
Circuits via topoi

Arnaud Spiwack

September 30, 2015

Abstract

Leveraging topos theory a semantics can be given to sequential circuits
where time-sensitive gates, such as unit delay, are treated uniformly with
combinational gates. Both kinds of gates are functions in a particular
topos: the topos of presheaves over the natural ordering of N. This is used
to show that sequential circuits validate the equational theory of traced
categories.

When giving semantics to circuits (typically boolean circuits), it is customary
to treat the combinational – i.e. time-independent – parts of the circuits
differently from time sensitive ones. Since it is usually assumed that the
only time-sensitive gate is the unit delay, each outgoing wire from a delay
is considered an additional input, and each incoming wire an additional
output. Some care is taken to feed the right output into the right input at next
iteration, and so time-sensitivity is eliminated and one can reason on a purely
combinational circuit.

This is not very convenient to reason equationally about moving unit
delays for better placement. But this approach really breaks down when
considering time-sensitive gates which are not simple unit delay. This article
takes its root in the study of compilation of the circuit programming language
Faust [13]. Faust features a somewhat unusual kind of delay gate, written s@d,
where s is an arbitrary signal, and d is a time-varying bounded natural number
signal whose value at time t determines how far in the past of s to fetch the
value of the delayed signal.

With such a construct, it becomes impossible to “cut” a circuit into a
combinational circuit. At least not without heavy modifications (the constraint
that d is bounded is imposed in order to be able to compile the program in
constant memory, so such a circuit can be reduced to use only unit delays).

To address this issue, let us turn to presheaves and topos theory. The
critical property which we shall use is that topoi are models of constructive
mathematics. Therefore we shall first develop a theory of combinational
circuits in ordinary constructive mathematics, then lift it to sequential circuits
via a presheaf construction.

Much work has been put [3, 1], recently, in using category theory to explain
and exploit the linear algebraic aspects of circuits from control-theory. This
article explores an orthogonal axis of the design space. Both can, and should,
in principle be combined to obtain linear algebra with time. It is what signal
processing is made of.

1

Before we move on, I have to start with an apology: despite the subject of
topoi and presheaves being rather technical, I will be assuming quite a bit of
familiarity with them in this article. I realise that this will make this article
unnecessarily arduous for many. But in order for this article to be written
at all, I felt I had to limit its scope so. A good, exhaustive, introduction to
topos theory can be found in Mac Lane & Moerdijk’s Sheaves in geometry and
logic [10].

Acknowledgement I was once sitting with Noam Zeilberger listening to a
seminar by Gérard Berry. About circuits. Berry’s presentation was obviously
of great interest to the both of us as we went on discussing its content for quite
a while after that. At some point Zeilberger remarked: “I don’t really know
what a circuit is”, and I suddenly realised that I didn’t quite either; despite the
intuitive, and occasionally concrete, nature of circuits. If Zeilberger’s remark
gave you pause, as it did to me, then read on for my attempt at a definition.

1 Combinational circuits

It is direct to give a definition of combinational circuits if they are not allowed
to have loops: just interpret each gate as a function a compose things appro-
priately. Or, more generally, if you are so disposed, interpret each gate as an
arrow in some cartesian category, and interpret appropriately.

The case that drove my interest, however, requires loops – aka feedback. I
am not particularly in need of delay-free loops, although this is of legitimate
interest (see for instance [12]), but the semantics which is developed in this
section will be lifted in Section 2 to sequential circuits which are useless
without some form of feedback.

1.1 Constructive domain semantics

As good computer scientist ought to when faced with tricky fixed point
(even in circuits, loops are, after all, fixed points), let us turn to domains.
Before we give a formal description of our semantics, let me note that it
is a straightforward variant of the rather venerable three-valued semantics of
combinational boolean circuits [11], which, by the way, has been shown, with
caveats, to be a good semantics for electronic circuits [12].

Boolean circuits have, of course, a special relevance in computing science
due to their being the basic building block of computers. But we will not
restrict ourselves so. Wires will be allowed to carry values of any type we
wish. The Faust programming language, for instance, has wires of type N and
R (floating point numbers, in practice). The types, which, for the purpose of
this article, are simply sets of permitted values, allowed for the wires by a
circuit language will be called base types.

