)) & \longrightarrow & \bot \\ A & \longrightarrow & A \Rightarrow A \end{array}$$

(the last one is very bad)

Examples of theories expressed in Deduction Modulo

- arithmetic
- Zermelo's set theory
- a subset of B set theory
- simple type theory (HOL)

What about cut-elimination ?

$$\begin{cases} \vdash \operatorname{even}(0) \\ \operatorname{even}(n) \vdash \operatorname{even}(n+2) \end{cases}$$

$$Cut \frac{\overline{\vdash even(0)} \quad even(0) \vdash even(2)}{\vdash even(2)}$$

axiomatic cuts

- ∢ ⊒ →

What about cut-elimination ?

even(0)
$$\rightarrow \top$$

even(x + 2) \rightarrow even(x)
 $\frac{\overline{} + \overline{}}{\overline{} + even(2)}$ Conv-r

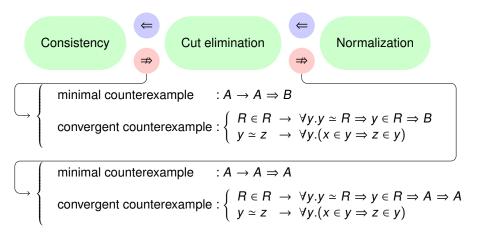
or even:

:

O. Hermant (ISEP)

• □ ▶ < 同 ▶ < 三 ▶</p>

Cut-elimination implies consistency... and we must pay the prize



Normalization: principles

begin by defining proof-terms and a reduction relation

$$\overline{\Gamma, \alpha : A \vdash \alpha : A} \operatorname{axiom}$$

$$\frac{\Gamma \vdash \pi : A \ \Gamma \vdash \nu : B}{\Gamma \vdash \langle \pi, \nu \rangle : A \land B} \land -i \qquad \frac{\Gamma \vdash \pi : A \land B}{\Gamma \vdash fst(\pi) : A} \land -e1 \qquad \frac{\Gamma \vdash \pi : A \land B}{\Gamma \vdash snd(\pi) : B} \land -e2$$

$$\frac{\Gamma, \alpha : A \vdash \pi : B}{\Gamma \vdash \lambda \alpha . \pi : A \Rightarrow B} \Rightarrow -i \qquad \frac{\Gamma \vdash \pi : A \Rightarrow B}{\Gamma \vdash (\pi \nu) : B} \Rightarrow -e$$

$$fst(\langle \pi, \nu \rangle) \rhd \pi$$

$$snd(\langle \pi, \nu \rangle) \rhd \nu$$

$$(\lambda \alpha. \pi \nu) \rhd (\nu/\alpha)\pi$$

show that every typable proof-term is strongly normalizable

0	1 1	
Ο.	Hermant	(ISEP)

Normalization: principles

- ► assign to each type A and valuation φ a set [A]_φ that is a reducibility candidate. That is, a set S such that:
 - * (CR_1) all members of S are strongly normalizable
 - ★ (*CR*₂) every reduct of $\pi \in S$ is in *S*
 - * (*CR*₃) if π is neutral¹ and every one-step reduct is in S then π is in S

¹an axiom or an elimination / equivalently, a term that, when substituted, does not introduce new redexes $\langle \Box \rangle \langle \partial \rangle \langle \partial$

O. Hermant (ISEP)

Normalization: principles

- ► assign to each type A and valuation φ a set [A]_φ that is a reducibility candidate. That is, a set S such that:
 - * (CR_1) all members of S are strongly normalizable
 - ★ (*CR*₂) every reduct of $\pi \in S$ is in *S*
 - * (CR₃) if π is neutral¹ and every one-step reduct is in S then π is in S

Adequacy

Let $\Gamma \vdash \pi : A$. Let θ be a substitution, ϕ a valuation and σ a substitution for proof variables such that $\sigma(\alpha) \in [\![B]\!]_{\phi}$ for any $(\alpha : B) \in \Gamma$. Then:

