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Abstract

Corner detection is a key kernel for many image processing procedures including pattern
recognition and motion detection. The latter, for instance, mainly relies on the corner points
for which spatial analyses are performed, typically on (probably live) videos or temporal flows
of images. Thus, highly efficient corner detection is essential to meet the real-time requirement
of associated applications. In this paper, we consider the corner detection algorithm proposed
by Harris, whose the main work-flow is a composition of basic operators represented by their
approximations using 3× 3 matrices. The corresponding data access patterns follow a stencil
model, which is known to require careful memory organization and management. Cache misses
and other additional hindering factors with NUMA architectures need to be skillfully addressed
in order to reach an efficient scalable implementation. In addition, with an increasingly wide
vector registers, an efficient SIMD version should be designed and explicitly implemented. In
this paper, we study a direct and explicit implementation of common and novel optimization
strategies, and provide a NUMA-aware parallelization. Experimental results on a dual-socket
INTEL Bradwell-E/EP show a noticeably good scalability performance.

keywords corner detection, Harris algorithm, multicore, multithread, NUMA, scalability

1 Introduction
The common characteristic of image processing algorithms is the heavy use of convolution kernels.
Indeed, the typical scheme is an iterative application of a stencil calculation at the pixel level.
This yields non-local and unaligned memory accesses, thus making it hard to achieve a real-time
performance implementation.

Harris corner (and edge) detection [27, 26] is an important kernel in image processing, espe-
cially for motion detection and object recognition/detection/tracking [28, 29]. Roughly speaking,
the procedure is a serial combination of 3 × 3 filters (derivatives and gaussians), surrounded by
basic arithmetic and selection operations. This leads to a stencil computation which exposes two
correlated challenges concerning memory accesses and redundant computation. Since this kernel
is likely to be called intensively on image processing applications, which includes the embedded
context, fastest (at least real-time) implementations are crucial, hopefully on various hardware
targets.

A thorough implementation study is provided by Lacassagne et al. in [25], where some of the
basic ideas considered in this paper are mentioned, especially arithmetic operations optimization
using the separability property of the filters, computation reduction, memory accesses optimization
through continuous data reuses, loop collapsing [33] of the operators in order to reduce the lifetime
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of intermediate data , and array contraction [30, 31, 32] which takes advantage of the shorter lifetime
of intermediate variables to consider a compact storage through memory location reassignments.
The SIMD part is left to the compiler (the native one for each considered architecture), and shared
memory parallelism is implemented with OpenMP (through classical directives. Other studies of
Harris corner detection and its applications can be found in [35, 36, 37, 38, 39].

In this paper, we follows the aforementioned basic ideas, but directly carried on in the SIMD
context. Indeed, we consider (i− 1, j − 1)← (i, j) reindexation (as Kung-Lo-Lewis in [34] for the
algebraic path problem) for each convolution and thereby obtain a perfectly aligned vector loads
and stores at all levels of the loops. Data reuse, factorization of the computations and optimal
vector loads are achieved through skillful registers shuffling and pipelining.

Regarding parallel implementation, we focus on the shared memory paradigm and basically
apply a row-strip distribution of both input and output memory spaces among the working threads,
each of them having its private space for intermediate values. We use Pthreads in order to have a
full control of tasks allocation, data partitioning and thread/core association (we prevent thread
migration). The main reason of this is that we are running on a NUMA architecture where any
unaware memory scenario can incur a severe penalty [22, 23, 24]. We explicitly consider on-node
memory allocations together with threads binding routines to implement an appropriate static
partitioning, which minimizes remote accesses and internode bus (QPI) contention.

The rest of the paper is organized as follows. The next section (section 2) provides a fundamen-
tal description of the Harris corner detection procedure, followed by an overview of the related work
in section 3. Section 4 introduces NUMA architectures and outlines the main related concerns.
Our SIMD and SMP optimization strategies are described in section 5. Performance resultst are
presented and commented in section 7. Section 8 concludes the paper.

2 The Harris Algorithm for Corner Detection
Harris and Stephen [2] interest point detection algorithm is an improved variant of theMoravec cor-
ner detector [1], used in computer vision for feature extraction, motion detection, image matching,
tracking, 3D reconstruction and object recognition. An overview of the foundation of the algorithm,
as described in [37] and similarly restated here, can be formulated as follows.

