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Abstract

Dedukti is a type-checker for the λΠ-calculus modulo theory, which has the
particularity to allow the user to declare rewrite rules, especially in order to
encode the logic he/she wants to use. Thanks to the Curry-Howard-De Bruijn
correspondence, the type checking done by Dedukti can be used to check proofs.

Unfortunately, to decide the type-checking, Dedukti needs the system of
rewrite rules declared by the user, together with β-reduction, to be confluent
and terminating. An external tool already exists to check the confluence, but no
automatic tool exists for the termination, which must be checked independently
by hand, before using Dedukti.

The subject of this report (and more widely of the internship) is to develop
such a tool.

A first part of it is dedicated to an algorithm of termination checking: the
Size-Change Principle. After a brief introduction to Dedukti, the algorithm is
explained and the results obtained by an implementation of it for Dedukti are
presented.

The second and longest part of this report is much more theoretic, since
it presents reducibility candidates for the λΠ-calculus modulo theory. Those
reducibility candidates can then be used together with the Size-Change Principle
detailed in the first part, to check the termination of a rewrite rule system, as
explained in [Wah07].
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Chapter 1

Implementing the
Size-Change Principle for
Deduki

1.1 What is Dedukti

Dedukti is a multipurpose type-checker based on the λΠ-calculus modulo theory
[CD07].

The project Dedukti was initiated by Gilles Dowek and is developed by the
Inria-team Deducteam. A first version was developed by Matthieu Boespflug
[Boe11] and Quentin Carbonneaux [BCH12] in Haskell and then in C. The
current version of Dedukti was developed mainly by Ronan Saillard [Sai15] and
is programmed in OCaml.

The λΠ-calculus modulo theory is a calculus including only dependent types
and rewrite rules. One can find the inference rules of this calculus, in this
report section 2.2 or in the paper describing Dedukti [ABC+16]. The rewrite
rules allow the user to encode many logics in Dedukti, making it multipurpose
and peculiarly well-suited for interoperability between proof systems. This is
the reason why a lot of programs have been developed to translate proofs from
other proof assistants in Dedukti and the way back. The graph below illustrate
the interaction which exist between Dedukti and a range of proof assistants or
automatic provers.
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Among the rules of λΠ-calculus modulo theory, there is one conversion rule:

Γ ` t : A Γ ` A : s Γ ` B : s
A!∗ B

Γ ` t : B

Without going into the detail of the meaning of the rule, which can be found
in section 2.2, this rule means that if we can rewrite the type A into the type
B then every term of one type is of the other type too.

To decide type-checking, Dedukti must check if two types are joinable by
rewriting. To do so, in Dedukti, the two types are reduced to their normal forms
and then the equality of normal forms is checked syntactically. But this requires
that the normal forms exist and will be reached, situation which is ensured if
the rewrite rules declared by the user, together with β-reduction, are confluent
and terminating.

In the current version of Dedukti, a tool exists to check confluence, but
checking the termination stays at the charge of the user and out of the scope
of Dedukti. Meaning that, when a proof is checked by Dedukti, the checking is
under the condition the rules declared by the user are terminating.

There exists ad-hoc proofs that some rewrite rule systems are terminating,
for instance [Dow17], but no tools actually check it automatically.

The first part of this report presents the implementation of a simple but
quite efficient termination checking algorithm for Dedukti.
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1.2 The Size-Change Principle
The Size-Change Principle is a criterion introduced by Lee, Jones and Ben-
Amram in [LJBA01] for a first-order functional language.

The principle is to analyse how the arguments evolve between each call of
a function. To perform this analysis, we must analyse the arguments of every
application on the right-hand side of a rewrite rule.

1.2.1 An example to begin with
Let’s start the explanation on an example to get intuition and formalize it right
after. For instance the Peano-like definition of the multiplication :

[n,m] mult (S m) n --> plus n (mult m n).

There are two function applications on the right-hand side of this example :

• plus applied to n which is exactly the second argument of the left-hand
side and (mult m n) which is bigger than both arguments of the left-hand
side.

• mult applied to m which is a strict subterm of (S m) and n which is exactly
the second argument of the left-hand side.

We will sum up all of this information on two matrices:

mult
plus

n (m × n)( )
(S m) ∞ ∞

n = ∞

mult
mult

m n( )
(S m) < ∞

n ∞ =

Where

• a < symbol means that the argument of the called function corresponding
to the column is a strict subterm of the argument of the caller function
corresponding to the row;

• a = symbol means that the argument of the called function and the argu-
ment of the caller function are he same;

• a ∞ symbol means that the arguments have no direct link.

In the original article [LJBA01], the variation of the size of the arguments
where encoded in bipartite graphs. The idea of summing up it in matrices, which
are easier to manipulate with a programming language like OCaml comes from
Rodolphe Lepigre and Christophe Raffalli in [LR16].

From the calls that are encoded in the rewrite rules, we can construct a
call-graph. The arrows are annotated with the matrices that sum up the size-
changes.

Here is the call-graph for our example :
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mult plus( < ∞∞ = )

(∞ ∞= ∞ )

In this case we know that the function mult is terminating, because, there

is only one loop in the call-graph, which is indexed by
(
< ∞
∞ =

)
and there is

a < on the diagonal of the matrix, meaning that between two recursive calls of
the function, at least one argument (here the first one) has strictly decreased
and the subterm order is well-founded.

Definition 1.2.1 (Well-founded relation). We remind the reader that a relation
R is well-founded on a class X if for all sets S in X, if S is non-empty, S has
a minimal element for R. It can be rewrite :

∀S ⊆ X, (S 6= ∅ ⇒ ∃m ∈ S, ∀s ∈ S, (s,m) /∈ R)

An other characterization, often more intuitive, is that a relation R is well-
founded if there is no countable infinite descending chain.

1.2.2 The tropical semiring and the transitive closure of
call-graphs

Of course, the example we have chosen to present the Size-Change Principle is
peculiarly easy, but in fact the criterion is quite efficient, especially to deal with
mutual recursion and permuted arguments.

In those cases, the call-graph does not contain enough arrows to say if the
rewrite rules system is terminating or not. Then, we have to compute the
transitive closure of the call-graph. To do so, we have to multiply matrices
containing <, = and ∞, meaning that we must define a multiplication and an
addition on such symbols.

In fact, those operations are the one of the min-plus semiring (often called
the tropical semiring), with the values :

symbol value
< −1
= 0
∞ +∞

We then have the tables :

+ < = ∞
< < < <
= < = =
∞ < = ∞

× < = ∞
< < < ∞
= < = ∞
∞ ∞ ∞ ∞
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Those definitions of the operations are quite intuitive. When a function f1

calls a function f2 which calls a function f3, we can link the arguments of f3 to
the ones of f1 going through the ones of f2.

Let’s choose an argument of f1 and one of f3 that we would like to link. To
do so, we can use any of the argument of f2 as a middle step, so it is possible
to go through the best one, that justifies that the addition operation is min.