 $\sigma\theta\pi\in[\![A]\!]_\phi$

- conclusion follows immediately (choose identity for σ and θ)

¹an axiom or an elimination / equivalently, a term that, when substituted, does not introduce new redexes $\Box \mapsto \langle \Box \rangle \Rightarrow \langle \Box \rangle \Rightarrow \langle \Xi \rangle \Rightarrow \langle \Xi \rangle$

Semantics: Heyting algebra

- a universe Ω , operators \land, \lor, \Rightarrow
- ▶ an order ≤
- ► operations on it: lowest upper bound (join: ∧), greatest lower bound (meet: ∨ – intersection). A lattice.

$$a \wedge b \leq a$$
 $a \wedge b \leq b$ $c \leq a$ and $c \leq b$ implies $c \leq a \wedge b$

 $a \le a \lor b$ $b \le a \lor b$ $a \le c$ and $b \le c$ implies $a \lor b \le c$

like Boolean algebras (classical case), with weaker complement:

$$a \wedge b \leq c$$
 iff $a \leq b \Rightarrow c$

• example: \mathbb{R} and open sets.

Cut Admissibility: principle

- show that the cut-rule is redundant: we can prove the same statements with of without cuts.
 - * this is a consequence of proof normalization
 - more convenient to show (seq. calculus), in any case, simpler argument
 - * sometimes we do not have the choice (cf. slide 11) !

Cut Admissibility: principle

- show that the cut-rule is redundant: we can prove the same statements with of without cuts.
 - this is a consequence of proof normalization
 - more convenient to show (seq. calculus), in any case, simpler argument
 - * sometimes we do not have the choice (cf. slide 11) !
- refinment of soundness/completeness:

Soundness

A provable statement is universally true (for a certain class of models).

Completeness (Gödel)

A universally true (for a certain class of models) statement is provable.

Cut Admissibility: principle

- show that the cut-rule is redundant: we can prove the same statements with of without cuts.
 - this is a consequence of proof normalization
 - more convenient to show (seq. calculus), in any case, simpler argument
 - * sometimes we do not have the choice (cf. slide 11) !
- refinment of soundness/completeness:

Soundness

A provable statement is universally true (for a certain class of models).

Strong Completeness

A universally true (for a certain class of models) statement is provable **without cut**.

Cut Admissiblity: the Gödel way

- given a context Γ such that $\Gamma \not\vdash$ (consistent say, today, coherent)
- Add all coherent formulæ (whenever Γ, A ⊬, add A to Γ plus Henkin witnesses)
- the limit of this process gives a maximal coherent theory (abstract consistency property)

The syntactical model

Let $\llbracket A \rrbracket = 1$ if $A \in \Gamma$ and $\llbracket A \rrbracket = 0$ otherwise. This is a model.

conclude by contradiction:

Completeness theorem

If Γ , $\neg \Delta$ does not have a model, then $\Gamma \vdash \Delta$

Cut Admissiblity: the Gödel way

- given a context Γ such that Γr^* (coherent)
- Add all coherent formulæ (whenever Γ, A κ, add A to Γ plus Henkin witnesses)
- the limit of this process gives a maximal coherent theory (abstract consistency property)

The syntactical model

Let $\llbracket A \rrbracket = 1$ if $A \in \Gamma$ and $\llbracket A \rrbracket = 0$ otherwise. This is a model.

conclude by contradiction:

Completeness theorem

If $\Gamma, \neg \Delta$ does not have a model, then $\Gamma \vdash^* \Delta$

Cut Admissibility: the Gödel way

Extensions:

- Krivine's proof (constructive, classical logic)
- the tableau method (more constructive, cut admissibility)
- Herbelin and Ilik's proofs (even more constructive: proved in Coq)
- intuitionistic logic: Kripke structures (constructive versions by Freidman, Veldman)
- Normalization by Evaluation ...

