
Signal Rate Inference for Multi-dimensional Faust

Yann Orlarey1, Pierre Jouvelot2

1Grame, France
2MINES ParisTech, PSL Research University, France

May 30, 2016

If Faust, a functional domain-specific language dedicated to audio signal
processing, is usually viewed as a formalism for combining signal processors,
which are expressions mapping input signals to output signals, we provide
here a formal, lower-level semantics for Faust based on signals instead. In
addition to its interest in understanding the inner workings of the Faust
compiler, which heavily uses symbolic evaluation of signal expressions, this
approach turns out to be useful when introducing a language extension tar-
geting multi-rate and multi-dimensional (array-valued) processing.

We describe a signal-level, type-based semantic framework for a multi-
rate version of Faust supporting array-valued samples, including (1) syntax
and semantics for (recursive) signals, (2) type and, more interestingly, ratio-
nal rate static semantics and (3) a new rate inference algorithm, together
with its soundness and (relative) completeness theorems. Preliminary exper-
iments in a prototype implementation of this extension in the Faust compiler
are underway.

1 Introduction

Faust [13] is a domain specific language (DSL) for real-time signal processing
applications, in particular real-time audio processing. It is based on a few
core foundational principles.

Real-time signal processing. Because of its real-time target, Faust is
focused on the specification and efficient implementation of programs
based on causal computations, with bounded memory and CPU foot-
prints, and minimal latency.

1

Simple well-defined formal semantics. Faust is not intended to model
the internal behavior of systems or circuits. The only “interesting”
semantics in is the one that can observed from the outside, that is of a
continuous function that maps a tuple of time-dependant input signals
to a tuple of output signals.

High-level specification. Faust is designed to be a high-level specifica-
tion language rather than an implementation language. A key design
choice is to make a clear separation between the users’ role, in charge
of specifications, and the role of the compiler, in charge of implement-
ing them. The way the user writes a Faust program should not matter;
only its meaning should count. Ideally two different Faust programs
with the same mathematical meaning should result in the same imple-
mentation1.

Functional approach. Functional programming provides Faust with a high
level of modularity, both to compose and understand Faust programs.
Moreover it offers a very natural framework for signal processing. Perio-
dically-sampled digital signals can be modeled as functions of time.
Signal processors, which are Faust primary constituants, are second-
order functions operating on signals. Faust block-diagram algebra is a
set of third-order composition operations on signal processors. Finally,
user-defined functions are higher-order functions on block-diagram ex-
pressions.

The current version of Faust is monorate: all signals are isomorphic to
functions mappings integers (clock ticks) to (scalar) sample values. In [8], an
extension to Faust able to handle both different clocks and multi-dimensional
samples has been proposed: these clocks are rational rates which interact
with the size of the array-valued samples. When building a signal of vectors
of size n from a signal of rate r carrying scalar, integer say, samples, one
gets a signal operating at rate r/n; conversely, serializing a signal of rate r
carrying samples that are vectors of size n, the resulting signal has a rate
rn. The overall purpose of this paper is to describe how this framework can
be handled within the Faust compiling infrastructure, while maintaining the
general design principles sketched above.

To fulfill its ambitious goals, the Faust compiler uses intricate optimiza-
tion techniques based on a blend of symbolic evaluation and abstract inter-
pretation approaches. Instead of using Faust signal processors directly as

1Such a requirement is obviously undecidable in general, but this does not preclude
the Faust compiler from making its best effort to attain it.

2

its core data structure to compile user code, it uses an intermediate repre-
sentation (Faust IR) based on signal expressions. Basically, a Faust signal
processor is first converted to a tuple of signal expressions during a phase
of symbolic propagation performed in the compiler front-end. For example,
the signal processor

+ abs

process

process = + : abs ;

expects two (the arity of +) inputs, sums them and feeds the result (via
the combinator :) to the absolute value signal processor. This Faust sig-
nal processor expression is converted into the Faust IR signal expression
⟨abs(I0 + I1)⟩ after propagating the tuple of input signals ⟨I0, I1⟩; as ex-
plained below, input signals are members of the dedicated domain I of iden-
tifiers.

New tuples X of signal identifiers Xi are introduced, together with their
definitions D(X) as tuples of signal expressions, when ~-recursive expres-
sions occur in Faust. For instance, the signal processor

+

process

process = + ~ _ ;

both outputs a signal S and feeds back (via the _ identity signal processor)
this same S, after a one-sample delay, as the first argument of the + signal
processor. This signal processor expression is converted to the signal expres-
sion X0, together with the binding D(X) = ⟨X0@1 + I0⟩ where X = ⟨X0⟩,

3

after propagating the tuple of input signals ⟨I0⟩. A more complex example,
introducing vector features, is given, in a graphical representation actually
generated by the Faust compiler, in Figure 2.

In this paper, we provide the following contributions:

• a formal definition of Faust IR, extended to handle the multi-rate
framework proposed in [8];

• a new definition of multi-rate signals, based on a rational model of its
clocking mechanism;

• a rate inference algorithm, for which both soundness and (relative)
completeness theorems are specified and proven;

• a prototype implementation of this algorithm in a experimental multi-
rate version of Faust.

In Section 2, we describe a proposal for multi-rate signals that use ra-
tional clocks. A multi-rate Faust IR based on typed and rated signals is
introduced in Section 3, together with a clocked semantics and a Rate Sub-
ject Reduction property. We provide a set of type and rating rules adapted
to multi-rate signals in Section 4 for which we state a (value) Subject Re-
duction property. The core of the paper is Section 5 where we describe
our new rate inference algorithm, together with its soundness and (relative)
completeness theorems. We briefly report on the related work in Section 6
and discuss possible future work in Section 7 before concluding.

2 Multi-rate, multi-dimensional signals

Here we are interested in periodically-sampled, multi-dimensional signals.
We consider sampled signals as approximations of continuous signals, and
we want to express signals sampled at various rates, but also signals with
multi-dimensional sample values (that is not only signals of numbers, but
also signals of fixed-size vectors of numbers, fixed-size vectors of fix-size
vectors of numbers, etc.).