Once the best argument of f2 is chosen, there is two links to multiply, one
between f1 and f2 and the other on between f2 and f3.

• If a link is labelled ∞ it means that we have no information about one
part of the transformation, and we cannot recover it no matter what is
the label of the other part.

• On the other hand, if a link is labelled < and the other one < or =, we
have a large and a strict decrease, so globally, we have a strict decrease.

• If both are labelled =, the transitivity of the equality ensures us that the
arguments of f1 and f3 are the same.

1.2.3 A definition of the Size-Change Principle

We now have all the ingredients, to give a definition of the Size-Change Principle

Definition 1.2.2 (Fully applied terms). We consider a language which con-
tains:

• variables: x, y;

• constants: c, d;

• functions: f , g, each having an associated arity.

The set of fully applied terms is:

t ::= x | c | f t1 . . . tn, where n is the arity of f

Definition 1.2.3 (Size-Change Principle). We assume given a well-founded
order on fully applied terms, which is used to construct the call-graph. The
subterm order has this property and is the one chosen for the implementation.

A set of rewrite rules is Size-Change Terminating if:

• All rules are of the form
f t1 . . . tn  τ

where n is the arity of f and t1, . . . , tn, τ are fully applied terms.

• The transitive closure of the call graph is such that all arrows linking a
node with itself are labelled with a matrix having a < on the diagonal.
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1.3 Implementation issues

1.3.1 Adapting an already existing implementation
When they developped PML, a program which is absolutely independent of
Dedukti, Rodolphe Lepigre and Christophe Raffalli implemented the algorithm
of the Size-Change Principle and they accepted to share their implementation
with us.

This implementation provided us with the computation of the transitive
closure of a call graph and the checking that every looping arrows are labelled
with a matrix having a < on the diagonal.

To do so efficiently, Rodolphe Lepigre and Christophe Raffalli introduced a
notion of matrix subsuming another one.

Definition 1.3.1 (Subsuming). A matrix A =

( a1,1 ... a1,n

...
...

...
am,1 ... am,n

)
subsumes the

matrix B =

(
b1,1 ... b1,n

...
...

...
bm,1 ... bm,n

)
if the two matrices have the same dimension and

for every i and j, ai,j is smaller than bi,j. The subsuming relation is the
pointwise extension of <

Property 1.3.2. If a matrix A subsumes a matrix B, then for all matrix X,
when the dimensions are compatible, then AX subsumes BX and XA subsumes
XB.

Proof. It is direct, because the sum and the product are increasing functions in
the tropical semiring.

If two arrows link the same nodes and one is labelled with a matrix which
subsumes the label of the other, then it is not useful to use the smallest matrix to
compute the transitive closure. Indeed, when A subsumes B, every < symbol on
the diagonal of A is also on the diagonal of B and, since the subsuming relation
is stable by multiplication, if the Size-Change Principle is verified removing B
from the call-graph, it is also verified with both A and B, since the new labels
on the looping arrows contain at least as much < on the diagonal.

1.3.2 The implementation and its results
Since the program developed for PML fitted perfectly our purposes for the call-
graph computation, the aim was to develop a program interfacing Dedukti with
it. Especially, it was necessary to identify the “calls” and to associate a matrix
to them.

This goal led to the writing of 200 lines of OCaml which were added to
the 300 from Rodolphe Lepigre and Christophe Raffalli’s program, making a
complete working first prototype of termination checker for Dedukti
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Unfortunately, the Size-Change Principle, in its original version, was de-
signed for a much poorer language than the λΠ-calculus modulo theory, includ-
ing only functions applied to constructor patterns. Hence, most of the Dedukti
files are out of the scope of this criterion, mostly because of the application of
an argument.

For instance, Dedukti allows the user to declare :

List : Type.
Nil : List.
Cons : Nat -> List -> List.
def map : (Nat -> Nat) -> List -> List.
[] map _ Nil --> Nil.
[f, x, l] map f (Cons x l) --> Cons (f x) (map f l).

and

Lamt : Type.
def App : Lamt -> Lamt -> Lamt.
Lam : ( Lamt -> Lamt ) -> Lamt.
[f, x] App (Lam f) x --> f x.

In the first example, the function map is terminating, whereas the second
example is an encoding of the untyped λ-calculus, which is well-known for being
non-terminating.

But those two examples are quite close in the point of view of the Size-Change
Principle: we encounter a call to f x where f is a variable. A variable does not
correspond with any nodes in the building call-graph. Then no called function
can be identified and the program must raise an error since we have seen this
situation can both occur in terminating and in non-terminating situations.

The implementation is working, but the criterion, in the form which has
been implemented is far from being sufficient, since it accepts only some basics
functions (like addition, multiplication, exponentiation, Ackerman function, list
concatenation or list sorting...) and the encoding of the first-order logic re-
stricted to implication, universal quantification and negation, sometimes called
intuitionistic minimal logic.

This main problem led us to a more theoretic part of the internship, in which
we had to enrich the criterion in order to make it more useful for our purpose
of developing a termination checker for Dedukti. A few modifications of the
criterion exists in the literature. We can for instance mention Pierre Hyvernat’s
idea [Hyv13] to enrich the tropical semiring in order to cover the case where the
size of an argument increases a little before decreasing more. Or Neil Jones and
Nina Bohr [JB08] who modified the criterion to check termination of untyped
λ-calculus terms.

Those enrichment were quite interesting, but it did not solve our main prob-
lem with the variable application, so we choose to investigate the work of David
Wahlstedt [Wah07], who uses the Size-Change Principle in an original way and
manage to study the termination of a system which is quite close of the λΠ-
calculus modulo theory.
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Chapter 2

Adaptation of the reducibility
proof of Wahlstedt to the
λΠ-calculus modulo theory

In his thesis [Wah07], David Wahlstedt proposes a calculus with Martin-Löf
types and rewriting. He gives a criterion for the weak reducibility of a system
of rewrite rules, coupled to the β-reduction. This work interested us, because it
uses the Size-Change Principle in a rich system and it is very modular, allowing
us to change only one part of the thesis to get the benefit of the entire one.

The structure of Wahlstedt’s thesis is the following :

• Define a reducibility predicate for weak normalisation.

• Show that if every function in the signature is reducible then every typable
term is reducible.

• Show that if the call relation is well-founded and every type in the signa-
ture is reducible, then every function in the signature is reducible.

• The size-change principle is used to show that the call relation is well-
founded.

• The reducibility of every type occurring in the signature is decidable.

Our aim in the second part of the internship was to adapt the tree first points
to the λΠ-calculus modulo theory. Doing it, we can re-use the demonstration of
the fourth point given in the original thesis and use the Size-Change Principle
in a more efficient way.

2.1 Syntax
To begin, we will give the syntax of the λΠ-calculus modulo theory.
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2.1.1 Terms and contexts
We use x and y to denote variables.

Definition 2.1.1 (Terms).

t, τ, u, v, l, r ::= x |λ(x : u).t | t u | c | f

We denote by Λ the set of all terms.