Lindenbaum algebra:

- $\blacktriangleright [A] = \{B \mid A \vdash B \text{ and } B \vdash A\}$
- $\Omega = \{ \lfloor A \rfloor \mid A \text{ formula} \}$
- \leq is \vdash : $\lfloor A \rfloor \leq \lfloor B \rfloor$ iff $A \vdash B$.

Lemma

It is independent of the chosen element of $\lfloor A \rfloor$.

• $\lfloor A \rfloor \land \lfloor B \rfloor$ is $\lfloor A \land B \rfloor$ (same for other connectives)

Lemma

It is independent of the chosen element of $\lfloor A \rfloor$.

Theorem

 $\Omega, \leq, \land, \lor, \Rightarrow, \top, \bot, \forall, \exists$ is a Boolean/Heyting Algebra

Lidenbaum algebra

- interpretation of formulæ
 - ★ define the interpretation on the atoms as $\llbracket A \rrbracket = \lfloor A \rfloor$
 - extend it by induction

Fundamental Lemma

For any formula A, $\llbracket A \rrbracket = \lfloor A \rfloor$

what do we have ?

Completeness

if $\llbracket A \rrbracket \leq \llbracket B \rrbracket$ in all models, then $A \vdash B$.

★ this is the definition of \leq in the Lindenbaum algebra.

• defining $[A] = \{B \mid A \vdash^* B \text{ and } B \vdash^* A\}$ does not work (transitivity of \leq fails)

Base elements of the Lindenbaum algebra

 $\lfloor A \rfloor = \{B \mid A \vdash B \text{ and } B \vdash A\}$

Base elements of the context algebra $\lfloor A \rfloor = \{ \Gamma \mid \Gamma \vdash A \}$

- ▶ \leq is \subseteq and g.l.b. (∧) and l.u.b. (∨) will be "intersection" and "union"
- implies changes in the approach:

The Algebra Ω

$$\Omega = \left\{ \bigcap_{C \in C} \lfloor C \rfloor \mid \text{ for } C \text{ set of formulæ} \right\}$$

 Ω is composed of arbitrary intersections of base elements

	(10 E D)
O. Hermant	(ISEP)

The context algebra for completeness

Iattice operators:

$$T = [T] = \{ \Gamma \mid \Gamma \text{ valid context} \}$$

$$L = [L] = \{ \Gamma \mid \Gamma \vdash L \}$$

$$a \land b = a \cap b$$

$$a \lor b = \bigcap \{ d \in \Omega \mid a \cup b \subseteq d \} = \bigcap \{ [D] \mid a \cup b \subseteq [D] \}$$

$$\forall S = \bigcap S = \bigcap_{s \in S} s$$

$$\exists S = \bigcap \{ d \in \Omega \mid (\bigcup S) \subseteq d \} = \bigcap \{ [D] \mid (\bigcup S) \subseteq [D] \}$$

Lemma: Ω is a lattice

 \land , \forall , \lor , \exists represent the binary greatest lower bound, greatest lower bound, binary least upper bound and least upper bound respectively. \top and \bot are the greatest and lowest elements, respectively.

▶ it is also a Boolean/Heyting Algebra.

• set the interpretation of the atoms to be: $[A] = \lfloor A \rfloor$

Fundamental Lemma For any formula A, $\llbracket A \rrbracket = \lfloor A \rfloor$.

• set the interpretation of the atoms to be: $[A] = \lfloor A \rfloor$

Fundamental Lemma

For any formula A, $\llbracket A \rrbracket = \lfloor A \rfloor$.

what do we have ?

Completeness

if $\llbracket A \rrbracket \leq \llbracket B \rrbracket$ in all models, then $A \vdash B$.

- ★ (trivial) $A \in \lfloor A \rfloor$
- ★ [A] = [A] (fundamental lemma)
- ★ $A \in \llbracket B \rrbracket = \lfloor B \rfloor$ (fundamental lemma)
- ★ means $A \vdash B$

Ω is arbitrary intersections of base elements.