Definition 1 (Bounded height domain). A bounded height domain is a partially
ordered set D equipped with a number b such that every increasing chain x1 6 . . . 6
xn in D with n > b has a pair xi > xj with i < j (equivalently, for every i 6 k 6 j,
xi = xk).

2

Circuits will be given a semantics as increasing functions between such
domains. To the extent that the material present in this section is different from
the usual treatment it is to render this section constructive to be compatible
with the topos of Section 2. This is the reason why we focus on bounded
height domains rather than the more usual ω-cpos. Note also that b, in
Definition 1 is not the height of the domain but rather an upper bound on this
height. The reason is that, constructively, there may not be an exact height (see
also [4] for more thoughts on finiteness in constructive mathematics). Every
proof, in this section, is constructive.

Bounded height domain have the fixed-point property, just like other
kinds of domains. Note that the fixed-point property of cpos or ω-cpos are
also constructive. The added value of bounded height domains is that there
are really few constructive cpos or ω-cpos (see Remark 1 below). Another
practical advantage of bounded height domain is that the fixed-point property
applies to all increasing functions, which will free us from proving continuity.

Theorem 1 (Fixed-point property). Every increasing function f : D → D for a
bounded height domain D with a smallest element ⊥ has a smallest fixed-point.

Proof. Let b be a bound on the height of D. The sequence ⊥ 6 f(⊥) 6
f2(⊥) 6 . . . 6 f b(⊥) has length b+ 1. By definition, there is an i < b such that
f i(⊥) = f i+1(⊥) hence f b(⊥) = f i(⊥) is a fixed point.

It is the smallest since, by induction, for any fixed point x0 of f and every
k, fk(⊥) 6 x0.

Remark that we can refine the proof to show that the least fixed point of f
is also its least pre-fixed point (i.e. such that f(x) 6 x).

Base types, which are sets, can be naturally identified to bounded height
domains (without a smallest element).

Definition 2 (Flat domains). Given a set A, the partially ordered set (also noted A)
where x 6 y ⇐⇒ x = y is a domain of height bounded by 1, which we call a flat
domain.

Continuing on the subject of constructiveness, notice that flat domains
are an example of domain which can’t be assigned a height. Indeed, if A is
inhabited then A has height 1, whereas when A is empty then A has height
0 but it is not possible, in constructive mathematics to decide whether A is
empty or not, the height flat domains is, therefore, not well defined (it is, in
fact, impossible to define a non-constant integer-valued function on sets [5]).

In order to use base types in conjunction with the fixed point property
they need a smallest element which we add freely.

Definition 3 (Lifted domains). Given a domain A with a bound b on its height,
we construct a domain A⊥, called lifted, by adding a distinguished element ⊥ to A
and considering it smaller than every element of A: ∀x∈A. ⊥ < x. The height of A⊥
is bounded by b+ 1

Wires in circuits will be interpreted as taking value in the lifted flat domains
corresponding to base types. Increasing functions between lifted flat domain
are such that if f(⊥) 6= ⊥, then for any a, f(a) = f(⊥). In particular, if f is
such a function with several fixed points, then f(⊥) = ⊥ and the smallest

3

fixed point is ⊥. So ⊥ represents both the absence of a well-defined fixed
point and the presence of several fixed points.

Obviously, in order for the smallest fixed point off to be non-⊥, f needs to
ignore some of its input wires, for instance f could be the well-know parallel
or:

por ⊥ 0 1

⊥ ⊥ ⊥ 1
0 ⊥ 0 1
1 1 1 1

When one of the input of the parallel or is 1, then the output is 1, whatever
the behaviour of the other input. In particular the following circuit is well
defined (it outputs 1):

rop
1

More useful examples can be found in [11, 12].

Remark 1. Lifted flat domains are an example of bounded-height domains which are
not necessarily ω-cpos, constructively. Indeed consider 1 = {0}, the singleton set,
then 1⊥ is not constructively an ω-cpo. An ω-chain in 1⊥ is an infinite sequence of
⊥ and 0 (such that after a 0, every element is 0). If an ω-chain has ⊥ as an upper
bound, then all of its elements are ⊥, if an ω-chain has 0 as an upper bound, at least
one of its elements must be 01. If every ω-chain had an upper bound, it would give
a way to decide whether they contain a 0 or not, which is equivalent to the limited
principle of omniscience: a known-to-be-non-constructive principle.