In the following paragraphs we will define more precisely the notions of
time, sample value and signal we are interested in.

2.1 Signal

We can define a multi-rate, multi-dimensional signal as a function from a
periodic time domain Tr (see next section) to a set of multi-dimensional

4

sample values V extended with a distinguished zero value noted 0V (see
Section 2.2.1 below for an explanation).

Definition 1 (Multi-rate, multi-dimensions signals). A multi-rate, multi-
dimensional signal s is a function of time, from a periodic time domain Tr

to a set of multi-dimensional sample values V or 0V:

s : Tr → V ∪ {0V} .

Definition 2 (Simplified notation). To simplify the notation of signal types
we will use the following abbreviation:

Vr = Tr → V ∪ {0V} .

Sample values in V can be numbers (integers or floating-points) or fixed-
size vectors of samples. These values are structurally typed, with a type in
the domain T (see Section 4). Moreover numbers can be restricted to belong
to an interval [l, h], where l and h are either integers or reals depending of
the considered type.

2.2 Periodic time domain

In order to capture the idea of a sampled signal with a specific sampling rate
we introduce the concept of periodic time domain, notated Tr. The idea is
to “sample” the continuous time domain R with a periodicity represented
by a rate r.

Definition 3 (Periodic time domain). The periodic time domain Tr is the
set of values corresponding to the periodic r-sampling of the continuous time
domain R, i.e.,:

Tr = { i
r
| i ∈ Z}, r ∈ Q∗ .

Here are some examples of time domains:

T1 = {. . . ,−2,−1, 0, 1, 2, . . . };
T2 = {. . . ,−1,−0.5, 0, 0.5, 1, . . . };

T1/3 = {. . . ,−6,−3, 0, 3, 6, . . . }.

Time domains have the following properties, for all r ∈ Q∗ and n ∈ N∗:

Tr = T−r ;

Tr ⊆ Tnr ;

0 ∈ Tr .

5

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

t : T1

1
(t
)

Figure 1: Constant signal 1: int[1, 1]1

2.2.1 Negative time

The values of signals are usually needed starting from time 0. But to take
into account delay operations, negative times are always mapped to zeros.
In operational terms, this corresponds to assuming that all delay lines are
signals initialized with 0s.

Definition 4 (Negative time). The value of a signal s : Vr is always 0V
when t < 0:

∀t : Tr, t < 0 =⇒ s(t) = 0V .

2.2.2 Constant signal

Because of Definition 4, a constant signal is usually not constant on its whole
time domain, but only on its positive half. For example, for 1: int[1, 1]1 and
t ≥ 0, we have 1(t) = 1, but, if t < 0, one has 1(t) = 0N (see Figure 1).

Definition 5 (Constant signal). A signal s : Tr is constant iff

∀t1, t2 ∈ Tr, t1 ≥ 0 and t2 ≥ 0 =⇒ s(t1) = s(t2) .

3 Signal expressions

This section introduces the language of signal expressions that form the basis
of Faust IR. We describe its syntax, semantics, including its new multi-rate
and multi-dimensional features.

6

3.1 Syntax

Definition 6 (Signal expression). A signal expression (E,D) in S, resulting
from the phase of symbolic propagation, is defined by the following abstract
syntax:

E ∈ S ::= k | f | In | Xi

| E1 ⋆ E2 | E1@E2 | E ↑n| E ↓n
| v(E,n) | s(E) | E1#E2 | E1[E2]

(1)

where all recursively-defined tuple lists of identifiers X = ⟨X0 . . . Xn−1⟩ are
bound in D, such that:

D(X) = ⟨E0E1 . . . En−1⟩ (2)

for some number n ∈ N+ of recursively-defining expressions Ei.

In the previous definition, we assume that:

- k : int[k, k]1 is a constant integer signal;

- f : float[f, f]1 is a constant float signal;

- In represents an external input signal;

- Xi, with D(X) = ⟨E0E1 . . . En−1⟩, represents the signal Ei of a group
of mutually recursive signals;

- E1 ⋆ E2 is a generic numerical operation on two signals;

- E1@E2 is a variable delay operation;

- E ↑n is an up-sampling by a factor n ∈ N+;

- E ↓n is a down sampling by a factor n ∈ N+;

- v(E, n) is a vectorization operation of size n ∈ N+;

- s(E) is a serialization of a vector signal;

- E1#E2 is a concatenation of two vectors;

- E1[E2] is an access to the element of index E2 of the vector-valued
signal E1.

7

As can be noticed, even though signal expressions can be recursive, the
language S is in fact closer to Kleene’s primitive recursive functions [9] or
recurrence equations than to a standard functional programming language.
In fact, Faust functional status is mostly embedded in its higher-level, macro
subsystem; all higher-order expressions expressed there are evaluated, at
compile time, to generate signal expressions in S, which are studied in this
paper.

3.2 Semantics

We assume that all expressions are decorated with a rate information E(r);
how to get this information is the main purpose of this paper and is explained
below.

We define the semantics Sa(E(r), D) of a signal expression E of rate r
with recursive definitions D (we omit D when not needed in the equations
below) via a higher-order function from an input environment a, mapping
input identifiers to signals, and a positive time in Tr to values

2 in some V′
⊥V′ ,

with V′ = V∪{0V}; as mentioned above, all signal samples for negative times
in Tr have the appropriate 0V value.

The denotational semantics of a signal expression E(r) based on rational
clocks is defined as

λt.Sa(E(r))t, if t ∈ Tr, and ⊥V otherwise ,

where S is defined as

Sa(k)t = k

Sa(f)t = f

Sa(In) = a(In)

Sa(Xi, D)t = Sa(πi(D(X)))t

Sa(E1 + E2)t = s1(t) + s2(t)

Sa(E1@E2)t = s1(t− s2(t)/r)

where we note si(t) = Sa(E
(ri)
i)t and πi is the i-th projection operator on

2As usual, a partially-ordered domainX⊥X is defined for every setX, such that ⊥X ⊏ x
for all x ∈ X. A partial function f defined over X and with values in Y can thus be
seen as a total function from X to Y⊥Y ; its domain of definition Dom(X) is defined as
{x ∈ X | f(x) ̸= ⊥Y }.