Base elements $|A| = \{\Gamma \mid \Gamma \vdash A\}$

- \leq is \subseteq . Gives a lattice.
- it is also a Boolean/Heyting algebra (phase space).
- set the interpretation of the atoms to be: $[A] = \lfloor A \rfloor$

Fundamental Lemma

For any formula A, $\llbracket A \rrbracket = \lfloor A \rfloor$.

what do we have ?

Completeness

if $\llbracket A \rrbracket \leq \llbracket B \rrbracket$ in all models, then $A \vdash B$.

Proof: $A \in \lfloor A \rfloor = \llbracket A \rrbracket \subseteq \llbracket B \rrbracket = \lfloor B \rfloor$.

• Ω is arbitrary intersections of base elements.

Base elements $|A| = \{\Gamma \mid \Gamma \vdash^* A\}$

- \leq is \subseteq . Gives a lattice.
- it is also a Boolean/Heyting algebra (original work: phase space).
- set the interpretation of the atoms to be: [A] = [A]

Fundamental Lemma

For any formula $A, A \in \llbracket A \rrbracket \subseteq \lfloor A \rfloor$

what do we have ?

Strong Completeness

if $\llbracket A \rrbracket \leq \llbracket B \rrbracket$ in all models, then $A \vdash^* B$.

```
Proof: A \in \llbracket A \rrbracket \subseteq \llbracket B \rrbracket \subseteq \lfloor B \rfloor.
```

In Deduction Modulo ...

Congruence

The congruence generated by the rewriting relation is a condition for strict equality.

- ▶ for models, we impose $A \equiv B$ implies $\llbracket A \rrbracket = \llbracket B \rrbracket$
- same for reducibility candidates (although [[⊤]] ≠ [[⊤ ∧ ⊤]])

end of the introduction

Reducibility candidates for cut admissibility

- considered deduction system: natural deduction
- principle: drop the proof-terms (we do not care about normalization) and replace them with their conclusion (a sequent).
- redefine what "cut-free" means:

Cut-free

A proof:

that ends with an axiom ; that ends with an introduction which premises are proved cut-free ; that ends with an elimination which principal premiss is proved neutrally and cut-free, and other premises are proved cut-free is cut-free

- condition for a set of sequents S to be a reducibility candidate:
 - (CR₁) containing only cut-free provable sequents
 - no CR₂ (stability by reduction)
 - * (CR₃) contain all the sequents provable with a neutral cut-free proof

Building enough candidates

- Operators the S-algebra
- Let a, b bet sets of sequents:
 - \top is the set of sequents $\Gamma \vdash C$ that have a neutral cut-free proof or such that $C \equiv \top$
 - $a \wedge b$ is the set of sequents $\Gamma \vdash C$ that have a neutral cut-free proof or such that $C \equiv A \wedge B$ and $\Gamma \vdash A \in a$ and $\Gamma \vdash B \in b$

- to each formula A and valuation φ, we shall associate a candidate [[A]]_φ:
 - * A atomic: $[\![A]\!]_{\phi}$ chosen arbitrarily (depending on ϕ , however)
 - * A compound: $\llbracket B \land C \rrbracket_{\phi} = \llbracket B \rrbracket_{\phi} \land \llbracket C \rrbracket_{\phi}, \cdots$
- in Deduction modulo, not sufficient:
- if $A \equiv B$ then $\llbracket A \rrbracket = \llbracket B \rrbracket$

...

• it looks like a model interpretation, let it be really like this.

Chosing a candidate for atomic formulæ: superconsistency (SC), a generic criterion

Dowek & Werner: *Proof normalization modulo* Dowek: *Truth values algebras and proof normalization*

Consistency

A theory ${\mathcal T}$ is consistent if it can be interpreted in **one** model not reduced to \bot

Super-consistency

A theory \mathcal{T} is super-consistent if it can be interpreted in **all** models

What is the notion of model ?