Definition 2.1.2 (Types).

T,U ::= λ(x : U).T |Π(x : U).T |U v | d |F

Definition 2.1.3 (Kinds).

K ::= Type |Π(x : U).K

Remark. For now, d, c and f are only symbols. Their meaning will appear later
in this section.

Definition 2.1.4 (Contexts).

Γ,∆ ::= [] |Γ, x : t

Notations. For readability, we write only the first Π when they are chained.

Π(x1 : T1) (x2 : T2) (x3 : T3)U means Π(x1 : T1) (Π(x2 : T2) (Π(x3 : T3)U))

We draw a line over the left part of a Π or a λ, to mean that the declaration
is iterated. The variable on which the iteration is done and the bounds are
inferred by the reader from the context.

Π(xi : Ti)U means Π(x1 : T1) . . . (xn : Tn)U

Definition 2.1.5 (Closed context). A context Γ = (x1 : t1, . . . , xi : ti, . . . ) is
closed if for all i, all free variables appearing in ti are in {x1, . . . , xi−1}.

2.1.2 Substitutions
To express transformation that occur on terms during rewriting, it is neces-
sary to define an operation of substitution, expressing the fact that every free
occurrences of a particular variable takes the same value.

Definition 2.1.6 (Substitution). More generally, a substitution δ a function
which links every variable to a term. We define a function δ̃ from terms to terms
by applying simultaneously δ on every free variable. If one bound variable has
the same name as a free variable occurring in the image of δ, then the bound
variable must be renamed, in order to avoid variable capture.
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Remark. It is important to note that the linked variables are not affected by
substitution. That prevents us from "capturing" variables that should not be.

Notations (Substitution). The notation to express it must mention the term in
which the substitution occurs, the variable which is replaced and the term which
replaces this variable, so it is quite natural to choose :

• τ [t/x] to denote the term τ in which x is replaced by t.

• δ, σ and ϑ are used to denote a general substitution.

• We will denote by t δ the substitution δ̃(t) and by δ(x) the image of the
variable x by the function δ.

2.1.3 Signature
Definition 2.1.7 (Signature). A signature is a 6-tuple (D,D,C, C,F,F).

• D is a set of set constructors,

• D is a function which associates to each d ∈ D a closed term of the form
D(d) = Π(x1 : T1) . . . (xk : Tk) Type. Under this specification, k is called
the arity of d.

• C is a set of element constructors,

• C is a function which associates to each c ∈ C a closed term of the form
C(c) = Π(x1 : U1) . . . (xm : Um) (d τ1 . . . τk), where for all i, FV(τi) ⊆
{x1, . . . , xm} and k is the arity of d. Under this specification, m is called
the arity of c.

• F is a set of defined functions,

• F is a function which associates to each f ∈ F a closed term of the form
F(f) = Π(x1 : T1) . . . (xn : Tn)U where U is not a Π. Under this specifi-
cation, n is called the arity of f .

Notations. From now, d, c and f will always represent set constructor, element
constructor and defined function respectively.

We denote ar(h) the arity of the symbol h.

Remark. The arity of any symbol defined in the signature can be 0.

Definition 2.1.8 (Elementary types). We name elementary types a fully ap-
plied set constructor.

Definition 2.1.9 (Precedence on set constructors). We define the relation on
D: 4D as the reflexive-transitive cloture of d′ 4D d if:

• D(d) = Π(xi : Ti).Type and d′ appears in a Ti

• or if there is a c such that C(c) = Π(xi : Ui).(d s̄) and d′ appears in a Ui.
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Definition 2.1.10 (D-equivalence). If d 4D d′ and d′ 4D d, d and d′ are said
D-equivalent, what is denoted d ≈D d′.

Remark. 4D is by definition a pre-order, so ≈D is an equivalence relation.
Since we only consider finite signature, ≺D is well-founded.

Definition 2.1.11 (Strictly positive set constructor). A set constructor d is
said strictly positive if:

• D(d) = Π(xi : Ti).Type and no symbole D-equivalent to d occurs in any
Ti

• For all c such that C(c) = Π(xi : Ui).(d s̄), if the Ui are of the form
Π(yj : Vj).V then no symbol D-equivalent to d appears in a Vj.

We restrict our study to the signatures where every set constructor is stictly
pôsitive.

Definition 2.1.12 (Constructor pattern). We define this syntactical sub-category
of terms as :

p ::= x | c p1 . . . pn

Definition 2.1.13 (β-normal term). We define this syntactical sub-category of
terms as :

s ::= x s1 . . . sn |h s1 . . . sar(h) |λ(x : T ).s

where h is one symbol in the signature, set constructor, element constructor or
defined function.

Now, we have all the necessary definitions to enrich the signature with rewrite
rules.

Definition 2.1.14 (Rewrite rules in the signature). The signature is enriched
with a set R of rewrite rules. Each rewrite rule is of the form f p1 . . . pk → s
where :

• the pi are constructor patterns,

• k 6 ar(f),

• pk is not a variable,

• s is β-normal,

• s starts with (ar(f)− k) λ-abstractions,

• the rule is left-linear, meaning that a free variable can’t appear twice in
f p1 . . . pk.

13



Furthermore, we demand R to be non-overlapping, meaning that for any two
distinct rules l1 → r1 and l2 → r2 in R, there are no substitutions δ1 and δ2
such that l1 δ1 = l2 δ2

1.

Remark. We do not have defined typable terms yet, but once it will be done,
we will restrict our study to the rewrite rules that preserve typing.

2.2 Rules of inference
Now that we have presented the syntax of terms and contexts, we can introduce
the rules of inference of the λΠ-calculus modulo theory.

Context formation

[] well-formed
Γ ` A : Kind

Γ, x : A well-formed
Γ ` A : Type

Γ, x : A well-formed

Axioms
Γ well-formed

Γ ` Type : Kind
Γ well-formed

x : A ∈ Γ
Γ ` x : A

Product

Γ ` A : Type Γ, x : A ` B : Kind

Γ ` Π(x : A)B : Kind

Γ ` A : Type Γ, x : A ` B : Type

Γ ` Π(x : A)B : Type

Lambda-abstraction
Γ ` A : Type Γ, x : A ` B : Kind Γ, x : A ` t : B

Γ ` λ(x : A).t : Π(x : A)B

Γ ` A : Type Γ, x : A ` B : Type Γ, x : A ` t : B

Γ ` λ(x : A).t : Π(x : A)B

Application

Γ ` t : Π(x : A)B Γ ` u : A

Γ ` t u : B [u/x]
1We have chosen here not to enforce variables to be distinct in each rules, since in practice

the files considered in Dedukti do not follow this restriction. It would have been possible to
consider only one substitution and to rename variables, which is equivalent to the presentation
with two substitutions.
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Signature symbols

Γ, x1 : T1, . . . , xi : Ti ` Ti+1 : Type
D(d) = Π(xi : Ti) Type

Γ ` d : D(d)