8

lists. The multi-dimensional-specific features are defined as

Sa(E1 ↑n)t = s1(⌊tr1⌋/r1)
Sa(s(E1))t = s1(⌊tr1⌋/r1)[mod(rt, n)]

Sa(E1 ↓n)t = s1(t)

Sa(v(E1, n))t = [s1(t− (n− 1)/r1), ..., s1(t− 1/r1), s1(t)]

Sa(E1#E2)t = s1(t)#s2(t)

Sa(E1[E2])t = s1(t)[s2(t)]

3.3 Discussion

There are a couple of unusual features in the semantics we just introduced.
First, note that the recursive signals as defined here are non-causal: nothing
prevents meaningless expressions (E,D) such as (⟨X0⟩,⊥[X → ⟨X0 + 1⟩]).
In practice, the Faust compiler always adds an explicit 1-sample delay in
recursive definitions, yielding expressions such as ⟨X0⟩,⊥[X → ⟨(X0@1) +
1⟩]). Figure 2 provides an example of the introduction of these explicit
delays on feedbacks, on a different example. In the sequel, we will always
assume that signal expressions are syntactically causal, along the scheme
just presented.

Second, the creation of vectors via the vectorize v construct is designed
to minimize latency, a key issue in audio processing. In Faust multi rate,
compiled to the signal language presented here, as soon as a single input
sample is available, it is padded with 0s and an almost empty vector is
output. The vectorize construct semantics is illustrated in Figure 3 (some
information regarding a possible implementation of vector operations is pro-
vided in Figure 4). This unusual initialization process is designed to ensure
the following properties.

Proposition 7 (Vector Commutation Properties). The signal semantics S
ensures that:

• vectorize(n):serialize = @(n-1);

• vectorize(1):serialize = _.

Finally, the upsampling operation does not introduce 0-padding as is of-
ten done in the literature. As described above, our model keeps the sample
value constant between each time tick. Informally, we view the up- and down-
sampling operations as performing “focus-varying” approximations over an
(ideal) continuous function representing the “actual” signal, viewed as the

9

��������� ��������
���

�
������

�����

������

�

������ ������

�

������

���������

������

��

��

�������
���

������

�
��

� ��

Figure 2: process = vectorize(10,_) : +~_ : serialize;

9 8 7 6 5 4 3 2 1 5

6

7

2

3

4

0

0

1

vectorize
3

… 8 7 6 5 4 3 2 1 0… 8 7 6 5 4 3 2 1 0

Figure 3: Vectorization by 3

10

-2 -1 0 1 2 3 4 5 6

x 0 0 x(0) x(1) x(2) x(3) x(4) x(5) x(6)

V[0]:=0 V'[0]:=x(1) V[0]:=x(4)

fill V[1]:=0 V'[1]:=x(2) V[1]:=x(5)

V[2]:=x(0) V'[2]:=x(3) V[2]:=x(6)

V[0] V'[0] V[0]

V[1] V'[1] V[1]

V[2] V'[2] V[2]

V[0] V[1] V[2] V'[0] V'[1] V'[2] V[0]

0 0 x(0) x(1) x(2) x(3) x(4)

Vectorize(x,3)

Serialize(Vectorize(x,3))

Serialize(Vectorize(x,n)) = @(x,n-1)
Serialize(Vectorize(x,1)) = @(x,0) = x

Figure 4: How vectorize is implemented

limit of a family of step functions, i.e., constant over intervals. Perform-
ing upsampling this way has the advantage, as we will see, of keeping the
upsampled types tight, without having to performing a least upper bound
operation with a zero type to accommodate for 0-padding.

4 Typing rules

Types and rates of signal expressions are defined by a set of rules Γ ⊢
(E,D) : Tr indicating how to compute the type Tr of a signal expression
E with recursive definitions D according to a signal type environment Γ
storing type hypothesis for each input and recursive signal.

4.1 Types

Definition 8 (Sample types). The type domain T for sample values is
defined recursively by the following syntax:

T ::= int[l, h] | float[l, h] | [n]T ,

where, informally, types denote the set of values they abstract.
Signals are associated to types derived from the type of their sample

values. We note Tr the type of a signal that maps the time domain Tr to
sample values of type T. This way, a signal in Vr has type Tr.

Definition 9 (Type model). Each sample type T is associated to the set of
values M(T) it denotes, defined inductively as:

11

• {n ∈ Z | l ≤ n ≤ h}, if T = int[l, h];

• {r ∈ R | l ≤ r ≤ h}, if T = float[l, h];

• {(v0, ..., vn) | vi ∈ M(T1)}, if T = [n]T1, i.e., the set of fixed-size
vectors of n > 0 elements in M(T1).

Note that our interval calculus does not allow for undefined values to
occur. It is customary in other languages to assume that a type does not
preclude the appearance of undefined values (denoted by the ⊥V symbol
in the language semantics above). Our type system is designed to ensure,
at compile time, that such “values” cannot occur in an actual well-typed
signal expression; the function it denotes is always total. For instance, a
signal expression trying to perform a division operation with a signal of
divisors of sample type int[−2, 2] will be rejected by the type checker3.

Definition 10 (Zero type). Each sample type T has an associated zero type,
notated 0T, and defined by the following rules:

0int[l,h] = int[0, 0] ;

0float[l,h] = float[0.0, 0.0] ;

0[n]T = [n]0T .

When V represents the set of sample values denoted by a type T, we
know 0V has also type 0T.