To formalise circuits with multiple wires we remark that bounded height
domains are closed by cartesian products.

Lemma 1 (Cartesian product of domains). The product A×B of two bounded
height domains of respective bound bA and bB , with order (x1, y1) 6 (x2, y2) ⇐⇒
x1 6 x2 ∧ y1 6 y2 , is a domain whose height is bounded by bA × bB .

Proof. A chain in A×B is simply a list of pairs (x, y), with an constraint on
consecutive pairs. However, chains can be represented differently as a list of
pairs (x, l) with l a chain in B, with the intent that the pair (x, [y1, . . . , yn])
represents the chain (x, y1) 6 . . . 6 (x, yn). So that chains now have multi-
ple representations depending on how successive pairs with the same first
component are “contracted”.

We begin with the simplest representation where every pair (x, l) is an
(x, [y]). Now, as long as our list is of size longer than bA (without loss of
generality we can suppose both bA and bB to be non-zero) we can use the

1Accomplished constructive mathematicians may noticed that I have made use of Markov’s
principle in this statement: it’s a valid thing to do, though since if something is unprovable from
Markov’s principle, it is certainly unprovable without. Alternatively, “must” in that sentence can
be interpreted as the double-negation modality, in which case the statement is constructively true,
and leads to a weaker, still non-constructive, version of the limited principle of omniscience.

4

fact that the first components describe a chain to find consecutive positions
with the same x which we can contract. Hence strictly reducing the size of
our list. This process gives us a contracted representation of the long chain of
length bA or less. But, since the total length of the chain is larger than bA × bB ,
there must be at least one second-component list with length larger than bB .
Applying the definition of the bound bB to this list concludes the proof.

Combinational gates are, therefore, interpreted as increasing functions of
type A1⊥ × . . . ×An⊥ → An+1⊥ × . . . ×Ap⊥ (with each Ai being a base type).

1.2 Traced category

What is left is to use the fixed-point property to make precise the definition of
feedback wires, the solution is given by Hasegawa [6, Theorem 3.1] who gives
a method to transform fixed-point operators into traces.

Traced categories [8] provide a graphical language which is essentially the
same as circuits with feedback. It is reassuring that circuits can be interpreted
as arrows in such a traced category. It provides a natural equational theory on
circuits which can be, among other things, leveraged to produce optimisation
schemes [9].

Lemma 2 (Local fixed-point property). Theorem 1 can be extended to produce
a local fixed point function: let f : A × X → X an increasing function (A and
X bounded height domain with a smallest element), there is an increasing function
µ(f) : A → X , such that for any a : A, µ(f)(a) is the least fixed point of the
increasing function λx. f(a, x).

Proof. The proof bulk of the proof is the same as Theorem 1, taking into ac-
count that, by definition of cartesian product λx. f(a, x) is, indeed, increasing:
let b a bound on the height of X, µ(f)(a) = (λx. f(a, x))

b
(⊥).

We need to check the µ(f) is indeed increasing. But since f is increasing,
for any a 6 a′ and any x 6 x′ f(a, x) 6 f(a′, x′); by induction, we conclude
that µ(f)(a) 6 µ(f)(a′).

Hasegawa tells us that there are three properties to verify for a fixed
point operator to yield a trace (note that, reciprocally, all traces in a cartesian
category yield such a fixed point operator). We shall write µax. f(a, x) instead
of µ(λ (a, x) . f(a, x)). In addition and by definition, (µax. f(a, x)) (a0) =
µx. f(a0, x); since the former is cumbersome, we will use the latter as a
shorthand.

Lemma 3 (Naturality in A). For any f : A × X → X and g : B → A, the
following holds: µbx. f(g(b), x) = µ(f) ◦ g.

Proof. Let b : B, (µbx. f(g(b), x)) (b) = µx. f(g(b), x) is, by definition, the least
fixed point of λx. f(g(b), x). And, also by definition, so is µ(f)(g(b)).

Lemma 4 (Naturality in X). Let f be an increasing function in A×X → Y . For
any g : Y → X , µax. g(f(a, x)) = g ◦ (µay. f(a, g(y))).

Proof. Let us fix an a : A.