Γ, x1 : U1, . . . , xi : Ui ` Ui+1 : Type Γ, xi : Ui ` τj : Tj
{
C(c) = Π(xi : Ui) (d τ1 . . . τk)

D(d) = Π(xi : Ti) TypeΓ ` c : C(c)

Γ, x1 : T1, . . . , xi : Ti ` Ti+1 : Type Γ, xi : Ti ` U : Type
F(f) = Π(xi : Ti)UΓ ` f : F(f)

Γ, x1 : T1, . . . , xi : Ti ` Ti+1 : Type
F(f) = Π(xi : Ti) Type

Γ ` f : F(f)

Conversion
Γ ` t : A Γ ` A : Type Γ ` B : Type

A!∗ B
Γ ` t : B

Γ ` t : A Γ ` A : Kind Γ ` B : Kind
A!∗ B

Γ ` t : B

2.2.1 Rewriting
Definition 2.2.1 (Well-typed rules). Now that we have given the typing rules
of the λΠ-calculus, we can restrict our study to signatures which are well-typed,
meaning that:

• all the rewrite rules in R preserve typing. For all Γ, t, T , u, if Γ ` t : T
and t→ u ∈ R, then Γ ` u : T .

• all the left-hand sides of rules are typable. For all f p̄i → u ∈ R with
F(f) = Π(xi : Ti).U there is a ∆0 such that for all i 6 m,

∆0 ` pi : Ti

[
p1/x1

. . . pi−1/xi−1

]
When we add to the rewrite rules declared in R the β-reduction (λx.t)u→

u [t/x], we can define the rewriting relation  .

Definition 2.2.2 (Rewriting relation). We define inductively the relation, by :

• if t β-reduces to u then t u,

• if there is l→ r ∈ R and δ such that l δ = t and r δ = u then t u,

• if t u then for all v, t v  u v, v t v u,

• if t u then λx.t λx.u and Πx.t Πx.u.
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Notations. We denote by  ∗ the reflexive-transitive closure of  and by!∗

the reflexive-symmetric-transitive closure of  

Definition 2.2.3 (Confluence). A system of rewrite rules is confluent if for any
terms t, t1 and t2, if t  ∗ t1 and t  ∗ t2 then there is a u such that t1  ∗ u
and t2  ∗ u.

Proposition 2.2.4. With all the constraints on rewrite rules, which are given
by definition 2.1.14 and the preservation of typing, we can ensure that R is
confluent.

We won’t prove this proposition, which is a consequence of orthogonality
[OR94], because our purpose is to study termination and not confluence. The
interested reader can find the demonstration, which is quite long and does not
introduce techniques that will be useful anywhere else in this report, in [Wah07,
section 2.2.3 page 31]

2.3 Reducibility predicate

2.3.1 Weak normalisation
Definition 2.3.1 (Normalisation predicates).

NF(u) ≡ ¬ (∃v.u v)

SN(u) ≡ ¬ (∃(vi)i∈N.v0 = u ∧ ∀i.vi  vi+1)

WN(u) ≡ ∃v.u ∗ v ∧NF(v)

u ⇓ v ≡ u ∗ v ∧NF(v)

Definition 2.3.2 (Strongly neutral terms).

b ::= x t1 . . . tn where NF(ti)

|f t1 . . . tn where NF(f t1 . . . tn) and n > ar(f)

We denote by N the set of strongly neutral terms.

Lemma 2.3.3 (Weak normalisation of an application). If x is a variable and t
a term, then WN(t x)⇒WN(t)

Proof. Assume WN(t x). Then there is a reduction sequence

t x t1  t2  . . . tn

where tn is normal. We proceed by induction on the length n of the shortest
reduction.

• If n = 0 then t x is normal, then t is normal too.

• Else t x contains a redex. Applying a term to a variable cannot be of the
form l δ where l is the left-hand side of a rule and δ a substitution, so the
first step t x t1 must be of the form :
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– (λy.u)x u
[
x/y

]
and since u

[
x/y

]
is normalizable, u is normaliz-

able too, hence WN(t).

– t x ux, because t u. Then ux reduce to tn so we have WN(ux)
and there is a reduction in n−1 steps so by the induction hypothesis,
we have WN(u). We can deduce WN(t)

2.3.2 Reducible terms
Definition 2.3.4 (Reducibility of a term). We define mutually the predicates
RED for Kind, the inhabitants of Kind and the inhabitants of those inhabitants.

RED(Kind) (t) holds if one of the following conditions occurs:

• t = Type and then RED(Type) (U) holds if one of the following conditions
occurs:

– ∃d, u1, . . . , uk.


U ⇓ d u1 . . . uk

D(d) = Π(x1 : T1) . . . (xk : Tk) Type

∀i.RED(Type) (Ti) ∧ RED(Ti) (ui)

and then RED(U) (v)

holds if one of the following conditions occurs:

∗ ∃c, v1, . . . , vm.



v ⇓ c v1 . . . vm

C(c) = Π(x1 : U1) . . . (xm : Um) (d τ1 . . . τk)

∀i.RED(Type)

(
Ui

[
v1/x1

, . . . , vi−1/xi−1

])
∀i.RED(

Ui

[
v1/x1

,...,vi−1/xi−1

]) (vi)

∗ ∃b ∈ N .v ⇓ b

– ∃A,B.


U ⇓ Π(x : A) B

RED(Type) (A)

∀a.RED(A) (a)⇒ RED(Type) (B [a/x])

and then RED(U) (v)

holds if ∀a.RED(A) (a)⇒ RED(B[a/x]) (v a)

– ∃b ∈ N .U ⇓ b and then RED(U) (v) holds if ∃b′ ∈ N .v ⇓ b′

• ∃A,B.


t = Π(x : A) B

RED(Type) (A)

∀a.RED(A) (a)⇒ RED(Kind) (B [a/x])

and then RED(Π(x:A)B) (u)

holds if ∀a.RED(A) (a)⇒ RED(B[a/x]) (u a)

Are the predicates RED well-defined ?

We will ensure that the predicates RED are well-defined for elementary types
by defining inflating sequences of sets and name RED their least fixpoints.
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Definition 2.3.5 (Elementary type interpretations). Let A = {di}i∈{1,...,n} be
a ≈D-equivalence class.

FA :
∏n
i=1 P (Λ) →

∏n
i=1 P (Λ)

(Xi)i∈{1,...,n} 7→

{u| ∃b.u ⇓ b} ∪
u
∣∣∣∣∣∣ ∃c, v1, · · · , vm.

u ⇓ c v̄
C(c) = Π(xj : Uj).(di s̄)
∀j.vj ∈ RUj

(X̄)




i∈{1,...,n}

where Rα(X̄) =


JdK if α = d s̄, where d is fully applied and ∀u ∈ A.d ≺D u
Xi if α = di s̄, where d is fully applied
N if α ∈ N{
t ∈ Λ

∣∣∣ ∀u ∈ RT1(X̄).t u ∈ RT2[u/x](X̄)
}

if α = Π(x : T1).T2

where, for all ≈D-equivalence class A′ where A′ ≺D A and d ∈ A′, JdK is the
least fixpoint of FA′ .