Let I(x, y) denote the intensity of a pixel location (x, y) of the image, and λ a given threshold.

1. For each pixel (x, y) in the input image, compute the Harris matrix G =

(
gxx gxy
gxy gyy

)
,

with
gxx = (

∂I

∂x
)2 ⊗ w gxy = (

∂I

∂x

∂I

∂y
)⊗ w gyy = (

∂I

∂y
)2 ⊗ w, (1)

where ⊗ denotes convolution operator and w is the Gaussian filter.

2. For each pixel (x, y), compute the Harris criterion given by

c(x, y) = det(G)− k(trace(G))2, (2)

where det(G) = gxx.gyy − g2xy, k an empirical constant, and trace(G) = gxx + gyy.

3. Set all c(x, y) which are below λ to zero.

4. Extract points (x, y) having the maximum c(x, y) within a window neighborhood. These
points represent the corners.

Figure 1 illustrates the result of the algorithm for the corner detection case.

Figure 1: Illustration of the Harris-Stephens corner detection
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The algorithm is mainly a successive application of convolution kernels that globally implement
a discrete form of an autocorrelation S, given by

S(x, y) =
∑
u,v

w(u, v)[I(x, y)− I(x− u, y − v)]2, (3)

where (x, y) is the location and I(x, y) its intensity, and u, v ∈ 1, 2, 3 the components modeling the
move on each dimension. At a given point (x, y) of the image, the value of S(x, y) is compared to a
suitable threshold in order to determine the nature of the corresponding pixel. Roughly speaking,
the process is achieved by applying four discrete operators, namely Sobel (S), Multiplication (M),
Gauss (G), and Coarsity (C). Figure 2 displays an overview of the global workflow.

Figure 2: Harris detector workflow

Multiplication and Coarsity are point to point operators, while Sobel and Gauss, which approx-
imate the first and second derivatives, are 9→ 1 or 3× 3 operators defined by

Sx =
1

8

 −1 0 1
−2 0 2
−1 0 1

 Sy = 1
8

 −1 −2 −10 0 0
1 2 1

 (4)

G =
1

16

 1 2 1
2 4 2
1 2 1

 (5)

Applying a 3 × 3 operator to a given pixel (x, y) consists in a point-to-point multiplication of
the corresponding 3× 3 matrix by the following pixels matrix I(x− 1, y + 1) I(x, y + 1) I(x+ 1, y + 1)

I(x− 1, y) I(x, y) I(x+ 1, y)
I(x− 1, y − 1) I(x, y − 1) I(x+ 1, y − 1)

 (6)

Here comes the notion of border. In order to compute the output H(x, y) for the pixel (x, y),
we need its intensity I(x, y) and those of its neighborhood. We say the operator is of depth 1.
Operator depth is additive, means that if two operators f and g are of depth p and q respectively,
then the depth of f ◦ g is p+ q. Three problems are raised by the way the operators are applied:

• Loading the surrounding pixels yields a significant strides in the memory access pattern, which
somehow breaks data locality and therefore becomes a potential source of cache misses.

• Adjacent pixels share a common border, which yields either a redundant memory access or
a redundant computation, sometimes both, thus another performance issue.

• Applying each convolution kernel separately implies several read/write operations on/to the
memory (persistent location or not), yet another source of performance penalty if not man-
aged carefully.