5

� Let us prove that g(µy. f(a, g(y))) is a fixed point of λx. g(f(a, x)), and
therefore µx. g(f(a, x)) 6 g(µy. f(a, g(y))). This follows immediately
from the fact that f(a, g(µy. f(a, g(y)))) = µy. f(a, g(y), a) and the fact
that g is increasing.

� Conversely, we prove similarly that f(a, µx. g(f(a, x))) is a fixed point
of λy. f(a, g(y)). This yields f(a, µx. g(f(a, x))) > µy. f(a, g(y)) =
f(a, g(µy. f(a, g(y)))), and then, µx. g(f(a, x)) > g(µy. f(a, g(y))) by
monotonicity of λx. f(a, x).

The two inequalities prove the lemma.

Lemma 5 (Bekič). Let f : A × X × Y → X and g : A × X × Y → Y .
Taking h : A → X to be h(a) = µx. f(a, x, µ(g)(a, x)), the following holds
µa (x, y) . (f(a, x, y), g(a, x, y)) = λa. (h(a), µ(g)(a, h(a)))

Proof. For a : A, let us prove that (h(a), µ(g)(a, h(a))) is a fixed point of
λ (x, y) . (f(a, x, y), g(a, x, y)).

(f(a, h(a), µ(g)(a, h(a))), g(a, h(a), µ(g)(a, h(a))))
= (f(a, h(a), µ(g)(a, h(a))), µ(g)(a, h(a))) (definition of µ(g))
= (h(a), µ(g)(a, h(a))) (definition of h)

We also have that

µ (x, y) . (f(a, x, y), g(a, x, y))
= (f(a, µ (x, y) . (f(a, x, y), g(a, x, y))), g(a, µ (x, y) . (f(a, x, y), g(a, x, y))))

This allows us to test both components for being fixed points or the
corresponding function, which will suffice to conclude.

� f(a, µ (x, y) . (f(a, x, y), g(a, x, y))) > h(a): by definition of h it suffices
to show that f(a, µ (x, y) . (f(a, x, y), g(a, x, y))) is a pre-fixed point of
λx. f(a, x, µ(g)((a, x))). After tedious calculations2, it amounts to prov-
ing, calling (x0, y0) = µ (x, y) . (f(a, x, y), g(a, x, y)), that µy. g(a, x0, y) 6
y0. It is easily checked that y0 is a fixed point of λy. g(a, x0, y), which
concludes this sub-proof.

� g(a, µ (x, y) . (f(a, x, y), g(a, x, y))) > µ(g)(a, h(a)). The argument is
similar to above.

2 Sequential circuits

Adding time-sensitive gates forces to change the semantics. Sequential circuits
are not to be seen as functions from (product of) base types to base types,
but rather as functions from streams of base types to stream of base types.

2So tedious, in fact, that I ended up formalising most of this section in the Coq proof assistant
which, contrary to me, is not susceptible to calculation mistakes. Plus, I was getting lost and
could use the help. This goes to prove that for certain mathematical proofs, proof assistant can be
a productive way to develop proofs.

6

Unfortunately, the type AN of streams of a finite height domain A is not a
finite height domain in any useful way.

To be able to model feedback, a change a perspective will be needed. The
typical approach to analysis of sequential circuits with feedback is to “cut”
unit delays making their incoming wire into a special new output and their
outgoing wire into a special new input. What makes this transformation even
meaningful is the requirement that to compute a finite prefix of length n of a
circuit’s output, only a finite prefix of length n of the input is necessary. This
requirement is called causality.

2.1 Causal sets

With that in mind, it makes sense to see streams not as a whole, but as
a progression of prefixes (An)n∈N. All of the An, by virtue of being finite
products of finite height domains, are finite height domains. A causal function
can, then, be defined as a collection (fn)n∈N of functions An → Bn such that
fn+1(w · a) is of the form fn(w) · b.

To abstract over these notions, let us introduce a topos – i.e. a model of
constructive mathematics – where such a presentation of streams and causal
functions is natural.

Definition 4 (Causal sets). The topos of causal sets is the topos of presheaves over
the set of natural number with its standard ordering.

This topos has been extensively studied by Birkedal, Møgelberg, Schwing-
hammer & Støvring [2] under the name topos of trees to contribute to the
related problem of step-indexing. Their article can serve as a reference.