Remark. We must insist here on the fact that JdK must be seen as the interpre-
tation of any elementary type of the form d t1 . . . tn where d is fully applied.

Existence of the least fix point. We will show that FA is increasing. Thus, from
Knaster-Tarski theorem, the function has a least fixpoint. Let’s take X̄ ⊆prod
Ȳ ⊆ Λ and u ∈ FA(X̄). Two cases occur:

• u ⇓ b, then u ∈ FA(Ȳ )

• ∃c.u ⇓ c v̄, C(c) = Π(xj : Uj).(d s̄) and ∀j.vj ∈ RUj
(X̄). Then two subcases

appear:

– Uj = Π(xk : Tk).d′ τ̄ such that for all di ∈ A we have d′ ≺D di. As
every elementary type is strictly positive, all the symbols occuring
in the Tk are stricly smaller for the order 4D than those in A, so
for all k, RTk

(Ȳ ) = RTk
(X̄) . For τk ∈ RTk

(X̄) then vj τ̄ ∈ Jd′K so
vj ∈ RUj (Ȳ ),

– Uj = Π(xk : Tk).di τ̄ . As every elementary type is strictly positive,
all the symbols occuring in the Tk are stricly smaller for the order
4D than those in A, so RT1

(Ȳ ) = RT1
(X̄). For τk ∈ RTk

(X̄) then
vj τ̄ ∈ Xi, then vj τ̄ ∈ Yi because X̄ ⊆prod Ȳ so vj ∈ RUj

(Ȳ ).

So for all j, we have vj ∈ RUj
(Ȳ ), hence, u = c v̄ is in FA(Ȳ )

So FA(X̄) ⊆ FA(Ȳ ), hence FA is increasing.

Hence, since 4D is well founded, we proceed inductively on the ≈D equiva-
lence classes to define the interpretation of every elementary types.

Definition 2.3.6 (Reducible terms). We can define REDT (u), where T reduces
to an elementary type by

∃d, u1, . . . , um.T ⇓ d u1 . . . um and u ∈ JdK.
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We can define REDT (u), where T reduces to a strongly normal type by u ∈
N .

Then we can define, by induction on the number of Π in the normal form,
REDT (u), where T reduces to Π(x : A)U by { t ∈ Λ| ∀u ∈ JAK.t u ∈ JU [u/x]K}.

Definition 2.3.7 (Reducible types). Once reducible terms are well-defined, we
can define reducible types by the increasing sequence:

• Type(0) = {U | ∃b.U ⇓ b}

• For any ordinal α,

Type(α+1) = Type(α)

∪

U
∣∣∣∣∣∣ ∃d, u1, . . . , um.

U ⇓ d u1 . . . um
D(d) = Π(x1 : T1) . . . (xk : Tk) Type
∀i.Ti ∈ Type(α) ∧RED(Ti) (ui)


∪

U
∣∣∣∣∣∣ ∃A,B.

U ⇓ Π(x : A) B
A ∈ Type(α)

∀a.RED(A) (a)⇒ B [a/x] ∈ Type(α)



• For any limit λ,
Type(λ) =

⋃
α<λ

Type(α)

Then RED(Type) (T ) if and only if T is in the least fixpoint of
(
Type(α)

)
α
.

Definition 2.3.8 (Reducible kinds). Similarly, we then can define reducible
kinds by the increasing sequence:

• Kind(0) = {Type}

• For any ordinal α,

Kind(α+1) = Kind(α)

∪
{

Π(x : A) B

∣∣∣∣ RED(Type) (A)

∀a.RED(A) (a)⇒ B [a/x] ∈ Kind(α)

}

• For any limit λ,
RED(λ) =

⋃
α<λ

RED(α)

Then RED(Kind) (K) if and only if K is in the least fixpoint of
(
Kind(α)

)
α
.

19



Properties of reducibility

Proposition 2.3.9 (Conversion does not change reducibility). If T  ∗ T ′ and
t ∗ t′ then RED(T ) (t)⇔ RED(T ′) (t′)

Proof. Since the reducibility predicate definition, does a matching on disjoint
cases considering only the normal form of a term and since the rewrite rules
considered are confluent, this property holds.

Proposition 2.3.10. For all T , t, if RED(Kind) (T ) then

1. RED(T ) (t)⇒WN(t)

2. t ⇓ b⇒ RED(T ) (t)

Proof. We prove both mutually by induction.

1. • If T = Type it works by definition of the reducibility predicate.

• If T = Π(x : U)V . Suppose RED(Kind) (Π(x : U)V ), we have RED(Type) (U)

and
(
∀u,RED(U) (u)⇒ RED(Kind) (V [u/x])

)
.

Suppose we furthermore have RED(Π(x:U)V ) (t), we can then deduce(
∀u,RED(U) (u)⇒ RED(V [u/x]) (t u)

)
. Since RED(Type) (U) and x

is strongly neutral, by induction case 2, we obtain RED(U) (x) so
RED(Kind) (V ) and RED(V ) (t x). We can deduce WN(t x) by induc-
tion and then WN(t) by lemma 2.3.3.

2. • If T = Type it works by definition of the reducibility predicate.

• If T = Π(x : U)V . Suppose RED(Kind) (Π(x : U)V ), we have RED(Type) (U)

and
(
∀u,RED(U) (u)⇒ RED(Kind) (V [u/x])

)
. We take a u such that

RED(U) (u). By induction case 1, there is a u′ such that u ⇓ u′

and by definition b u′ is strongly neutral. So by induction case 2,
RED(V [u/x]) (t u) because t u ⇓ b u′ which is strongly neutral. So
RED(Π(x:U)V ) (t) by definition of the reducibility predicate.

Proposition 2.3.11. For all T , t, if RED(Type) (T ) then

1. RED(T ) (t)⇒WN(t)

2. t ⇓ b⇒ RED(T ) (t)

Proof. We prove both mutually by induction.

1. • If T ⇓ b or T ⇓ d t1 . . . tn it works by definition of the reducibility
predicate.

• If T ⇓ Π(x : U)V . Suppose RED(Type) (Π(x : U)V ), we have RED(Type) (U)

and
(
∀u,RED(U) (u)⇒ RED(Type) (V [u/x])

)
.

Suppose we furthermore have RED(Π(x:U)V ) (t), we can then deduce(
∀u,RED(U) (u)⇒ RED(V [u/x]) (t u)

)
. Since RED(Type) (U) and x
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is strongly neutral, by induction case 2, we obtain RED(U) (x) so
RED(Type) (V ) and RED(V ) (t x). We can deduce WN(t x) by induc-
tion and then WN(t) by lemma 2.3.3.

2. • If T ⇓ b or T ⇓ d t1 . . . tn it works by definition of the reducibility
predicate.