Pre-Heyting Algebras

... are Heyting algebras generalized to pre-ordered sets

Pre-Heyting algebras take into account two distinct notion of equivalence: Computational equivalence : strong, corresponds to equality in the model Logical equivalence : loose corresponds to $\geq \cap \leq$

We also can look at Pre-Heyting algebra as an algebra with operators (drop entirely the pre-order)

Superconsistency (SC): characterizing analytical theories

Dowek's remark

The set of reducibility candidates for NJ modulo is a pre-Heyting Algebra. And the normalization constructions do not depend on the specificities of the reducibility algebra: we can abstract and generalize.

Superconsistency (SC): characterizing analytical theories

Dowek's remark

The set of reducibility candidates for NJ modulo is a pre-Heyting Algebra. And the normalization constructions do not depend on the specificities of the reducibility algebra: we can abstract and generalize.

Consistency The theory can be interpreted in a non-trivial model Superconsistency The theory can be interpreted in any model

Any superconsistent theory can then be interpreted in the pre-Heyting algebra of reducibility candidates. Using generic adequacy:

Examples of theories proved to be superconsistent

- arithmetic
- simple type theory (HOL)
- confluent, terminating and quantifier free rewrite systems
- confluent, terminating and positive rewrite systems
- positive rewrite system such that each atomic formula has at most one one-step reduct

Back to the S-algebra and adequacy

Operators - the S-algebra

Let a, b bet sets of sequents:

- \top is the set of sequents $\Gamma \vdash C$ that have a neutral cut-free proof or such that $C \equiv \top$
- $a \land b$ is the set of sequents $\Gamma \vdash C$ that have a neutral cut-free proof or such that $C \equiv A \land B$ and $\Gamma \vdash A \in a$ and $\Gamma \vdash B \in b$

- it is a pre-Heyting algebra, but not a Heyting algebra: [[⊤ ∧ ⊤]] contains ⊢ ⊤ ∧ ⊤ while [[⊤]] does not.
- given a superconsistent theory, we get a model ... but it remains to show adequacy in this setting.

...

A hidden Heyting algebra

• we assume a sequent reducibility candidates model \mathcal{M} .

Context extraction

 $\lfloor A \rfloor$ is the set of contexts Γ such that for any substitution σ and valuation ϕ , and any context Δ such that $\Delta \vdash \sigma A_i \in \llbracket A_i \rrbracket_{\phi}$ for any $A_i \in \Gamma$, then $\Delta \vdash \sigma A \in \llbracket A \rrbracket_{\phi}$

Reminder: (old proof-term) adequacy

[...] Let σ be a substitution, ϕ a valuation and δ a substitution for proof variables such that $\delta(\alpha) \in [\![A_i]\!]_{\phi}$ for any $(\alpha : A_i) \in \Gamma$ [...]

- we define the following:
 - Ω is the least set containing the extractions and closed by arbitrary
 intersection
 - this forms a lattice
 - we can extend it to a Heyting algebra

イロト イボト イヨト イヨト

Fundamental Lemma and Adequacy

Fundamental lemma

$$\lfloor A \land B \rfloor = \lfloor A \rfloor \land \lfloor B \rfloor$$

$$\lfloor A \Rightarrow B \rfloor = \lfloor A \rfloor \Rightarrow \lfloor B \rfloor$$

Remarks:

- ▶ other fundamental lemmata: $A \land B \in \llbracket A \rrbracket \land \llbracket B \rrbracket \subseteq \lfloor A \rfloor \land \lfloor B \rfloor \subseteq \lfloor A \land B \rfloor$ (impossible to do otherwise)
- all the case mimic the cases of adequacy lemma: but (of course) no induction hypothesis application.

Regaining cut admissibility

build a second level of Heyting-valued model D, where [[A]]^D = LA] and terms are interpreted by themselves (equivalence classes modulo ≡).

Cut Admissibility

if $A \vdash B$ is provable, it has a cut-free proof.