A causal set is, therefore, given by a family (An)n∈N of sets together
with restriction functions rn : An+1 → An. Causal functions are families
of functions (fn)n∈N such that rn(fn+1(a)) = fn(rn(a)). Streams, seen, as
above, as a progression of prefixes, form a causal set SA with (SA)n = An and
rn(w · a) = w. Causal functions, in the sense of the topos of causal set, on SA
are the same as causal arrows of streams; so that arrows in the topos of causal
sets are, indeed, a generalisation of causal functions of streams.

By analogy with streams, the sets An, constituting the causal set A, are
called the sets of prefixes of A or just prefixes of A. Since the indices of the
functions can often be inferred from the context, they will often be omitted;
for example: the compatibility of f with restrictions may be written r(f(a)) =
f(r(a)).

Topos are models of constructive mathematics, hence there is an interplay
between internal statements of the topos of causal sets which are derived using
the rules of constructive mathematics and external statements of ordinary
mathematics. Internal statements are related to external statements via the
Kripke-Joyal semantics [10, Section VI.6]: when ϕ is an internal proposition in
context Γ (Γ is a (conjunction of) causal set giving sense to the free variables of
ϕ), then for n ∈ N and αn ∈ Γn an external proposition n |= ϕ(αn) is defined.
The proposition n |= ϕ(αn) means that ϕ holds at least until and including
time n on αn. The main property being that if ϕ is provable in constructive
mathematics (usually written ` ϕ), then for all n and αn, n |= ϕ(αn). And
conversely, if ϕ is such that n |= ϕ(αn) then ϕ is internally valid.

7

2.2 Causal domains

Let us now endeavour to give an external description of internal bounded
height domain, so as to show that SA⊥ is an internal bounded height domain
for some base type A.

The ordering relation is reflexive: ` x 6 x. That is, n |= αn 6 αn for any
n and αn. In other words, a reflexive causal relation, is a family of reflexive
relations on each set of prefixes (compatible with restrictions). The same holds
for symmetry and transitivity, such that an internal ordering relation is an
ordering relation on each prefix3.

The translation of ordering relations illustrate the purpose of causal sets:
to make it possible to reason on finite prefixes of infinite data. This is, indeed,
what we were looking for, to be able to use the fact that prefixes of SA⊥

are bounded height domains. We should expect, at this point, that internal
bounded height domains are exactly those causal sets where An is a bounded
height domain for each n, which is indeed the case.

The key observation is that the casual List(A) which is the initial algebra of
the functor A×X + 1 can be defined as (List(A))n = List(An). The restriction
functions act pointwise on the elements of each list. Therefore, since subsets
are taken pointwise i.e. {x∈A | ϕ(x)}n = {x∈An | ϕn(x)}, chains internal to
the topos of causal sets are chains on prefixes (compatible with restrictions).

Thanks to this observation, the internal definition of bounded height
domain can be interpreted: bn ∈ N is a bound on the height of A at time n if
for all k 6 n, bn is a bound on the height of Ak in the ordinary sense. Since
being a bound is a monotonous property on b, an internal bounded-height
domain is a causal set with all prefixes being externally bounded-height
domains. An internal domain A has a smallest element if each of the An has
and restrictions map smallest elements to smallest elements.

Lemma 6. The causal set SA⊥ , for some ordinary set A, is a finite height domain
with a smallest element internal to the topos of causal sets.

Proof. Since the height (SA⊥)n = An
⊥ is bounded by 2n, which also bounds all

the Ak
⊥ for k 6 n. The smallest element of An is (⊥, . . . ,⊥).

As a consequence, we can build circuits as causal increasing functions
SA1⊥×. . .×SAn⊥ → SAn+1⊥

×. . .×SAp⊥
and feedback wires can be interpreted

as internal least fixed point like in Section 1. The n-th prefix of a causal
increasing function is a sequence (fi ∈ Ai → Bi)i6n each of the fi being
increasing, and such that ri(fi+1(a)) = fi(ri(a)).

What remains to be figured out is what a fixed point internal to the topos
of causal set is. The internal formula for a fixed point is f(a) = a which
translates to fn(an) = an for any n (note that f , being an internal function,
i.e. an element of AA, has prefixes (fi ∈ Ai → Ai)i6n, so fn ∈ An → An).
Therefore a is an internal fixed point if and only if it is a fixed point at each
prefix.