There are several ways to deal with the above problems. One is to fuse or chain consecutive
operators whenever possible. This overcomes the repetitive read/write of the entire image, at
the price of data and computation redundancy (more border pixels), thus should be done under
a certain compromise. The first two issues are well tackled by tiling, which could be considered
with operators clustering. Although tiling is a more general technique, we really need a specific
analysis in order to understand how the extra data that covers each incoming tile affect the global
performance when dealing with operator-based algorithms [36].
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3 Related Work on Harris Detector Implementation
Corner detection is a fundamental image processing kernel that is used in many applications like
object recognition , object tracking, motion detection, to name the most common. The algorithm
is likely to be memory-bound, and the real-time constraint yields the theed for efficiency. Several
implementation have been proposed in the literature, each targeting a specific device or some
particular aspects of the algorithm. Lacassagne et al. [25] analyze the core of the computation and
an efficient management of the data, compiler-based vectorization and shared memory parallelism
are also studied. Accelerated implementation is fundamentally investigated by Wu, Lam and
Srikanthan in [6], and by Tadonki et al. in [36]. An implementation on the CELL processor
is provided and discussed by Saidani et al. in [35]. The last two contributions also provide a
qualitative and quantitative study of tiling. Pipelining Harris on FPGA is studied by Aydogdu,
Demirci, and C. Kasnakoglu in [38]. Xiao, Zhou and Zhang [3] describe a CUDA implementation
on GPU which shows a 60 times speedup over the serial CPU version. Luo and Zhang [4] also seek
a GPU implementation using the Open Graphics Library (OpenGL) and the Graphics Library
Shading Language (GLSL), with a reported speedup of 73. A low complexity detector in CUDA
is proposed by Rajat et al. in [5]. Beside the real-time requirement which has put more focus
on the high performance computing aspect, it is worth considering concerns related to robustness
and accuracy. Zhang, Li and Yang describe a multi-scale variant of the Harris algorithm, which
could overcome the drawback of the conventional version like detecting false corners due to noises
[8]. A novel Harris algorithm is also proposed in [6] to reduce the amount of Gaussian smoothing
links. In [9], Zhao et al. propose an auto-adaptive corner detector based on neighboring points
elimination method to improve robustness. However, all the aforementioned improved Harris
algorithms are executed on standard CPU, where the performance is still limited. The use of
many-core processors can help to accelerate the execution, provided a skillful parallelism. In order
to delivers better results in terms of speed up and accuracy, Johnyet al. [7, 11] propose a new
resource-aware Harris corner detection algorithm using various pruning techniques on a manycore
processors, with a noticeable improvement both in throughput and accuracy.

However, there is a lack of contribution on the NUMA context, and also on on explicit SIMD
implementations of the major optimization strategies. These two concerns are the focus and the
position of this paper.

4 NUMA Architectures and Related Concerns
Modern CPUs are typically made up with an increasing number of cores in order to deliver a higher
peak performance. As the increase of the CPU clock frequency has been somehow frozen because
of circuits integration capacity and energy concerns, the trend is to provide more and more cores
within a single CPU, with a fully shared memory. Nowadays and future supercomputers are just
an interconnected aggregation of such nodes [40, 41, 42]. The packaging of a high number of cores
withing a single chip tends to look like a hardware connected block of conventional multicores,
thus providing a global memory space with a non uniform access. This Non-Uniform Memory
Access (NUMA) configuration is seamless to an ordinary programmer, as there is a unique virtual
addressing. Within a NUMA node, the memory system is exactly the same as for an ordinary
multicore. Between NUMA nodes, specific links, like the Quick Path Interconnect (QPI), connect
local memories together following a specific topology. A memory access in a given NUMA node is
said to be local (resp. remote) if the request comes from a core within that (resp. another) NUMA
node. This looks like an on-chip distributed memory configuration. Figure 3 displays a typical
single-socket NUMA configuration with 4 nodes, while figure 4 (from [22]) illustrates multi-socket
cases.
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Figure 3: Sample NUMA configuration with 4 nodes

Figure 4: Sample multi-socket NUMA configurations

The NUMA configuration was designed to alleviate the bottleneck scenario where all CPU-cores
use the same unique bus to access the main shared memory, thereby keeping a high probability of
a good scalability over a large number of cores. Unfortunately, good scalability can be obtained
only if memory accesses are mostly local. Indeed, remote accesses are more costly by nature and
might incur more contention both on the QPI link and within the targeted NUMA node (because
local accesses might be carried on at the same time). This potential memory controller saturation
or QPI contention is the common culprit of speedup stagnation on NUMA manycores.

Efficient data placement and threads management for better scalability on NUMA systems is a
hot topic. Stefan et al. propose a library for parallel programs on NUMA machines, based on array
abstraction and memory allocation routines, which allows automatic tunning of data placement
and accesses for better scalability [12]. Number of specific contributions [15, 16, 17, 18, 22] suggest
a way to optimize thread and data placement in a NUMA system by combining data locality
and thread binding, in order to reduce remote accesses. Lin et al. [13] propose an efficient stencil
computations using many-core NUMA architectures, targeting higher performance and portability.