• If T ⇓ Π(x : U)V . Suppose RED(Type) (T ), we have RED(Type) (U)

and
(
∀u,RED(U) (u)⇒ RED(Type) (V [u/x])

)
. We take a u such that

RED(U) (u). By induction case 1, there is a u′ such that u ⇓ u′

and by definition b u′ is strongly neutral. So by induction case 2,
RED(V [u/x]) (t u) because t u ⇓ b u′ which is strongly neutral. So
RED(Π(x:U)V ) (t) by definition of the reducibility predicate.

2.3.3 Reducibility in a context
Definition 2.3.12 (Reducibility of a substitution). RED(x1:T1,...,xn:Tn)(γ) holds
whenever ∀i.RED(Type) (Ti γ) ∧ RED(Ti γ) (γ(xi)).

Proposition 2.3.13. If Γ is closed, REDΓ(γ), RED(T γ) (t), x /∈ supp(Γ) and
x /∈ FV(T ), then RED(Γ,x:T ) ([γ, t/x])

Proof. Assume given (y : U) in (Γ, x : T ). We have two cases :

x = y Then T = U and y [γ, t/x] = x [γ, t/x] = t and T [γ, t/x] = T γ because
x is not free in T . By assumption we have RED(T γ) (t) thus we have
RED(

T [γ,t/x]
) (y [γ, t/x])

x 6= y Then y [γ, t/x] = y γ. From REDΓ(γ) we have RED(U γ) (γ(y)) and we
have U [γ, t/x] = U γ because Γ is closed and x is not free in U . So
RED(

U [γ,t/x]
) (y [γ, t/x]).

2.3.4 Reducibility of well-typed terms
Definition 2.3.14. Let RED(F) be the property :

For all f , if F(f) is of the form Π(xi : Ti) Type then we have RED(Kind) (F(f))
else we have RED(Type) (F(f))

Lemma 2.3.15. If RED(F) holds, then, for all f such that f has no rewrite
rule, we have RED(F(f)) (f).

Proof. Let F(f) be Π(xi : Ti)U . Take t̄i such that for all i, RED(
Ti

[
t1/x1

,...,ti−1/xi−1

]) (ti).

By RED(F), we have RED(Sort)

(
U
[
ti/xi

])
where Sort is Type or Kind de-

pending on the case in which f is. By proposition 2.3.10 there are ūi such that
t̄i ⇓ ūi. And since f has no rewrite rule, f u1 . . . un is strongly neutral. Then, us-
ing the second case of proposition 2.3.10 we obtain RED(

U

[
ti/xi

]) (f u1 . . . un).
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Finally, we can conclude RED(
U

[
ti/xi

]) (f t1 . . . tn) using proposition 2.3.9.

Theorem 2.3.16. If RED(F) and ∀f.RED(F(f)) (f) then

Γ ` t : T ⇒
[
∀γ.REDΓ(γ)⇒ RED(T γ) (t γ)

]
Proof. We will prove by induction on the typing derivation that :

∀γ.REDΓ(γ)⇒ RED(T γ) (t γ)

Assume Γ ` t : T and given a γ such that REDΓ(γ).

• Γ well-formed
Γ ` Type : Kind

By definition, we have RED(Kind) (Type).

• Γ well-formed
x : A ∈ Γ

Γ ` x : A

We have REDΓ(γ), meaning that we have RED(Aγ) (γ(x)) for every (x :
A) ∈ Γ.

• Γ ` A : Type Γ, x : A ` B : Sort
Sort is Kind or Type

Γ ` Π(x : A)B : s

By induction hypothesis, we have RED(Type) (Aγ). Let’s take a a such
that RED(Aγ) (a). By proposition 2.3.13, we have RED(Γ,x:A) ([γ, a/x])
and by induction RED(Sort) (B [γ, a/x]).

It is exactly the definition of RED(Sort) ((Π(x : A)B) γ).

• Γ ` A : Type Γ, x : A ` B : Sort Γ, x : A ` t : B
Sort is Kind or Type

Γ ` λ(x : A).t : Π(x : A)B

By induction hypothesis, we have RED(Type) (Aγ). Let’s take a a such
that RED(Aγ) (a). By proposition 2.3.13, we have RED(Γ,x:A) ([γ, a/x])
and by induction RED(B [γ,a/x]) (t [γ, a/x]). Furthermore, (λ(x : A).t) a 

t [a/x] so ((λ(x : A).t) a) γ  t [γ, a/x]. Then, by proposition 2.3.9, we can
conclude that we have RED(B[a/x] γ) (((λ(x : A).t) a) γ)

It is exactly the definition of RED((Π(x:A)B) γ) ((λ(x : A).t) γ).

• Γ ` t : Π(x : A)B Γ ` u : A

Γ ` t u : B [u/x]

By induction hypothesis, we have RED((Π(x:A)B) γ) (t γ) and RED(Aγ) (u γ).
Then, by definition of the reducibility of a Π we have RED((B[u/x]) γ) ((t u) γ).

• Γ, x1 : T1, . . . , xi : Ti ` Ti+1 : Type
D(d) = Π(xi : Ti) Type

Γ ` d : D(d)
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Assume given t̄i such that RED(
Ti

[
γ,t1/x1

,...,ti−1/xi−1

]) (ti). By propo-

sition 2.3.10, there exist ūi such that ti ⇓ ui. By proposition 2.3.9, we
have RED(

Ti

[
γ,t1/x1

,...,ti−1/xi−1

]) (ui). Furthermore, by induction hy-

pothesis, we have RED(Type) (Ti γ).

Hence, we obtain RED(Type) (d t1 . . . tk), and this is exactly the definition
of RED((Π(x1:T1)...(xk:Tk) Type) γ) (d)

• Γ, y1 : U1, . . . , yi : Ui ` Ui+1 : Type Γ, xi : Ui ` τj : Tj
{
C(c) = Π(xi : Ui) (d τ1 . . . τk)

D(d) = Π(xi : Ti) TypeΓ ` c : C(c)
Assume given ūi such that RED(

Ui

[
γ,u1/x1

,...,ui−1/xi−1

]) (ui). By propo-

sition 2.3.10, there exist v̄i such that ui ⇓ vi. By proposition 2.3.9, we
have RED(

Ui

[
γ,u1/x1

,...,ui−1/xi−1

]) (vi). Furthermore, by induction hy-

pothesis, we have RED(Type) (Ui γ).

Hence, we obtain RED(
(d τ1...τk)

[
γ,ui/xi

]) ((c u1 . . . um) γ), and this is ex-

actly the definition of RED((Π(x1:U1)...(xm:Um) (d τ1...τk)) γ) (c)

• Γ, x1 : T1, . . . , xi : Ti ` Ti+1 : Type Γ, xi : Ti ` U : Type
F(f) = Π(xi : Ti)UΓ ` f : F(f)

By hypothesis, we have RED(F(f)) (f). Since F(f) is closed, we have
RED(F(f) γ) (f γ).

• Γ, x1 : T1, . . . , xi : Ti ` Ti+1 : Type
F(f) = Π(xi : Ti) Type

Γ ` f : F(f)

The same argument here show that we have RED(F(f) γ) (f γ).