Definition 11 (Type operations). The type domain supports type opera-
tions that are either (1) extensions of usual arithmetic operations or (2) a
least-upper bound operation ⊔. For a generic type operator ⋆ and N,N ′ ∈
{int, float}, they are defined by the following rules:

int ⊔ float = float ;

[l, h] ⊔ [l′, h′] = [min(l, l′),max(h, h′)] ;

N [l, h] ⋆ N ′[l′, h′] = (N ⊔N ′)([l, h] ⋆ [l′, h′]) ;

[n]T ⋆ [n]T′ = [n](T ⋆ T′) .

under the sole conservative constraint that, for any arithmetic operator ⋆,
[l, h] ⋆ [l′, h′] = [L,H] such that, for all x ∈ [l, h] and x′ ∈ [l′, h′], the value
of x ⋆ x′ is in [L,H]. Note that total arithmetic type operations are thus
always definable, using the worst-case definition [l, h] ⋆ [l′, h′] = [−∞,+∞].

3Faust users can always introduce explicit min and/or max operations to explicitly
bound intervals to make such functions total.

12

4.2 Signal type environment Γ

Definition 12 (Signal-type environment). A signal type environment Γ is
used to store type hypotheses for incoming signals. It maps each mutually
recursive signals Xi and each input signal In to an appropriate signal type
Tr:

Γ(Xi) = N [l, h]r, N ∈ {int, float} ;

Γ(In) = float[−∞,+∞]r ,
(3)

and, in each binding, for some appropriate N, l, h and r. Note how scalar
rates are annotated with a value interval. This information is crucial to en-
sure that Faust expressions can be compiled with a statically-known memory
footprint, in particular when handling delay lines. This information is also
used to ensure that vector operations are safe: the size information used to
create them is know at compile time, while array accesses are known to be
within array bounds. As we can see, only scalar signal types can be assigned
to input signals. This means that communications with the outside world
are limited to scalar signals (this scalar property is also checked for the
resulting signals), and that vectors can only be communicate in serialized
form.

While the full audio range is often represented by the interval [−1.0,+1.0]
in practice, this restriction is not enforced in Faust and signals can make
use of the full floating point range [−∞,+∞].

Mutually recursive signals can be seen as additional scalar inputs and
outputs, where each output is connected to the corresponding input via a 1-
sample delay. The type and rate of the corresponding input and output must
be the same. Even though our algorithm could probably handle arbitrary
types on recursive signals, we indeed believe that taking a simpler approach
is granted in the type of audio applications we envision.

4.3 Typing rules

The signal typing rules Γ ⊢ (E,D) : Tr are provided below by induction on
E. Since D is seldom used, we note E the pair (E,D) when D is not used
locally in a given rule.

Definition 13 (Constant signals typing rules).

Γ ⊢ k : int[k, k]1
(Int)

Γ ⊢ f : float[r, r]1
(Float)

13

Definition 14 (Input and recursive signals).

Γ ⊢ In : Γ(In)
(Input)

Γ ⊢ (Ei, D) : Γ(Xi) D(X) = ⟨E0E1 . . . En−1⟩ i ∈ [0, n− 1]

Γ ⊢ (Xi, D) : Γ(Xi)
(Recursive)

Definition 15 (Numerical operations on signals).

Γ ⊢ E1 : T
r
1 Γ ⊢ E2 : T

r
2 T = T1 ⊔ T2

Γ ⊢ E1 ⋆ E2 : Tr
(Op)

Definition 16 (Delay operation).

Γ ⊢ E1 : T
r
1 Γ ⊢ E2 : int[k1, k2]

r 0 ≤ k1 ≤ k2
Γ ⊢ E1@E2 : (T1 ⊔ 0T1)

r
(Delay)

Definition 17 (Up and Down sampling).

Γ ⊢ E : Tr

Γ ⊢ E ↑n: Tnr
(Up)

Γ ⊢ E : Tnr

Γ ⊢ E ↓n: Tr
(Down)

Definition 18 (Vectorize and Serialize).

Γ ⊢ E : Tnr

Γ ⊢ v(E, n) : [n]Tr
(Vectorize)

Γ ⊢ E : [n]Tr

Γ ⊢ s(E) : Tnr
(Serialize)

Γ ⊢ E1 : [n]T
r
1 Γ ⊢ E2 : [m]Tr

2 T = T1 ⊔ T2

Γ ⊢ E1#E2 : [n+m]Tr
(Concat)

Γ ⊢ E1 : [n]T
r
1 Γ ⊢ E2 : int[k1, k2]

r 0 ≤ k1 k2 < n

Γ ⊢ E1[E2] : Tr
1

(Access)

Definition 19 (Type/rate-correct signal expression). A signal expression
(E,D) is said type/rate-correct iff there exist Γ, T and r such that Γ ⊢
(E,D) : Tr.

14

Definition 20 (Signal type). A signal s is said to have type Tr, noted s : Tr,
iff, for all t ∈ Tr, one has s(t) ∈ M(T).

Proposition 21 (Subject Reduction). Assume a causal and type/rate-correct
signal expression (E,D) such that Γ ⊢ (E,D) : Tr. Then:

• Tr ⊆ Dom(Sa(E(r)));

• and, if a(In) : Γ(In) for all input signals In, then Sa(E(r)) : Tr.

4.4 Sample-type inference

In all signal typing rules above but one, sample types and rates are indepen-
dent. The only one that creates a dependence is (Serialize); the size of the
vector of the incoming signal is needed to compute the rate of the output
signal. Therefore, we can infer first the sample-types independently, and
then the rates, once the type information is available. In this section, we
will rewrite the typing rules by separating the sample-types and the rates,
in a two-step process.

First, a new, simpler type environment, noted Ω = Ω(Γ), is derived from
Γ; it is just a mapping that associates to each x in the domain of Γ the value
type T, discarding the rate information r present in Γ(x) = Tr.

Second, the sample-type rules are defined as just the signal typing rules of
Section 4 where rate information is erased. In each rule, all typing judgments
Γ ⊢ (E,D) : Tr are replaced by Ω ⊢ (E,D) : T.