In this paper, we extend our parallel implementation of Harris detector to NUMA configurations
and strive for good and stable overall scalability. Now let us describe the different implementation
strategies considered in our work.
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5 Optimization strategies

5.1 Separability of the Convolution Operators
All operators involved in the Harris corner detection are separable, means that each of the 3 × 3
convolution matrices is an outer product of two 1× 3 vectors as expressed in (7), (8), and (9).

Sx =
1

8

−1 0 1
−2 0 2
−1 0 1

 =
1

8

1
2
1

(−1 0 1
)

(7)

Sy =
1

8

−1 −2 −1
0 0 0
1 2 1

 =
1

8

−10
1

(1 2 1
)

(8)

G =
1

16

1 2 1
2 4 2
1 2 1

 =
1

16

1
2
1

(1 2 1
)

(9)

The main advantage using the separated form of the operator is that it reduces the number of
floating point operations (flops). Indeed, applying an operator written as vTu can be achieved by
first applying vT only for the entire row and afterwards apply u on that row. This factorization of
the arithmetic operations reduces the flops, but an explicit management of intermediate storages.

5.2 Operators Clustering
Operators clustering aims at merging two operators into a single one, in order to reduce the
lifetime of the intermediate results in between, thus expecting to lower or get ride of the corre-
sponding accesses to main memory. For the Harris case, several combinations are possible [20].
The most balance one seems to be the so-called half-pipe, where the clusters are GRAD+MUL
and GAUSS+COARSITY. Figure 5 illustrates the half-pipe workflow, whose a variant is ob-
tained by pipelining the clusters GRAD+MUL and GAUSS+COARSITY. This version is the
one considered in this paper, where we apply an array contraction technique in order to reduce the
intermediate storage as in [21].

Figure 5: Harris clustering operator[20]

We are now going to explain our vectorization (SIMD) strategies, where we strive for aminimum
number of fully aligned load and store statements. Although our approach is general, we consider
256-bit vector registers and AVX intrinsics for specific explanations and illustrations.

5.3 SIMD Implementation
We describe how our approach to get a nearly optimal vector implementation of the Harris-
Stephensen algorithm. The main steps are the following:

5.3.1 Optimal storage strategy

One major concern when implementing a stencil algorithm is alignment. Just following the access
pattern provided by the canonical formulation of the algorithm will lead to unaligned loads and
stores, which severely impact on memory bandwidth and bus contention. To overcome this issue
with the SOBEL and GAUSS operators, we (virtually) apply a upper-left shift for the output ma-
trix, which means that (i, j) is stored at position (i−1, j−1). Figure 6 illustrates our reindexation
and the corresponding storage strategy.
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Figure 6: Upper-left shift storage

Such a storage ensures aligned write-accesses and provides a similar shape of the input for the
next operator (GAUSS in this case). Thus, the shape for the computation of GAUSS (since we
always exclude the border) is illustrated by figure 7.

Figure 7: Storage Layout for gauss

In addition, we avoid useless control statements by fully computing the last block-vector of
each row and store it with its two “dirty” values, which we do not consider anyway because they
are located out of the actual output region. Figure 8 illustrates the view.

Figure 8: Storage of the last vector in a row

In case of a 8x8 image and 4-components vector registers as considered in our illustrations, we
will always compute and store 2 vector registers per row of the output. Further steps will just
ignore the last two columns (and of course the last two rows). Now let see how we do the core
computation.

5.3.2 In-registers computation

Once a vector register is filled with input data from memory, we should strive to fully use it to
compute dependent variables. For this purpose, we proceed as follows. All our filters are separable,
means they have a generic form which can be described by 3× 3 mask of the generic form (10)

A =

 a αa βa
b αb βb
c αc βc

 =

ab
c

(1 α β
)
. (10)

Assume we need to apply operator ([?] ) at a point Ii,j (denotes by @(i,j)) of the input image. We
have (11)

@(i,j) = aIi−1,j−1 +αaIi−1,j +βaIi−1,j+1

+ bIi,j−1 +αbIi,j +βbIi,j+1

+ cIi+1,j−1 +αcIi+1,j +βcIi+1,j+1

(11)
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which can be written as (12)

@(i,j) = (aIi−1,j−1 + bIi,j−1 + cIi+1,j−1)+
α(aIi−1,j + bIi,j + cIi+1,j)+

β(aIi−1,j+1 + bIi,j+1 + cIi+1,j+1) .
(12)

Thus, in order to computer a block vector in a row i, starting from position j, we need the vector
registers staring at (i − 1, j − 1), (i, j − 1), and (i + 1, j − 1), and also their next adjacent ones.
Figure 9 illustrates the configuration, where the block vector to be computed is represented by
gray cells, and requires four registers r0, r1, r2, r3 (we assume 4-components vector registers).