3The reader may be worried about the implication in the statement of symmetry and
transitivity, since the interpretation of implication is not direct in the Kripke-Joyal seman-
tics. But it doesn’t matter at “toplevel”: ` x 6 y → y 6 x translates to ∀n, αn, βn. ∀k 6
n. k |= rn−k(αn) 6 rn−k(βn) → k |= rn−k(βn) 6 rn−k(αn) which is equivalent to
∀n, αn, βn. n |= αn 6 βn → n |= βn 6 αn.

8

2.3 Lifting traces

The results of the above section, while elegant, do not demonstrate effectively
the usefulness of the topos-theoretic semantics: indeed, the treatment of the
previous section could have been carried out directly just as easily without re-
quiring topos-theoretic baggage. However, when all this material is developed,
it becomes possible to easily lift more powerful theorems directly from the
combinational semantics. Let us apply this principle to Hasegawa’s theorem
from Section 1.2.

Hasegawa’s theorem being an external statement about categories, we
will have to translate the statement (but, crucially, not the proofs) of all
four lemmas and show that they correspond to the hypotheses of Hasegawa’s
theorem. Fortunately, this is rendered easy thanks to some standard properties:
causal functions are the same as global sections 1 → BA (where 1 is the
terminal causal set: 1n is the singleton set for every n), internal equality
is interpreted as external equality, and the terms λx. x and λx. f(g(x)) are
interpreted as identity and composition, respectively. From these, we can
immediatly deduce that it makes sense to speak of a causal function which is
internally increasing, and therefore, that the causal bounded-height domains
with a smallest elements and internally increasing causal functions form a
subcategory of the topos of causal sets.

A slightly trickier property is the local fixed-point operator whose ex-
istence is proven internally. Remember that ∃x∈A. P (x) is interpreted by
∀n∈N. ∃xn∈An . P (xn) there are no connection between the xn chosen at each
n so there is not necessarily a global section 1 → A that witnesses the exis-
tential. However, when the x not only exists, but is also unique, then, since
P (xn+1)⇒ P (rn(xn+1)), then the xn necessarily respect the restriction maps
of A, hence form a global section. There is, of course, at most one local least
fixed-point map, hence, internal existence guarantees external existence of
a global section, which can be turned into an external map µ from causal
functions to causal functions.

The rest of the properties: that µ is, indeed, a local fixed-point map, that it
is natural in A and X and that it verifies Bekič’s lemma, are all universally
quantified equalities involving composition of arrows (and µ). They can be
changed into their categorical counterparts with just a bit of fiddling.

We can, therefore, conclude, with barely any proof pertaining to time, that
sequential circuits obey the laws of traced categories.

Conclusion

The topos theoretic approach to the theory of sequential circuits could be un-
folded and give rise to a semantics free of all things toposes. As I have hinted
in the course of this article, the semantics itself would not be particularly com-
plex, however proofs are significantly simpler when making use of the internal
logic of the topos (sometimes called the synthetic point of view). Proving
that sequential circuits form a traced category, for instance, almost completely
ignored the difference between sequential and combinational circuits.

This article can be seen both as a contribution to the growing body of
applications of the synthetic approach to mathematical problems, and as a

9

proposal to further the understanding of the mathematics of circuits which,
despite being a fundamental concept in computer science is still rather obscure
and hard to reason about.

I should mention that the circuits considered are partial, in that they may
return ⊥, an ill-formed value. We are really interested in total circuits which
do not; but as is the case for total recursive functions, total circuits have no
reason to be composable. Fortunately, it is reasonably easy to characterise total
circuits: there is a (natural) causal function ηA : SA → SA⊥ we say that a circuit
c : SA⊥ → SB⊥ is total if the composite function c ◦ ηA factors through ηB , i.e.
if there is c′ : SA → SB such that c ◦ ηA = ηB ◦ c′. This is straightforwardly
extended to several inputs and outputs.