• Γ ` t : A Γ ` A : Sort Γ ` B : Sort
{
A!∗ B

Sort is Kind or TypeΓ ` t : B

By induction, we have RED(Aγ) (t γ) and by proposition 2.3.9, we obtain
that RED(B γ) (t γ), because from A ∗ B, we have Aγ  ∗ B γ.

2.4 Call-relation and reducibility of defined func-
tions

2.4.1 Call relation
Definition 2.4.1 (Formal call). We define (f, (p1, . . . , pm)) � (g, (u1, . . . , un))
by :

• there is a k such that f p1 . . . pk → s is in R,

• ar(f) = m, ar(g) = n,
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• g u1 . . . un is a subterm of s pk+1 . . . pm.

These types of calls are the one on which the Size-Change Principle algo-
rithm, described section 1.2, will be performed. However, we will use another
notion of call to state some interesting results about our reducibility predicates.

Definition 2.4.2 (Instantiated call). (f, (t1, . . . , tm))�̃(g, (v1, . . . , vn)) holds if
there exist p1, . . . , pm, u1, . . . , un and a substitution γ such that :

• (f, (p1, . . . , pm)) � (g, (u1, . . . , un)),

• ∀i 6 m.ti  ∗ pi γ,

• ∀i 6 m.WN(ti),

• ∀j 6 n.vj = uj γ.

2.4.2 Proof of reducibility for defined functions
Theorem 2.4.3. If �̃ is well-founded and RED(F) then

∀f.RED(F(f)) (f)

Proof. As the hypothesis suggests, we want to perform a well-founded induction
on �̃. But some work is required before doing this induction.

For all f ∈ F, let’s write

F(f) = Π(x1 : Tf,1) . . . (xar(f) : Tf,ar(f))Uf

We will denote by Φ(f, t̄) the property :

∀i.RED(
Tf,i

[
t1/x1

,...,ti−1/xi−1

]) (ti)⇒ RED(
Uf

[
ti/xi

]) (f t̄)

Here, we should note that ∀f.∀t̄.Φ(f, t̄) is the definition of ∀f.RED(F(f)) (f)
which is our goal.

Assume given f and t1, . . . , tar(f) such that

∀i.RED(Type)

(
Tf,i

[
t1/x1

, . . . , ti−1/xi−1

])
∀i.RED(

Tf,i

[
t1/x1

,...,ti−1/xi−1

]) (ti)

∀g.∀ū.(f, t̄)�̃(g, ū)⇒ Φ(g, ū)

From proposition 2.3.10, there exist v̄ such that t̄ ⇓ v̄. Then we have two cases:

• f v̄ is normal, then since f is fully applied, f v̄ is strongly neutral and ap-
plying the other case of the proposition 2.3.10 we obtain RED(

Uf

[
ti/xi

]) (f t̄)
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• Otherwise f v̄ matches a rewrite rule declared by the user. So there are a
k, a rewrite rule f p1 . . . pk → s and a substitution ϑ such that ∀i 6 k.vi =
pi ϑ. Then s = λ(xk+1 : Tk+1) . . . (xar(f) : Tar(f)).s0 and

f v1 . . . var(f)  
∗ s0

[
ϑ, vk+1/xk+1

, . . . , var(f)/xar(f)

]
We will denote γ the substitution

[
ϑ, vk+1/xk+1

, . . . , var(f)/xar(f)

]
and

prove later that RED(
Uf

[
ti/xi

]) (s0 γ). Once we have it, by proposi-

tion 2.3.9, we obtain RED(
Uf

[
ti/xi

]) (f t̄)

In both cases, we can conclude Φ(f, t̄), then we have :

∀f.∀t̄.
(
∀g.∀ū.(f, t̄)�̃(g, ū)⇒ Φ(g, ū)

)
⇒ Φ(f, t̄)

and then by the induction principle on the well-founded relation �̃, we can
conclude ∀f.∀t̄.Φ(f, t̄) which is the definition of

∀f.RED(F(f)) (f)

Remaining goal 1. We will now show that if f t̄ matches a rewrite rule declared
by the user, we have

RED(
Uf

[
ti/xi

]) (s0 γ) .

Proof. Since we have supposed that the left-hand side of all the rewrite rules
are typable, there is a ∆0 such that:

∀i 6 m.∆0 ` pi : Tf,i

[
p1/x1

. . . pi−1/xi−1

]
∀m < i 6 ar(f).∆0 ` xi : Tf,i

[
p1/x1

. . . pm/xm

]

Since all the rewrite rules preserve typing, we know that ∆0 ` s0 : Uf

[
pi/xi

]
.

We will show that for all subterms s of s0, all contexts Θ extending ∆0, all
U and all substitutions σ which are equal to γ on ∆0, we have:(

Θ ` s : U ∧ REDΘ(σ) ∧ RED(Type) (U σ)
)
⇒ RED(U σ) (s σ)

Once it is proved, since we have RED∆0(γ), then by taking s = s0, Θ = ∆0,
U = Uf and σ = γ we obtain the expected result.
Remaining goal 2. Let firstly justify that RED∆0

(γ).
Proof. To prove it, we will have to perform an induction on the number of
constructor under which is each variable. Let’s take an i between 1 and m.

If pi is a variable, we have by hypothesis that RED(
Tf,i

[
t1/x1

,...,ti−1/xi−1

]) (ti).

And ti = pi ϑ = γ(pi).
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Otherwise there is a ci such that C(ci) = Π(x1 : U1) . . . (xk : Uk) (d τ1 . . . τl)
and pi = ci pi,1 . . . pi,k. We have by hypothesis that RED(

Tf,i

[
t1/x1

,...,ti−1/xi−1

]) (ti).

And ti = pi ϑ = ci (pi,1 ϑ) . . . (pi,k ϑ) and by definition of the reducibility of a
term which begins with a constructor, we have RED(

Uj

[
pi,1/x1

...pi,j−1/xj−1

]) (pi,j)

and by induction, we can keep going under the constructors until we reach a
variable.
Remaining goal 3. For all subterms s of s0, all contexts Θ extending ∆0, all U
and all substitutions σ which are equal to γ on ∆0, we have :(

Θ ` s : U ∧ REDΘ(σ) ∧ RED(Type) (U σ)
)
⇒ RED(U σ) (s σ)

Proof. We will show it by induction on the subterms of s0, knowing that the
subterm-order is well-founded.

Let’s take a subterm s of s0, a context Θ extending ∆0, a U and a substi-
tution σ which is equal to γ on ∆0, such that Θ ` s : U , RED(Type) (U σ) and
REDΘ(σ). We will proceed by case analysis on the form of s. Each form induces
the end of the derivation of Θ ` s : U . Here for readability, some hypothesis,
which are necessary to really perform the inferences but which are not relevant
to perform the induction are omitted.