Figure 9: SIMD memory mapping

Given two vector registers r and s, we denote by �k(r, s) the vector register obtained from
r by performing k left shifts, and taking for the last k components the first k components of s.
For example, if u = (u0, u1, u2, u3) and v = (v0, v1, v2, v3), then �1(u, v) = (u1, u2, u3, v0) and
�2(u, v) = (u2, u3, v0, v1). Given this notation, the computation of our block vector as described
in (12) can be specified by expression (13)

[a× r0 + b×�1(r0, r1) + c×�2(r0, r1)]+
α×[a× r2 + b×�1(r2, r3) + c×�2(r2, r3)]+
β×[a× r4 + b×�1(r4, r5) + c×�2(r4, r5)]

(13)

For the computation of the next block, we just need to do r0 := r1, r2 := r3, r4 := r5, and
only reload r1, r3, and r5, thereby saving three loads. Thus, we always use a combination of non
overlapping registers, and each of them is used twice to compute two consecutive block vectors of
the current row.

5.3.3 Factorization of the computation

The previously described in-registers computation can be applied using the partial application of
the mask restricted to its first column. Indeed, (13) can be written as (14)

a×[r0 + α× r2 + βr4]
b× [�1(r0, r1) + α�1 (r2, r3) + β �1 (r4, r5)]
c× [�2(r0, r1) + α�2 (r2, r3) + β �2 (r4, r5)]

(14)

which, considering the distributivity of �k over addition, yields (15)

a×[r0 + α× r2 + βr4]
b× [�1(r0 + α× r2 + βr4, r1 + α× r3 + βr5)]
c× [�2(r0 + α× r2 + βr4, r1 + α× r3 + βr5)]

(15)

Finally, if u = r0 + α× r2 + β × r4 and v = r1 + α× r3 + β × r5, then (13) can be written as (16)

a× u+ b×�1(u, v) + c×�2(u, v). (16)

Thus, for the computation of an entire row, the typical steps at each iteration are displayed in
Table 1, where r is first computed within the prologue phase.

1: u = load(Ii−1,j); v = load(Ii,j); w = load(Ii+1,j);
2: s := u+ α× v + β × w;
3: t := a× r + b×�1(r, s) + c×�2(r, s);
4: store(t);
5: j := next(j); {next block vector}
6: r := s;

Table 1: Typical computation of a block vector
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For the special cases of a null row or a null column, for instance α = 0 for SOBELX and b = 0
for SOBELY, and/or if one entry of the mask equals ±1, the code should be simplified accordingly.
More precisely, line 2 becomes s := u+ β ×w if α = 0 (we avoid one register calculation) and line
3 becomes t := a× r + c×�2(r, s) (we avoid one shift).

5.3.4 Shifting virtually concatenated registers

With SSE or AVX, getting vv = �1(v1, v2) from two given vector registers u and v can be achieved
using basic register-register instructions only, thus no need for any kind of memory access. We
provided the steps corresponding to AVX case considered in this work. Figure 10 describes how
to compute �1(v1, v2) with single precision components.

Figure 10: Left-shift of two registers in AVX

If necessary, a step-by-step simulation of the instructions in figure 10 is advised for ordinary
readers in order to understand the code and get convinced. Figure 11 provides the code for
vv = �2(v1, v2).

Figure 11: Two-left-shift of two registers in AVX

5.4 Loop Transformations and Array Contraction
When it comes to stencil computation, cache memory needs a special consideration. Indeed, each
point of the iteration space contributes to the calculation associated to its neighborhood. If we
consider our SIMD scheduling as previously described, we can see that each line i is loaded three
time for lines i − 1, i, and i + 1. We can reduce this load redundancy by computing two lines
at each iteration (as described in table 1). In fact, computing line i (resp. i + 1) requires lines
{i−1, i, i+1} (resp. {i, i+1, i+2}), thus each time we compute a chunk of line i, we can compute
the corresponding chunk for line i+1 by loading the only missing block from line i+2. Figure 12
illustrates the computation flow.