Lemma 22 (Sample Type Consistency). If Γ ⊢ (E,D) : Tr, then Ω(Γ) ⊢
(E,D) : T.

Proof. Trivial. Since the datatypes of signal values do not depend on
rates, removing rate information doesn’t prevent data-only type checking to
proceed.

With this two-step approach, the role of the straightforward sample-type
inference algorithm (not presented here) will just be to compute a sample
type environment Ω for any given signal (E,D).

5 Rate inference

Starting with a tuple of expressions L = ⟨E0, E1, . . .⟩ that share a common
recursive definition environment D and which, typically, represent the out-
put signals of a Faust program, the rate inference algorithm is a three-stage
process that

15

L
I0 I1 I2

E1E0

L
I0 I1 I2

E1E0

D

R1 R2 R3

R1 R2 R3

Figure 5: Extending L = ⟨E0, E1⟩ with its recursive subexpressions

• extends L with all the recursive subexpressions that can be reached,

• infers a rate environment ∆i for each expression Ei of the extended L,

• and forms ∆ by combining the ∆i together.

5.1 Rate environments

Definition 23 (Rate environment). A rate environment ∆ is a mapping
that associates to some input signal In and mutually recursive signal Xi a
rate r.

Definition 24 (Joinable environments). Two environments ∆1 and ∆2 can
be joined, written ∆1 ≃ ∆2, iff

∀x ∈ Dom(∆1) ∩Dom(∆2), ∆1(x) = ∆2(x) . (4)

Definition 25 (Union of joinable environments). The union of two joinable
environments ∆1 and ∆2 is written ∆1 ∪∆2. The resulting environment is
such that:

Dom(∆1 ∪∆2) = Dom(∆1) ∪Dom(∆2) ;

(∆1 ∪∆2)(x) =

{
∆1(x), if x ∈ Dom(∆1)
∆2(x), if x ∈ Dom(∆2) .

(5)

Definition 26 (Scaled environment). We define n∆ as the environment ∆
scaled by an integer factor n, i.e., such that:

Dom(∆) = Dom(n∆) ;

∀x ∈ Dom(∆), (n∆)(x) = n∆(x) .
(6)

16

Definition 27 (Rate-scalable expressions). A typable expression E is rate-
scalable, written Adj(E), if one can scale its rate r by scaling its environment,
i.e., for all signal type environments Γ and type T:

Γ ⊢ E : Tr ⇒ nΓ ⊢ E : Tnr , (7)

where the notion of rate environment scaling is straightforwardly extended
to signal type environments Γ. The idea behind rate-scalable expressions is
that some signals can have their rate adjusted, i.e., properly scaled, when the
context in which they are used requires it, and others don’t. For instance,
X1 ↓3 +2 cannot see its rate, here 1 (constants have a fixed rate of 1),
modified, while X1 ↑2 +I0, whose rate only depends on the ones of X1 and
I0, can indeed be adapted if these do have to change. Our algorithm will
take advantage of such flexibility whenever possible.

Proposition 28. The recursive identifiers Xi and inputs In are rate-scalable.
Expressions E ↓n, E ↑n, v(E, n) and s(E) are also rate-scalable, as are
binary expressions, when, recursively, E is rate-scalable.

Definition 29 (Rate-fix expressions). A typable expression E is said to be
rate-fix, written Fix(E), if it is not rate-scalable:

Fix(E) = ¬Adj(E) . (8)

Definition 30 (Uniform rate environment). A rate environment ∆ is said
uniform iff all x in Dom(∆) have the same rate-scalability in ∆, ∆(x).

Environments of identifiers that are all rate-scalable are decorated with
a rate-scalability of 1: ∆1. For rate-fix expressions, the environment will be
decorated with a 0 value: ∆0.

Proposition 31. In the sequel, all rate-scalable rate environments are uni-
form.

5.2 Combining rate environments

Definition 32 (Independent rate environments). Two rate environments
∆1 and ∆2 are independent iff

Dom(∆1) ∩Dom(∆2) = ∅ . (9)

Definition 33 (Dependent rate environments). Two rate environments ∆1

and ∆2 that are not independent are called dependent and thus satisfy the
following equation:

Dom(∆1) ∩Dom(∆2) ̸= ∅ . (10)

17

Definition 34 (Rate environment addition). The addition ∆v1
1 +∆v2

2 of two
dependent environments ∆v1

1 and ∆v2
2 is recursively defined according to the

following cases:

x ∈ Dom(∆1) ∩Dom(∆2) ri = ∆i(x) m = lcm(r1, r2) (mr1)
v1∆1 ≃ (mr2)

v2∆2

∆v1
1 +∆v2

2 → ((mr1)
v1∆1 ∪ (mr2)

v2∆2)v1v2

(11)

Basically, if there is an identifier x in the intersection of the ∆i, we need to be
sure they provide the same rate to x, to allow the ∆i to be combined together.
If one of these environments is fixed (vi = 0), we just have to recover the
rate associated to x there, namely ∆i(x). However, if one environment (or
both) is rate-scalable, we have more leeway, and can scale them to ensure
they provide the same rate; we pick here the lcm(r1, r2) to be this common
rate.

Two comments are warranted about this important rule. First, note that
the above definition is well-formed; the exact choice of x in the rules above
has no impact on the end result, since all rate environments are uniform, and
so rates will be modified always in the same way. Second, even though the
least common multiplier operation is usually applied to natural numbers, we
use here its extension to rationals (see, e.g., [15]), where lcm(n1/p1, n2/p2) =
lcm(n1, n2)/gcd(p1, p2). The important aspect here is that the ratio of such
a least common multiplier with its ni/pi arguments is always a natural
number.

Lemma 35. The addition of two rate environments ∆v1
1 + ∆v2

2 defined by
the rule above is a (1) commutative and (2) associative operation.

Proof.