- interpret it in \mathcal{D} : $\lfloor A \rfloor \subseteq \lfloor B \rfloor$ (soundness)
- but A ∈ [A]
- so A ∈ [B]
- and $A \vdash B \in \llbracket B \rrbracket^{\mathcal{S}}$
- then $A \vdash B$ has a cut-free proof

Remark:

 compared to adequacy proof, induction handled by soundness and inductive cases by Fundamental lemma (hidden here)

O. Hermant (ISEP)

To Summarize

- construct a pre-Heyting algebra made of sets of sequents
- interpret propositions inside this algebra (thanks to SC)
- extract a Heyting algebra and a model interpretation / show adequacy
- soundness + completeness: cut-elimination

Application to the HOL case

- HOL as a first-order theory: Deduction modulo
- we build the second level of model D as usual. In particular, terms are interpreted by (equivalence classes of) terms.
- all the other cut admissibility proofs introduce a weird device,
 V-complexes, due to the intensionality problem:

Example of intensionality

 $P(\top \land \top) \Leftrightarrow P(\top)$ although $\top \land \top \Leftrightarrow \top$

- \star op must be interpreted by something else that the semantic op
- * need for a new notion of model, with two layers: the interpretation one (*V*-complexes, pairs $\langle t, d \rangle$) and the denotation one (logical meaning).

Application to the HOL case

We do not need to change the notion of model, for two reasons (both necessary):

- ▶ there is a propositional $\top = \varepsilon(\dot{\top})$ and a term-level \top : $\dot{\top}$. They are different.
- the sequent algebra is richer than a Boolean/Heyting algebra:
 [[⊤ ∧ ⊤]] ≠ [[⊤]]. They can be distinguished.

Simplification and explanation of old arguments (Takahashi, Prawitz, Andrews).

Classical sequent calculus

- completely different notion of cut !
- ▶ aim: define and use SC for (eventually) sequent-calculus proof-terms
- framework: one-sided sequent calculus, negation as an operator (not a connective)

$$\frac{\vdash A, A^{\perp}}{\vdash A, A^{\perp}} (Axiom) \qquad \frac{\vdash A, \Delta_{1} \qquad \vdash A^{\perp}, \Delta_{2}}{\vdash \Delta_{1}, \Delta_{2}} (Cut) \qquad \frac{\vdash A, \Delta \qquad A \equiv B}{\vdash B, \Delta} (Cor)$$

$$\frac{\vdash A, A, \Delta}{\vdash A, \Delta} (Contr) \qquad \frac{\vdash \Delta}{\vdash A, \Delta} (Weak) \qquad \frac{\vdash \top}{\vdash \top} (\top) \qquad (\text{no rule for } \bot)$$

$$\frac{\vdash A, \Delta_{1} \qquad \vdash B, \Delta_{2}}{\vdash A \land B, \Delta_{1}, \Delta_{2}} (\land) \qquad \frac{\vdash A, B, \Delta}{\vdash A \lor B, \Delta} (\lor)$$

$$\frac{\vdash A[t/x], \Delta}{\vdash \exists x.A, \Delta} (\exists) \qquad \frac{\vdash A, \Delta \qquad x \text{ fresh in } \Delta}{\vdash \forall x.A, \Delta} (\forall)$$

A road map/recipe

Suppose you have an unspecified superconsistent theory

- Step 1 Construct a set of reducibility candidates
- Step 2 Prove that it is a pre-Boolean algebra

you get an interpretation of sequents in the algebra for free thanks to superconsistency (adapted to Boolean algebra)

Step 3 Prove adequacy: provable sequents are in their interpretations you get cut-elimination as a direct corollary