Figure 12: Data layout illustration for double-row computation

This approach clearly tries to reduce the number of loads. However, there are two factors that
already help to reduce the effective overheads of the loads. First, we manipulate 256-wide vector
registers (32 bytes) and the size of the cache line is 64 bytes, so each load brings into the cache
enough data for two registers, and our access pattern matches this granted prefetch. In addition,
after a given line i is visited (for i− 1), it is reused twice in the next two iterations (for lines i and
i+1). Since that row is still at least in the L2 cache, the aforementioned two reloads will not have
a noticeable impact. Moreover, for the two SOBEL (SOLBELX and SOBELY), we use the same
input, thus another advantageous fact for the loads. Considering the MULTIPLY that follows the
SOBEL, we produce three results, thus three (distant) stores. Thereby, in addition to the fact that
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write-cache mechanism is more complex, the cost of write accesses is likely to be more important
than that of read accesses. The situation is reversed with GAUSS+COARSITY where we produce
a single output from three inputs.

The second strategy to benefit from the cache is the so-called array contraction, which aims
at reducing the memory footprint when collapsing two loops. Thereby, intermediate writes and
reads hopefully occur at a certain level of the cache (typically L2). In our case, the first loop is for
SOBEL+MUL and the second is for GAUSS+COARSITY. As previously explained, we need three
consecutive rows from SOBEL+MUL in order to compute one row with GAUSS+COARSITY.
Thus, after rows 0 and 1 are produced by SOBEL+MUL, we can start iterating on the collapsed
loop body [SOBEL+MUL]→[GAUSS+COARSITY] to produce consecutive rows of the final output
(see Table 2).

1: {l(I)0 , l(I)1 , l(I)2 } → [SOBEL+MUL] → {l(S)
0 , l(S)

1 } ;
2: for(i = 2; i < n− 2; i++){
3: {l(I)i−1, l

(I)
i , l(I)i+1} → [SOBEL+MUL] → l

(S)
i ;

4: {l(S)
i−2, l

(S)
i−1, l

(S)
i } → [GAUSS+COARSITY] → l

(O)
i−2;

5: }

Table 2: Collapsed Sobel and Gauss

At step i (resp. i+1), we need to be able to house l(S)
i−2, l

(S)
i−1, and l

(S)
i (resp. l(S)

i−1, l
(S)
i , and l(S)

i+1),
thus we can just replace l(S)

i−2 by l(S)
i+1. Thereby, a space for 3 rows can be used for intermediate

data between [SOBEL+MUL] and [GAUSS+COARSITY] following a cyclic (mod 3) assignment. This
contraction yields a recurrent reuse of a smaller memory space, which will certainly remain into
the cache during all the iterations, thus a noticeable performance improvement.

5.5 Another Optimization from Thresholding
As heavy write accesses certainly degrade absolute performance as well as scalability, a noticeable
benefit can be expected from any strategy that aims at reducing write accesses. In the case of
Harris algorithm, the thresholding can be used to avoid writing the coarsity values of unselected
pixels. This can be done by the AVX code of figure 13.

Figure 13: Write accesses reduction from the thresholding

As the number of selected pixels is a very low fraction of the overall number of pixels (even
0.01% seems too much), there is a clear opportunity for a significant saving in write accesses.
The coarsity matrix can be initialized to zero (which corresponds to what the thresholding would
have done for unselected pixels), then updated afterwards by the computed values for the selected
pixels. Another way is to completely forget unselected pixels and write the coarsity of the selected
ones in a compact storage (non-sparse way). For our experimental results, we consider the former
strategy.

6 Shared Memory Parallel Implementation

6.1 Basic Parallel Allocation
We basically consider a row-strip distribution of each working 2D array, and assign each block
of rows to a specific thread. This straightforward partitioning is applied for every operator of
the Harris algorithm. In addition, we apply thread binding in order to avoid thread migration
and prepare for NUMA considerations. For intermediate storage, each thread has its one memory
space (indexed by its id). Since each thread computes the full Harris for a block of rows of the final
output, there is no need for any kind of synchronization. On a NUMA configuration, all allocations
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are performed on node 0, which means that all reads (resp. writes) are done from (resp. on) node 0.
For sure, such a NUMA-unaware is likely to show a poor scalability over the entire machine. Note
that this is configuration that a programmer might obtain with basic OpenMP directives. The
first touch policy will just change the node where everything will be definitely physically allocated.
We now describe how we handle NUMA considerations.

