# Light Polarized Translations in Deduction Modulo 

Olivier Hermant

ISEP

May 11, 2012

## Deduction modulo [Dowek, Hardin \& Kirchner]

Original idea: combine automated theorem proving with rewriting
Generalized to: combine any first-order deduction process with rewriting

## Deduction modulo [Dowek, Hardin \& Kirchner]

Original idea: combine automated theorem proving with rewriting
Generalized to: combine any first-order deduction process with rewriting
Example: Classical Sequent Calculus Modulo

- first-order logic: function and predicate symbols, logical connectors $\wedge, \vee, \Rightarrow$, quantifiers $\forall, \exists$ and constants $T, \perp$

$$
\mathrm{LK}+\frac{\Gamma \vdash A, \Delta}{\Gamma \vdash B, \Delta} \text { Conv-R }+\frac{\Gamma, A \vdash \Delta}{\Gamma, B \vdash \Delta} \text { Conv-L }
$$

- where Conv rules are applicable whenever $A \equiv B$, the congruence generated by rewriting.


## Generating the congruence

## Proposition Rewrite System

$P \longrightarrow A$ where $P$ is an atomic formula, $A$ is a formula and the free variables of $A$ are contained in $P$.
A proposition rewrite system $\mathcal{R}$ is a collection of such rewrite rules.
One-step Rewriting formulæ
A formula $B$ rewrites in one step to $C$, noted $B \longrightarrow C$ if:
there is a rewrite rule $P \longrightarrow A \in \mathcal{R}$, a substitution $\sigma, B=P \sigma$ and
$C=A \sigma$.
$B=B_{1} \square B_{2}$, $\square$ is one of the connectives $\vee, \wedge, \Rightarrow$ and:
$B_{1} \longrightarrow B_{1}^{\prime}$ and $C=B_{1}^{\prime} \square B_{2}$; or $B_{2} \longrightarrow B_{2}^{\prime}$ and $C=B_{1} \square B_{2}^{\prime}$.
etc ...

## Generating the congruence

## Rewriting formulæ

A formula $A$ rewrites in one step to $B$, noted $A \longrightarrow{ }^{*} B$ if:
$A$ is $B$
$A \longrightarrow{ }^{\prime} A^{\prime}$ and $A^{\prime} \longrightarrow B$

## Congruence

Two formula $A$ and $B$ are congruent, noted $A \equiv B$ iff:
$A \longrightarrow{ }^{*} B$ or $B \longrightarrow{ }^{*} A$
there exists $A^{\prime}$ such that $A \equiv A^{\prime}$ and: $A^{\prime} \longrightarrow^{*} B$ or $B \longrightarrow^{*} A^{\prime}$.

## Deduction System I: classical sequent calculus

$$
\begin{array}{lr}
\frac{\Gamma, A \vdash A, \Delta}{} \text { axiom } & \frac{\Gamma_{1} \vdash A, \Delta_{1}}{\Gamma_{1}, \Gamma_{2} \vdash \Delta_{1}, \Delta_{2}} \text { cut } \\
\frac{\Gamma_{1}+A, \Delta_{1}}{\Gamma_{1}, \Gamma_{2} \vdash A \wedge B, \Delta_{1}, \Delta_{2}} \wedge-\mathrm{\Gamma} & \frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta} \wedge-\mathrm{I} \\
\frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \Rightarrow B, \Delta} \Rightarrow-\mathrm{r} & \frac{\Gamma_{1}, B \vdash \Delta_{1}}{\Gamma_{1}, \Gamma_{2}, A \Rightarrow B \vdash \Delta_{1}, \Delta_{2}} \Rightarrow-\mathrm{\Gamma} \\
\frac{\Gamma \vdash A[x], \Delta}{\Gamma \vdash \forall x A[x], \Delta} \forall-\mathrm{r}, x \text { fresh } & \frac{\Gamma, A[t] \vdash \Delta}{\Gamma, \forall x A[x] \vdash \Delta} \forall-\mathrm{I}, \text { any } t
\end{array}
$$

## Deduction System I: classical sequent calculus

$$
\begin{array}{lr}
\frac{\Gamma, A \vdash B, \Delta}{} \text { axiom, } A \equiv B & \frac{\Gamma_{1} \vdash A, \Delta_{1}-\Gamma_{2}, B \vdash \Delta_{2}}{\Gamma_{1}, \Gamma_{2} \vdash \Delta_{1}, \Delta_{2}} \text { cut, } A \equiv B \\
\frac{\Gamma_{1} \vdash A, \Delta_{1}}{\Gamma_{1}, \Gamma_{2} \vdash C, \Delta_{1}, \Delta_{2}} \wedge-r, C \equiv A \wedge B & \frac{\Gamma, A, B \vdash \Delta}{\Gamma, C \vdash \Delta} \wedge-I, C \equiv A \wedge B \\
\frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash C, \Delta} \Rightarrow-r, C \equiv A \Rightarrow B & \frac{\Gamma_{1}, B \vdash \Delta_{1}}{\Gamma_{1}, \Gamma_{2}, C \vdash \Delta_{1}, \Delta_{2}} \Rightarrow-I, C \equiv A \Rightarrow B \\
\frac{\Gamma \vdash A[x], \Delta}{\Gamma \vdash C, \Delta} \forall-r, x \text { fresh, } C \equiv \forall x A[x] & \frac{\Gamma, A[t] \vdash \Delta}{\Gamma, C \vdash \Delta} \forall-I, \text { any } t, C \equiv \forall x A[x]
\end{array}
$$