1. Commutativity is obvious, since ≃ is an equivalence relation

2. Associativity is a direct consequence of the associativity of the op-
erators used to define rate environment addition: multiplication on
rates, product of rate-scalabilities, set intersection and union, and lcm
operation on rationals. .

The domain of dependent rate environments is thus a commutative semi-
group for addition.

18

5.3 Local rate inference rules

The rate inference algorithm described here uses a set of rules

E,Ω → ⟨∆v, r⟩

that express how to compute, for an expression E and sample-type environ-
ment Ω, a compatible rate environment ∆, with its rate-scalability v, and a
so-called local rate r. They are called local since they don’t handle recursive
signals, which is addressed in a subsequent phase. As usual, Ω is omitted
when not needed locally.

Note that our algorithm infers, from rates for constants, inputs and
recursive signals that are assumed to be integers, rates that are also integer,
and not rational, as introduced above. Also, to show the flexibility of our
approach, we fixed the rate variability of constants to 0 and the ones of
identifiers to 1; this could easily be further parametrized by introducing a
rate variability environment, for instance to include fixed-rate input signals.

Proposition 36. If E,Ω → ⟨∆1, r⟩, then E is rate-scalable.

Definition 37 (Rules for numbers). All numbers are of fixed rate 1. We
note ⊥ the environment with an empty domain.

k → ⟨⊥0, 1⟩
(Int)

f → ⟨⊥0, 1⟩
(Float)

Definition 38 (Rules for inputs). All inputs, actual inputs but also inputs
of recursive signals, are of rate-scalable rate, initially 1.

In → ⟨⊥[In → 1]1, 1⟩
(Input)

Xi → ⟨⊥[Xi → 1]1, 1⟩
(Recursive)

Definition 39 (Rules for up-sampling and serialize).

E → ⟨∆v, r⟩
E ↑n→ ⟨∆v, nr⟩

(Upsampling)

Ω ⊢ E : [n]T E → ⟨∆v, r⟩
s(E) → ⟨∆v, nr⟩

(Serialize)

19

Definition 40 (Rules for down-sampling and vectorize). Note the “-var”
rule variants below are compatible with their non-“-var” versions; determin-
ism is thus preserved.

E → ⟨∆v, nr⟩
E ↓n→ ⟨∆v, r⟩

(Down)

E → ⟨∆1, r⟩ m = lcm(n, r)

E ↓n→ ⟨(mr ∆)1,m/n⟩
(Down-var)

E → ⟨∆v, nr⟩
v(E,n) → ⟨∆v, r⟩

(Vectorize)

E → ⟨∆1, r⟩ m = lcm(n, r)

v(E, n) → ⟨(mr ∆)1,m/n⟩
(Vect-var)

Definition 41 (Rules for monorate binary signal expressions). To handle
in a general way binary expressions that force their subexpressions to have
the same rate, we introduce, for the sake of simplicity, a generic monorate
pairing operator between signal expressions, typed with a pair of types.

(E1, E2) → ⟨∆v, r⟩
E1 ⋆ E2 → ⟨∆v, r⟩

(Op)

(E1, E2) → ⟨∆v, r⟩
E1@E2 → ⟨∆v, r⟩

(Delay)

(E1, E2) → ⟨∆v, r⟩
E1#E2 → ⟨∆v, r⟩

(Concat)

(E1, E2) → ⟨∆v, r⟩
E1[E2] → ⟨∆v, r⟩

(Access)

Definition 42 (Rules for pairs of expressions). General rule for a monorate
pair of expressions (E1, E2).

Ei → ⟨∆vi
i , ri⟩ ∆′

i = ∆i[o → ri] ∆′v1
1 +∆′v2

2 → ∆v

(E1, E2) → ⟨∆v
/o,∆(o)⟩

(Pair)

where ∆′
i introduces o as a free identifier not in the domain of any of the

∆i; here, one can think of o as a proxy for the result. Since it is used in
the correctness proof, but serves no other purpose, it is removed in the end
result environment (∆/x is identical to ∆, except it is undefined for x).

20

5.4 Soundness

Definition 43 (Well-typed Mapping). A recursive mapping D is well-typed
in Γ, written Γ ⊢ D, iff, for all X ∈ Dom(D) and i ∈ [0, length(D(X))− 1],
one has Γ ⊢ (Ei, D) : Γ(Xi).

Definition 44. A pair (Ω,∆) is included into Γ, written (Ω,∆) ⊏ Γ, iff, for
all x in Dom(∆), one has Γ(x) = Ω(x)∆(x).

Lemma 45. If (Ω,∆1 ∪∆2) ⊏ Γ, then (Ω,∆i) ⊏ Γ.

Proof. By definition.

Theorem 46 (Local Rate Inference Soundness). Assume that, for some
integer p, we have

• Ω ⊢ (E,D) : T,

• (E,Ω) → ⟨∆v, r⟩,

• (Ω, pv∆) ⊏ Γ,

• and Γ ⊢ D.

Then, Γ ⊢ (E,D) : Tpvr.

This is the first of the main theorems of this paper. Assume we have a
signal expression E that includes recursive signals kept into the mapping
D. Moreover, we assume that E, together with D, is properly sample-typed,
i.e., it has a ”standard” type T in some “standard” sample type environment
Ω. Assume also that, when performing rate checking on (E,Ω) via the →
relation, we derived some rate environment ∆ and related rate-scalability v,
together with a rate r for Signal E. Then, two cases can occur.

• Either v = 0, in which case pv = 1, and thus we also assume that
(Ω,∆) is compatible with, i.e., included into, some signal environment
Γ (which includes rate information for identifiers), with which more-
over D can be also properly typed.

• Or v = 1, in which case, since ∆ is rate-scalable, for any scaled en-
vironment p∆, we suppose we can also assume all the (Ω, p∆) are
compatible with Γ, and that D is properly typed.

Then, under all these assumptions, the theorem states that E with D has,
in addition to Type T, indeed Rate r (or any pr, if v = 1) in the type and
rate environment Γ. The rate inference algorithm is thus sound.
Proof. By induction on E and case analysis.