6.2 NUMA-aware Adaptation
Considering a NUMA configuration, we first choose to load (resp. store) and keep the entire
input (resp. output) image on node 0, and use an internal storage for all intermediate memory
allocations and accesses (thus making them local). Figure 14 illustrates our organization of the
memory allocation and the associated diagram.

Figure 14: Our basic parallel scheduling

This organization, which can be easily implemented with specialized memory allocator routines
(libnuma library for instance) still contains remote memory accesses which might become really
hindering with larger images. To solve this, we chose to implement a block-cyclic allocation [43]
using a memory binding routine, which can perform a remapping of a given memory chunk onto a
specific node. The core of the corresponding C is provided in figure 15.

Figure 15: Block memory binding

Let us now provide and comment our experimental performance results.

7 Performance results and comments

7.1 Technical Context
In order to evaluate our implementation strategies on a NUMA many-core machine, we consider
an Intel Xeon E5-2669 v4 (Broadwell-EP) CPU having a total of 44 cores. This is a dual-socket
configuration with 4 11-cores NUMA nodes. We chose to consider 8 cores per node in order to
have a balanced task and data distribution with 2k threads, as we plan to consider square images
with power of two sizes. Figure 16 displays the main technical specifications of our machine.
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Figure 16: Our Broadwell configuration

7.2 Basic Complexity Analysis
Given a n × n image, the computation of a separable 3 × 3 filter uT v can be achieved with a
minimum number of floating operations (flops) given by

(o(u) + o(v))n2, (17)

where o(u) (resp. v) is the flops corresponding to a single application of u (resp. v). For this case
of the Harris algorithm, we have:
SOBELX: u = (1, 2, 1), v = (1, 0, 1), o(u) + o(v) = 3 + 1 = 4
SOBELY: u = (1, 0, 1), v = (1, 2, 1), o(u) + o(v) = 1 + 3 = 4
GAUSS: u = (1, 2, 1), v = (1, 2, 1), o(u) + o(v) = 3 + 3 = 6
In addition, we need to consider 1 mul (3 flops) and 1 coarsity (7 flops). Instead of applying the
factor 1/8 to the gradients and 1/16 to the gaussians, we multiply the final result by 1/(8 ∗ 16).
Thus, an optimal computation of Harris consumes a number of flops per pixel equals to

4 + 4 + 3 + 6× 3 + 7 + 1 = 37. (18)

For each execution on a n2 image (single precision), the GFLOPS performance is given by

(37× n2)/(109 × t(s)), (19)

where t(s) is the execution time in seconds.

7.3 Measured Performance Results
We consider square images with power of two sizes ranging from 1024 (210) to 32768 (215). The
intensity of the pixels are generated randomly using the rand() function in C.

7.3.1 Sequential Case

N T(s) GFlops %Peak
1 024 0.00312 12.49 64
2 048 0.01168 13.28 69
4 096 0.04829 12.85 66
8 192 0.22431 10.07 57
16 384 0.97930 10.14 52
32 768 3.84535 10.33 53

Table 3: Performance results of our sequential implementation

The first remark is that we are always above 50% of the peak performance, with a weak deviation.
Since we are dealing with a memory-bound application (exacerbated by our flops optimizations)
and our hardware provides an important Flops capability, we can claim from the measured timings
(Table 3) that our implementation is globally efficient. We now examine the behavior of its
parallelization.
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7.3.2 NUMA-unaware Parallel Case

1024×1024 2048×2048 4096×4096 8192×8192 16384×16384
#cores T(s) Acc T(s) Acc T(s) Acc T(s) Acc T(s) Acc

1 0.00303 1.00 0.01166 1.00 0.04756 1.00 0.22143 1.00 0.97425 1.00
2 0.00159 1.90 0.00587 1.99 0.02408 1.98 0.12409 1.78 0.48822 2.00
4 0.00085 3.56 0.00299 3.90 0.01311 3.63 0.06421 3.45 0.25957 3.75
8 0.00050 6.11 0.00191 6.09 0.00835 5.70 0.03493 6.34 0.14260 6.83
16 0.00074 4.10 0.00239 4.88 0.01101 4.32 0.04478 4.94 0.18017 5.41
32 0.00111 2.73 0.00263 4.43 0.01055 4.51 0.05252 4.22 0.21648 4.50