Inheritance from Linear Logic [Okada, Brunel]

identifying a site in sequents: pointed sequents

$$\vdash \Delta, A^{\circ}$$

interaction: a partial function \star

$$\vdash \Delta_1, A^{\circ} \star \vdash \Delta_2, B^{\circ} = \vdash \Delta_1, \Delta_2 \quad \text{if } A \equiv B^{\perp}$$
$$\vdash \Delta_1, A^{\circ} \star X = \{ \vdash \Delta_1, \Delta_2 \mid \vdash \Delta_2, B^{\circ} \in X \\ \text{and } A \equiv B^{\perp} \}$$

- ▶ define an object having good properties: ⊥
 the set of cut-free provable sequents in LK₌
- define an orthogonality operation on sets of sequents:

$$X^{\perp} = \{ \vdash \Delta, A^{\circ} \mid \vdash \Delta, A^{\circ} \star X \subseteq \mathbb{L} \}$$

* usual properties of an orthogonality operation:

$$X \subseteq X^{\perp \perp} \qquad X \subseteq Y \Rightarrow Y^{\perp} \subseteq X^{\perp} \qquad X^{\perp \perp \perp} = X^{\perp}$$

Step 1: construct the set of reducibility candidates

the domain of interpretation D: set of sequents

 $Ax^{\circ} \subseteq X \subseteq \mathbb{L}^{\circ}$

which are behaviours: $X^{\perp\perp} = X$

- reducibility candidates analogy:
 - **CR1** $X \subseteq \mathbb{I}$ (cut-free provable sequents / SN proofterms)
 - CR2 none (no reduction)
 - **CR3** $Ax^{\circ} \subseteq X$ (neutral proofterms)
- core operation + orthogonality:

$$X.Y = \{ \vdash \Delta_A, \Delta_B, (A \land B)^\circ \mid (\vdash \Delta_A, A^\circ) \in X \\ and (\vdash \Delta_B, B^\circ) \in Y \} \\ X \land Y = \{X.Y \cup Ax^\circ\}^{\perp \perp}$$

Step 2: prove that it is a pre-Boolean algebra

D forms a pre-Boolean algebra:

- ► cheat on ≤: take the trivial pre-order
 - * we can even drop it in the definition (see slide 35)
- stability of *D* under $(.)^{\perp}$, \wedge
- ▶ stability of elements of D under =

Step 3: prove adequacy

Super-consistency:

• give us an interpretation such that $A \equiv B$ implies $A^* = B^*$

Adequacy:

- takes a proof of $\vdash A_1, ..., A_n$
- assumes $\vdash \Delta_i, (A_i^{\perp})^{\circ} \in A_i^{*\perp}$
- ensures $\vdash \Delta_1, ..., \Delta_n \in \mathbb{L}$

Features of the theorem:

conversion rule: processed by the SC condition

Directly implies cut-elimination:

- ▶ because $Ax^{\circ} \subseteq A_i^{*\perp}$ (untyped candidates), we have $\vdash A, (A^{\perp})^{\circ} \in A_i^{*\perp}$
- ▶ because of the definition of ⊥ (cut-free provable sequents)

We can also extract a Boolean algebra.

Towards NbE (work in progress ...)

we can do a similar work with proof-terms

Context extraction

 $\lfloor A \rfloor$ is composed of the Γ such that there exists a proof-term $\Gamma \vdash \pi : A$ (variant: in normal form) and for any valuation ϕ , substitution θ , and assignment σ assigning to any $\alpha : A \in \Gamma$ a value $\sigma \alpha \in \llbracket A \rrbracket_{\phi}$, we have:

 $\sigma\theta\pi\in[\![\mathsf{A}]\!]_\phi$

- similar reasoning leads to a proof in normal form
- ... but we lost π in the way (soundness made π become a *justification* at the Meta-Level completeness cannot make it go down).
- the NF we get is $\downarrow \pi$. Visible, but not provable.

Conclusion

- carry π all the way ?
- Heyting towards Kripke ?
 - * NbE works are in Kripke style
 - Herbelin and Ilik's work
- SC for Heyting implies SC for Boole: does the converse stand ?
- what about normalization in LK₌ by SC ?