## Deduction System II: intuitionistic natural deduction

$$
\begin{array}{lc}
\hline & \frac{\Gamma, A \vdash A}{} \text { axiom } \\
\frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \wedge B} \wedge-\mathrm{i} & \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A} \wedge-\mathrm{e} 1 \\
\frac{\Gamma \vdash A \wedge B}{\Gamma \vdash B} \wedge-\mathrm{e} 2 \\
\frac{\Gamma \vdash A \Rightarrow B}{\Gamma+A[x]} \text { Г } \forall-\mathrm{i}, x \text { free } & \frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash B}
\end{array}
$$

## Rewriting relation

- on terms:

$$
\begin{aligned}
x+0 & \longrightarrow x \\
x+S(y) & \longrightarrow S(x+y)
\end{aligned}
$$

- on atomic formulæ:

$$
\begin{aligned}
\operatorname{Null}(0) & \longrightarrow \top \\
\operatorname{Null}(S(x)) & \longrightarrow \perp \\
A & \longrightarrow A \Rightarrow A
\end{aligned}
$$

(the last one is very bad)

## Examples of theories expressed in Deduction Modulo

- arithmetic
- Zermelo's set theory
- a subset of B set theory
- simple type theory (HOL)


## What about cut-elimination?

$$
\left\{\begin{array}{l}
\vdash \operatorname{even}(0) \\
\operatorname{even}(n) \vdash \operatorname{even}(n+2)
\end{array}\right.
$$



- axiomatic cuts


## What about cut-elimination?

$$
\left\{\begin{array}{lll}
x+0 & \rightarrow & x \\
x+s(y) & \rightarrow & s(x+y) \\
\operatorname{even}(0) & \rightarrow & T \\
\operatorname{even}(x+2) & \rightarrow & \text { even }(x) \\
\frac{}{+T} & & \text { Conv-r }
\end{array}\right.
$$

or even:

$$
\frac{\overline{\vdash T}}{\text { reven(4) }} \text { Conv-r }
$$

## Cut-elimination implies consistency... and we must pay the prize

Consistency


Cut elimination


## Normalization

minimal counterexample

$$
: A \rightarrow A \Rightarrow B
$$

convergent counterexample : $\left\{\begin{array}{l}R \in R \rightarrow \forall y . y \simeq R \Rightarrow y \in R \Rightarrow B \\ y \simeq z \rightarrow \forall y .(x \in y \Rightarrow z \in y)\end{array} \Rightarrow\right.$
minimal counterexample $: A \rightarrow A \Rightarrow A$
convergent counterexample : $\left\{\begin{array}{l}R \in R \rightarrow \forall y \cdot y \simeq R \Rightarrow y \in R \Rightarrow A \Rightarrow A \\ y \simeq z \rightarrow \forall y \cdot(x \in y \Rightarrow z \in y)\end{array}\right.$

## Polarized Deduction Modulo

## Positive and Negative Occurrences

$A$ occurs positively (resp. negatively) in a formula $C$ if $C$ is:
$A$ (resp. no valid condition)
$C_{1} \square C_{2}$, $\square$ is $\vee, \wedge$ and $A$ occurs positively (resp. negatively) in $C_{1}$ or $C_{2}$
$C_{1} \Rightarrow C_{2}$, and $A$ occurs positively (resp. negatively) in $C_{2}$ or negatively (resp. positively) in $C_{1}$
$\neg C_{1}$ and $A$ occurs negatively (resp. positively) in $C_{1}$.
etc ...

## Polarized Rewrite System

We split the rewrite system $\mathcal{R}$ into two sets $\mathcal{R}^{+}$and $\mathcal{R}^{-}$:

$$
\begin{array}{lll}
P_{1} & \longrightarrow & A_{1} \\
P_{2} & \longrightarrow_{-} & A_{2}
\end{array}
$$

## One-step positive rewriting

A formula $B$ rewrites in one step positively to $C$ (written $B \longrightarrow^{+} C$ ) if:
it rewrites in in one step to $C$,
we use a positive rewrite rule $P_{1} \longrightarrow_{+} A_{1}$ (resp. negative rewrite rule
$\left.P_{2} \longrightarrow+A_{2}\right)$,
and the rewritten instance of $P_{1}$ occurs positively (resp. negatively) in B

Define as well $B \longrightarrow{ }_{-} C, B \longrightarrow{ }_{-}^{*} C$ and $B \longrightarrow{ }_{+}^{*} C$.