Table 4: Performance results of our NUMA-unaware parallelization

Table 4 shows a good speedup withing one NUMA node (each NUMA node executes a maximum of
8 threads). However, when more that one nodes are involved, a severe slowdown can be observed.
This is the typical effect of remote accesses and associated memory controller saturation in a
NUMA configuration. We now see the impact of our NUMA-aware adaptation.

7.3.3 NUMA-aware Parallel Case

1024×1024 2048×2048 4096×4096 8192×8192 16384×16384
#cores T(s) Acc T(s) Acc T(s) Acc T(s) Acc T(s) Acc

1 0.00306 1.00 0.01176 1.00 0.04777 1.00 0.22193 1.00 0.97619 1.00
2 0.00160 1.92 0.00587 2.00 0.02398 1.99 0.11857 1.87 0.50325 1.94
4 0.00100 3.06 0.00300 3.92 0.01277 3.74 0.06344 3.50 0.25939 3.76
8 0.00071 4.34 0.00203 5.79 0.00847 5.64 0.03549 6.25 0.14251 6.85
16 0.00063 4.90 0.00135 8.68 0.00460 10.38 0.01850 12.00 0.07259 13.45
32 0.00132 2.32 0.00069 17.11 0.00257 18.60 0.01072 20.71 0.04270 22.86

Table 5: Performance results of our NUMA-aware parallelization

We can see from Table 5 that there is a significant improvement of the speedup with several NUMA
nodes. The pathologic 1024 case is certainly due to the typical thread starvation effect, there is
no need to use more that one NUMA node for small instances. Let now check how write avoiding
through thresholding affect our execution timings.

7.3.4 Thresholding Optimization Case

1024×1024 2048×2048 4096×4096 8192×8192 16384×16384
#cores T(s) Acc T(s) Acc T(s) Acc T(s) Acc T(s) Acc

1 0.00293 1.00 0.01127 1.00 0.04685 1.00 0.21433 1.00 0.93773 1.00
2 0.00153 1.92 0.00569 1.98 0.02359 1.99 0.10751 1.99 0.46875 2.00
4 0.00080 3.69 0.00293 3.85 0.01172 4.00 0.05875 3.65 0.24492 3.83
8 0.00047 6.29 0.00153 7.38 0.00605 7.75 0.03152 6.80 0.12462 7.52
16 0.00055 5.32 0.00092 12.29 0.00334 14.04 0.01642 13.06 0.06365 14.73
32 0.00115 2.54 0.00055 20.68 0.00181 25.83 0.00879 24.40 0.03276 28.62

Table 6: Evaluation of the thresholding optimization

We can see another improvement in the speedup, but a rather marginal one in the absolute per-
formance on a single core. The former is certainly due to the fact that there is a less stress on
the bus to the main memory. Table 7 illustrates the effect of the thresholding optimization with
0.01% pixels selected. There is an observed improvement, making it more significant requires more
investigations.
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N T(s) GFlops %Peak %Peak (no threshold)
1 024 0.00293 13.30 72 64
2 048 0.01127 14.31 71 69
4 096 0.04685 13.24 68 66
8 192 0.21433 10.53 60 57
16 384 0.93773 10.58 54 52
32 768 3.60662 11.01 57 53

Table 7: Impact of the thresholding optimization

8 Conclusion
In this paper, we revisit the Harris corner detection algorithm. Targeting a NUMA manycore, we
first start by striving for an efficient single-core implementation, emphasizing on an optimal memory
organization. Indeed, as memory bus and controller are shared by the cores, it is crucial to reduce
the number of compulsory memory requests and to remain on cache as long as possible. In addition,
we study the effect of NUMA configuration and provide a solution based on a standard memory
distribution onto the NUMA nodes through memory binding routines. Using the thresholding
selection to reduce the number of write access to the main memory is also explored. This last
aspect needs more investigation. An extension of the SIMD implementation with short int data
type (thus a wider vectorization) is also worth considering.
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