21

Numbers. Trivial, with the (Int) and (Float) typing rules, since v = 0,
∆ = ⊥ and r = 1.

Input. We have ⟨∆v, r⟩ = ⟨⊥[In → 1]1, 1⟩.
By definition of ⊏ with v = 1, we know Γ = Γ0[In → float[−∞,+∞]p]
for some Γ0. Since v = 1 and r = 1, we have Tpvr = Ω(In)

p =
float[−∞,+∞]p. We thus get the conclusion by the (Input) typing
rule.

Recursive. We have ⟨∆v, r⟩ = ⟨⊥[Xi → 1]1, 1⟩.
By definition of ⊏ with v = 1, we know Γ = Γ0[Xi → Ω(Xi)

p] for
some Γ0. Since, moreover, r = 1, we have Tpvr = Ω(Xi)

p. Also, since
Γ ⊢ D, we know that for all X ∈ Dom(D) and Xi ∈ Dom(X), one has
Γ ⊢ Ei : Γ(Xi). Thus, by application of the (Recursive) typing rule,
we deduce that Γ ⊢ Xi : Γ(Xi), yielding the conclusion.

Upsampling. We have E = E′ ↑n and ⟨∆v, r⟩ = ⟨∆v, nr′⟩, with E′ →
⟨∆v, r′⟩.
By the (Up) sample typing rule, Ω ⊢ E : T implies that Ω ⊢ E′ : T.
Thus, by induction, we get Γ ⊢ E′ : Tpvr′ .

By the (Up) typing rule, we then get Γ ⊢ E : Tnpvr′ . Since r = nr′,
then, we obtain the conclusion.

Serialize. We have E = s(E′) and ⟨∆v, r⟩ = ⟨∆v, nr′⟩, with E′ → ⟨∆v, r′⟩
with Ω ⊢ E′ : [n]T′.

By induction, we get Γ ⊢ E′ : [n]T′pvr′ .

By the (Serialize) typing rule, we then get Γ ⊢ E : T′npvr′ . Since
r = nr′, then, we obtain the conclusion Γ ⊢ E : T′pvr.

Down. We have E = E′ ↓n and ⟨∆v, r⟩ such that E′ → ⟨∆v, r′⟩ and r′ = nr.

By the (Down) sample typing rule, Ω ⊢ E : T implies that Ω ⊢ E′ : T.
Thus, by induction, we get Γ ⊢ E′ : Tpvr′ .

By the (Down) typing rule, since Tpvr′ = Tpvnr, we then get Γ ⊢ E :
Tpvr, yielding the conclusion.

Down-var. We have E = E′ ↓n and ⟨∆v, r⟩ = ⟨(mr′∆
′)1,m/n⟩ such that

E′ → ⟨∆′1, r′⟩ and m = lcm(n, r′). We also assume that (Ω, p∆) ⊏ Γ,
since v = 1.

22

By the (Down) sample typing rule, Ω ⊢ E : T implies that Ω ⊢ E′ : T.
Thus, by induction on E′, with pm

r′ as p′ and v′ = 1 in this inductive

step, we get Γ ⊢ E′ : Tpm
r′ r

′
, i.e., Γ ⊢ E′ : Tpm.

By the (Down) typing rule, we then get Γ ⊢ E : Tpm/n, yielding the
conclusion.

Vectorize and Vect-var. Use the same reasoning as for (Down) and (Down-
var).

Binary expressions. Direct consequence of the proof for pair of expres-
sions.

Pair of expressions. We have E = (E1, E2) and E → ⟨∆v
/o, r⟩ such that

Ei → ⟨∆vi
i , ri⟩, ∆′v1

1 +∆′v2
2 → ∆v and r = ∆(o). We proceed by case

on the pair (v1, v2). Note that the removal of Identifier o from ∆ has
no influence on the induction steps taken in the proof below, since they
are irrelevant in the typing of Ei.

(0, 0). By definition of the rate environment addition, we have ∆v =
(∆′

1 ∪ ∆′
2)

0 with ∆′
1 ≃ ∆′

2. Thus, for all x in Dom(∆′
1) ∩

Dom(∆′
2) and thus o, one has ∆(x) = ∆′

1(x) = ∆′
2(x). This

entails r1 = ∆′
1(o) = ∆′

2(o) = r2.

By induction, since (Ω,∆′
1 ∪∆′

2) ⊏ Γ implies (Ω,∆′
i) ⊏ Γ and

thus (Ω,∆i) ⊏ Γ, we have Γ ⊢ Ei : T
ri
i . Thus, with r1 = r2 =

∆(o) and T = (T1,T2), we get the conclusion Γ ⊢ E : Tr.

(0, 1). We have ∆v = (∆′
1 ∪ n∆′

2)
0, for n = m/r2.

Here, one can show, similarly as above with ∆′
1 ≃ n∆′

2, that
r1 = nr2.

By induction, since (Ω, (∆′
1 ∪n∆′

2)) ⊏ Γ implies (Ω, nvi∆′
i) ⊏ Γ

and thus (Ω, nvi∆i) ⊏ Γ, we have (using p2 = n) that Γ ⊢ Ei :
Tniri
i with ni = nvi . Thus, with n0r1 = n1r2 = ∆(o) and T =

(T1,T2), we get the conclusion Γ ⊢ E : Tr.

(1, 0). This is the symmetrical case of the previous one.

(1, 1). Here, r = ∆(o) = lcm(r1, r2). The rate addition rule ensures that
∆v = (r

r1
∆′

1 ∪ r
r2
∆′

2)
1.

Since (Ω, p∆) ⊏ Γ implies (Ω, p r
ri
∆′

i) ⊏ Γ and thus (Ω, p r
ri
∆i) ⊏

Γ, we have, by induction with pi = p r
ri
, that Γ ⊢ Ei : T

p r
ri
ri

i .
Thus, with p r

ri
ri = pr = p∆(o) and T = (T1,T2), we get the

conclusion Γ ⊢ E : Tpr.