Note on $\equiv$


## Note on $\equiv$



This defines a form of congruence:
Negative and positive congruence
$A \equiv$ _ $B$ iff:
$A$ is $B$; or

$$
\begin{aligned}
& A \equiv_{-} C, \text { and } B \longrightarrow^{+} C \text { or } C \longrightarrow_{-}^{-} B ; \text { or } \\
& C \equiv-B, \text { and } C \longrightarrow^{+} A \text { or } A \longrightarrow^{-} C .
\end{aligned}
$$

$A \equiv_{+} B$ is defined the same way, or directly as: $B \equiv_{-} A$.
Transitive, reflexive but not symmetric !

## Note on $\equiv$



This definition (and the picture) accounts for:

Or, less symmetrically, to:

$$
A_{1} \rightarrow-B_{1+} \leftarrow B_{1} \frac{B_{2} \rightarrow-B_{2+} \leftarrow A_{3} \frac{\vdots}{\frac{B_{2}+A_{3}}{\frac{A_{1}+B_{1}}{B_{4}+A_{n+1}}}} \mathrm{~B}_{2}+A_{n+1}}{\frac{B_{3}+A_{n+1}}{\text { cut, }, B_{1+}} \leftarrow A_{3-} \rightarrow A_{3} \rightarrow-B_{3}}
$$

Confluence as a cut elimination property [Dowek]

## Polarized Sequent Calculus Modulo

$$
\begin{aligned}
& \overline{\Gamma, A \vdash B, \Delta} \text { axiom, } A \rightarrow_{-}^{*} C_{-}^{*} \leftarrow B \quad \frac{\Gamma_{1} \vdash A, \Delta_{1} \quad \Gamma_{2}, B \vdash \Delta_{2}}{\Gamma_{1}, \Gamma_{2}+\Delta_{1}, \Delta_{2}} \mathrm{cut}, A_{+}^{*} \leftarrow C \rightarrow-B \\
& \frac{\Gamma_{1}+A, \Delta_{1} \quad \Gamma_{2}+B, \Delta_{2}}{\Gamma_{1}, \Gamma_{2}+C, \Delta_{1}, \Delta_{2}} \wedge-r, C \rightarrow{ }_{+}^{*} A \wedge B \\
& \frac{\Gamma, A, B \vdash \Delta}{\Gamma, C \vdash \Delta} \wedge-I, C \rightarrow{ }_{-}^{*} A \wedge B \\
& \frac{\Gamma, A+B, \Delta}{\Gamma+C, \Delta} \Rightarrow-r, C \rightarrow{ }_{+}^{*} A \Rightarrow B \quad \frac{\Gamma_{1}, B+\Delta_{1} \quad \Gamma_{2}+A, \Delta_{2}}{\Gamma_{1}, \Gamma_{2}, C+\Delta_{1}, \Delta_{2}} \Rightarrow-I, C \rightarrow-A \Rightarrow B \\
& \frac{\Gamma \vdash A[x], \Delta}{\Gamma \vdash C, \Delta} \forall-r, x \text { fresh, } C \rightarrow+{ }_{+}^{*} \forall x A[x] \\
& \frac{\Gamma, A[t]+\Delta}{\Gamma, C+\Delta} \forall-1 \text {, any } t, C \rightarrow-* x A[x]
\end{aligned}
$$

## Eliminating cuts



The translation way through normalization.

## polarize-translating the rewrite rules

Translation of a rewrite system $\mathcal{R}^{\odot}$

$$
\begin{array}{lllllll}
P_{1} & \longrightarrow+ & A_{1} & \hookrightarrow & P_{1} & \longrightarrow_{+} & A_{b}^{n} \\
P_{2} & \longrightarrow & A_{2} & \hookrightarrow & P_{2} & \longrightarrow_{-} & A_{2}^{p}
\end{array}
$$

## Results

if $\Gamma \vdash \Delta$ in $L K$ modulo $\mathcal{R}$, then $\Gamma^{g}, \neg \Delta^{d} \vdash$ in $L J \equiv$ modulo $\mathcal{R}^{\odot}$
Proof. Mélanie's work (extension).
If $\Gamma \vdash A$ in polarized $L J \equiv$ modulo $\mathcal{R}$ then $\Gamma \vdash A$ in polarized Natural Deduction modulo $\mathcal{R}$

If $\Gamma \vdash A$ in polarized Natural Deduction modulo $\mathcal{R}$ with a proof free of cuts and of commutative cuts, then $\Gamma \vdash A$ in polarized $L J_{\equiv}$ modulo $\mathcal{R}$ with a cut-free proof.

If $\Gamma^{g}, \neg \Delta^{d} \vdash$ in polarized $L J \equiv$ modulo $\mathcal{R}^{\ominus}$ without cut, then $\Gamma \vdash \Delta$ in polarized $\mathrm{LK} \equiv$ modulo $\mathcal{R}$ without cut.

Proof. Mélanie's work (extension).

## Further work

- achieve the plan
- is there a SC criterion for polarized DM ?