• Θ ` si : Ti



F(g) = Π(x1 : T1).Uar(g)+1

If n > ar(g), Uar(g)+1

[
s1/x1

, . . . , sar(g)/xar(g)

]
!∗ Π(xar(g)+1 : Tar(g)+1).Uar(g)+2

∀ ar(g) + 1 < i 6 n.Ui
[
si−1/xi−1

]
!∗ Π(xi : Ti).Ui+1

U!∗ Un+1

[
sn/xn

]Θ ` g s1 . . . sn : U

By induction, we have RED(Ti σ) (si σ). Since g s1 . . . sn is a subterm of
s0 and ar(g) > n, we have (f, p̄) � (g, s̄i). Here we must recall that we
are under the hypothesis that

∀i.RED(
Tf,i

[
t1/x1

,...,ti−1/xi−1

]) (ti) and ∀g.∀ū.(f, t̄)�̃(g, ū)⇒ Φ(g, ū)

Since σ and γ are equal on ∆0 which is a context in which all the variables
appearing in the pi are bounded, from ti  ∗ pi γ, we can deduce ti  ∗
pi σ. Furthermore, by proposition 2.3.10 we have WN(ti), so we get

(f, t̄)�̃(g, si σ)

Then we get Φ(g, si σ), hence RED(
Uar(g)+1

[
si/xi

]) ((g s1 . . . sar(g))σ
)
, then

for all j > ar(g), RED(
Uj+1

[
si/xi

]) ((g s1 . . . sj)σ) and by the conversion

rule, RED(U σ) (s σ).

• Θ ` si : Ti

[
s1/x1

, . . . , si−1/xi−1

]
D(s) = Π(xi : T1) Type

Θ ` d s1 . . . sk : Type
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By induction, we have RED(
Ti

[
s1/x1

,...,si−1/xi−1

]
σ

) (si σ).

Then RED(Type) ((d s1 . . . sk)σ) which is our goal.

• Θ ` si : Ti

[
s1/x1

, . . . , si−1/xi−1

] {
C(c) = Π(xi : T1) (d τ1 . . . τk)

U!∗ (d τ1 . . . τk)
[
si/xi

]
Θ ` c s1 . . . sm : U

By induction, we have RED(
Ti

[
s1/x1

,...,si−1/xi−1

]
σ

) (si σ).

Then RED(d (τ1 σ)...(τk σ)) ((c s1 . . . sm)σ) which by the conversion rule is
RED(U σ) (s σ).

• Θ ` t : Π(x : T1).T2 Θ ` u : T1


U!∗ T2 [u/x]

t does not start by a constructor
or a function symbol

Θ ` t u : U

By induction, we have RED(T1 σ) (uσ) and RED(Π(x:T1).T2 σ) (t σ), hence
by definition we have RED(U) ((t u)σ).

• Θ, x : T ` s1 : V

Θ ` λ(x : T ).s1 : Π(x : T )V

By hypothesis, we have RED(Sort) ((Π(x : T )V )σ). Let’s take a t such
that RED(T σ) (t). Then by definition RED(Sort) (V [σ, t/x]) Θ, x : T en-
rich ∆0 because Θ do so and [σ, t/x] is equal to γ on ∆0 because σ is. So
by induction, we have RED(

V
[
σ,t/x

]) (s1 [σ, t/x]). Knowing that ((λ(x :

T ).s1)σ) t  s1 [σ, t/x], we have RED(
V
[
σ,t/x

]) (((λ(x : T ).s1)σ) t) and

since t was arbitrary, RED((Π(x:T )V )σ) ((λ(x : T ).s1)σ) which was our
goal.

By combining theorem 2.4.3, theorem 2.3.16 and proposition 2.3.10 we ob-
tain the following corollary, which was the aim of our work, because it gives
conditions under which typability implies weak normalisation.

Corollary 2.4.4. If �̃ is well-founded and RED(F) then

` t : T ⇒WN(t)

Once we have this result, the Size-Change Principle can be use to verify if
�̃ is well-founded. Thanks to the modularity of Wahlstedt’s work, the demon-
stration given in [Wah07, Chapter 4] can be re-used to prove this.

Inspired by the work of Frédéric Blanqui [Bla01], an adaptation of the re-
ducibility predicates in order to show strong normalisation has been tried during
the internship. We manage to show the theorem 2.3.16 with a reducibility pred-
icate adapted for strong normalisation. Unhappily, we did not had the time to
adapt the proof of theorem 2.4.3 for this predicate, if it is possible, and we did
not used the λΠ-calculus modulo theory, but the Wahldstedt’s system to do this
adaptation. This is the reason why, this on-going work is not presented in this
report, since it would have needed to introduce another system, which is not the
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one in which our problem was designed, making this report much heavier and
probably less clear, for a not finished work. We can expect this new adaptation
to be foundable in another document soon, once it will be achieved.
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Nomenclature

<, =, ∞ Expressing the relation between the arguments of the caller and
the called functions in a rewrite rule, page 5

≈D Equivalence on set constructors, page 13

�̃ Instantiated call, page 23

δ, σ, ϑ Substitutions, page 12

⇓ Relation linking a term to its normal form, page 15

JdK Interpretation of the elementary types constructed with d, page 17

Π(xi : Ti)U Function of multiple arguments, page 11

4D Precedence on set constructors, page 12

 The rewriting relation, union of the rules declared by the user
and β-reduction, page 15

 ∗ The transitive and reflexive closure of the rewriting relation,
page 15

τ [t/x] Substitution of x by t in τ , page 12

� Formal call, page 23

ar Arity of a symbol, page 12

b Strongly neutral term, page 16

c Element constructor, page 12

C(c) Type associated to the element constructor c, page 12

d Set constructor, page 12

D(d) Type associated to the set constructor d, page 12

f Defined function, page 12
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F(f) Type associated to the defined function f , page 12

Λ The set of all terms, page 11

l→ r Rewrite rule declared in the signature, page 13

N Set of strongly neutral terms, page 16

NF Predicate asserting that a term is in normal form, page 15

p Constructor pattern, page 13

R Set of rewrite rules in the signature, page 13

RED(T ) (t) Reducibility predicate, page 16

REDΓ(γ) Reducibility predicate, page 20

RED(F) Reducibility of the signature, page 21

s β-normal term, page 13

SN Predicate asserting that a term is strongly normalisable, page 15

WN Predicate asserting that a term is weakly normalisable, page 15
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Index

β-normal term, 13
β-reduction, 15

Arity, 12

Call
formal, 23
instantiated, 23

Confluence, 15
Constructor pattern, 13
Context, 11

closed, 11

Defined function, 12

Element constructor, 12
Elementary types, 12

interpretation, 17

Normal form, 15

Precedence, 12

Reducibility
of a substitution, 20
of a term, 16
of the signature, 21

Rewrite rules, 13
left-linear, 13
non-overlapping, 13

Set constructor, 12
Signature, 12

rewrite rules, 13
Strictly positive, 13
Strong normalisation, 15
Strongly neutral term, 16
Substitution, 11
Subsum, 8

Term, 11
Tropical semiring, 6

Weak normalisation, 15
Well-founded, 6
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