Circuits are built by composition and taking a trace. Composition of total
circuits is total, only taking a trace can turn a total circuit into a non-total one.
The standard way to take a trace safely is to ensure that “somewhere on the
path” there is a delay. This condition is captured, in the topos of causal sets, by
the notion of contractivity which can be internalised and used synthetically [2].
Contractivity is an example of notion, in the internal logic of the topos of
causal sets, which goes beyond standard constructive mathematics. It, indeed,
ensures that trace can be taken safely.

What may render the synthetic approach difficult is, beyond the need to
use constructive mathematics, is the translation of a synthetic statement into
an ordinary one. It is tedious and precise, and, though it probably gets better
with training, it is hard to convince oneself no error has been made in the
process. This is where a proof assistant would be of great help, and be much
more efficient at such a task than a human. There is a prototype for the Coq
proof assistant by Jaber, Sozeau & Tabareau [7] which handles the special case
of presheaves over a preorder. It is sufficient for the topos in this article, so I
could have used it to help with the translations of Section 2. Since most of
Section 1 has already been formalised in Coq4, it is not particularly far-fetched.
However, I have unfortunately not taken time to learn how to use this tool.

To conclude, I feel I should say a few words about syntax, after spending
this article on the semantics of circuits. When working with circuits we tend
to assume that reorganising of wires preservers syntax so that the following
two composition of diagonals are equal:

=

4The formalisation can be found at the following address: https://gist.github.com/
aspiwack/628761dab886728bf4db

10

https://gist.github.com/aspiwack/628761dab886728bf4db
https://gist.github.com/aspiwack/628761dab886728bf4db

But that rearranging gates does not:

f =6
f

f

It is customary to take syntax to be a free something, and since our
semantics is a traced cartesian category, we may be tempted to take the syntax
of circuits to be the free traced cartesian category but that would identify
both sides in the latter diagram. Instead, the syntax of circuits should be the
free construction of some kind of traced categories with diagonals, where
diagonals and augmentations (wires to the empty product) have the usual
co-associativity and co-neutrality laws, but are not natural transformations.

Bibliography

[1] John C Baez and Jason Erbele. Categories in control. 2015.

[2] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kris-
tian Støvring. First steps in synthetic guarded domain theory: step-
indexing in the topos of trees. Logical Methods in Computer Science, 8(4),
2012.

[3] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Full Abstraction for
Signal Flow Graphs. ACM SIGPLAN Notices, 50(1):515–526, 2015.

[4] Thierry Coquand and Arnaud Spiwack. Constructively Finite? In
Laureano Lambán Pardo, Ana Romero Ibáñez, and Julio Rubio García,
editors, Contribuciones científicas en honor de Mirian Andrés Gómez, pages
217–230. Universidad de La Rioja, 2010.

[5] Martin H. Escardo and Thomas Streicher. The universe is indiscrete.
2013.

[6] Masahito Hasegawa. Recursion from cyclic sharing: traced monoidal
categories and models of cyclic lambda calculi. Typed Lambda Calculi and
Applications, 1997.

[7] Guilhem Jaber, Nicolas Tabareau, and Matthieu Sozeau. Extending Type
Theory with Forcing. In 2012 27th Annual IEEE Symposium on Logic in
Computer Science, pages 395–404. IEEE, June 2012.

[8] André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories.
Mathematical Proceedings of the Cambridge Philosophical Society, 119(03):447,
1996.

[9] Hai Liu, Eric Cheng, and Paul Hudak. Causal commutative arrows and
their optimization. In Proceedings of the 14th ACM SIGPLAN international
conference on Functional programming - ICFP ’09, page 35, 2009.

11

[10] Saunders Mac Lane and Ieke Moerdijk. Sheaves in geometry and logic: A
first introduction to topos theory. Springer, 1992.

[11] Sharad Malik. Analysis of cyclic combinational circuits. Proceedings of
1993 International Conference on Computer Aided Design (ICCAD), pages
618–625, 1993.

[12] Michael Mendler, Thomas R. Shiple, and Gérard Berry. Constructive
Boolean circuits and the exactness of timed ternary simulation. Formal
Methods in System Design, 40:283–329, 2012.

[13] Yann Orlarey, Dominique Fober, and Stephane Letz. Syntactical and
semantical aspects of Faust. Soft Computing, 8(9), July 2004.

12

	Combinational circuits
	Constructive domain semantics
	Traced category

	Sequential circuits
	Causal sets
	Causal domains
	Lifting traces

	Bibliography