23

5.5 Integer Completeness

We define an integer-only version Γ ⊢N E : TR of the Γ ⊢ E : TR typing
relation. In ⊢N, it is assumed that all derivation trees use only integer rates.

Theorem 47 (Local Rate Inference Integer Completeness). If Γ ⊢N E : TR,
then there exist ∆, v ∈ {0, 1}, r ∈ N and k ∈ N such that (E,Ω(Γ)) → ⟨∆v, r⟩
with R = rkv and (Ω(Γ), kv∆) ⊑ Γ.

This is the second important theorem of this paper. Assume that there
exists a derivation, involving only integer rates, of the type and integer rate
TR of a signal expression E in a signal environment Γ. Then, this theorem
states that the rate inference algorithm (E,Ω(Γ)) → ⟨∆v, r⟩ will succeed
in finding a rate environment ∆ with a rate-scalability v and (integer) rate
r. Moreover, the inferred rate r will be minimal in the sense that, if the
expression is found rate-scalable (v = 1), then the derived rate R will be an
integer multiple of r and the multiplication factor (k = R/r) is fine-tuned
to make all signals in ∆ compatible, after multiplication with k, with the
signal environment Γ.
Proof. By induction on E and case analysis, assuming Γ ⊢N E : TR. As
usual, Ω(Γ) is omitted when not needed.

Numbers. Trivial, with the (Int) and (Float) typing rules, with ∆ = ⊥, v =
0, r = 1 and any k.

Input. We just have to choose ∆, v and r such that ⟨∆v, r⟩ = ⟨⊥[In →
1]1, 1⟩. Since we know that Γ ⊢N In : TR, finally just choose k = R to
ensure the conclusion.

Recursive. This case is the same as for inputs (note that the usually tricky
handling of recursive types does not translate when only looking at
rates).

Upsampling. We have E = E′ ↑n and, using the (Up) typing rule, we have
Γ ⊢N E′ : TR′

with R = nR′.

By induction, there exist a tuple ⟨∆′v′ , r′⟩ and k′ such that (E′,Ω(Γ)) →
⟨∆′v′ , r′⟩ and R′ = r′k′v

′
.

Applying the (Up) sampling step of the rate inference algorithm, we
just choose ⟨∆v, r⟩ = ⟨∆′v′ , nr′⟩. We are left with finding k such that
R = rkv, i.e., such that nR′ = nr′kv

′
or R′ = r′kv

′
. We just have to

choose k = k′.

24

Serialize. We have E = v(E′, n). This case is similar to the upsampling
case, except that, in addition, one needs to use the Sample Type Con-
sistency property to establish Ω(Γ) ⊢ E′ : [n]T ′, which is needed to
execute the (Serialize) algorithm step.

Down. We have E = E′ ↓n and, using the (Down) typing rule, we have
Γ ⊢N E′ : TR′

with nR = R′.

By induction, there exist a tuple ⟨∆′v′ , r′⟩ and k′ such that (E′,Ω(Γ)) →
⟨∆′v′ , r′⟩ and R′ = r′k′v

′
.

There are three cases.

• First, assume there is r′′ such that r′ = nr′′. Using the (Down)
algorithm step, choose ⟨∆v, r⟩ = ⟨∆′v′ , r′′⟩.
Then, we only have to find k such R = r′′kv, i.e., nR = nr′′kv =
r′kv, i.e., such that R′ = r′kv

′
. Thus, just choose k = k′ to

complete the step.

• Then, assume that there is no such r′′ and v′ = 0. This would
make the rate inference algorithm fail. Yet, such a case is impos-
sible, since, having both R′ = r′k0 by induction and R′ = nR
by typing, we see that the rate r′ must be a multiple of n: a
contradiction.

• Finally, we have v′ = 1, which enables the (Down-var) algorithm
step.

Here, we choose ⟨∆v, r⟩ = ⟨mr′∆
′1,m/n⟩, where m = lcm(n, r′).

We need to find k such R = (m/n)kv, i.e., such that nR = mk1.
We choose k = r′k′/m,

First, k is indeed an integer. We have r′|r′k′ and n|r′k′, since
r′k′ = R′ = nR. Thus m = lcm(n, r′)|r′k′.
Moreover, k∆ = r′k′/m(mr′∆

′) = k′∆′, and thus (Ω(Γ), kv∆) ⊑ Γ,
completing the step.

Vectorize. Use the same reasoning as for (Down).

Pair of expressions. We have E = (E1, E2). Using the (Op) typing rule,
we also have Γ ⊢N Ei : Ti

R.

By induction, there exist tuples ⟨∆vi
i , ri⟩ and ki such that (Ei,Ω(Γ)) →

⟨∆vi
i , ri⟩ with R = rik

vi
i and (Ω(Γ), kvii ∆i) ⊑ Γ.

Using the (Pair) algorithm step, choose ∆v = ∆′v
/o with ∆′v = (∆′v1

1 +
∆′v2

2)v1v2 and r = ∆′(o). This environment addition is well-defined,

25

since (1) one can take x = o in the antecedent of the definition of
addition and (2) (mr1)

v1∆′
1 ≃ (mr2)

v2∆′
2, with m = lcm(r1, r2).

Property (2) is true by the Joinable Environment Scaling Equiva-
lence lemma (see below) for ∆1 and ∆2, since, by induction, we have
(Ω(Γ), kvii ∆i) ⊑ Γ.

It is, also, true for o, present in both ∆′
i. Indeed, ∆′

i(o) = (mri)
viri =

(mri)
vi(R/kvii) = (

mk
vi
i

R)vi(R/kvii) = mviR1−vi , since vivi = vi. Since
R = r1k

v1
1 = r2k

v2
2 , one has R = m′m for some m′. Thus, ∆′

i(o) =
mvi(m′m)1−vi = mm′1−vi , and two cases occur.

• When the values of vi are the same, we obtain the sought equality.

• Assume then, wlog, that v1 = 0 and v2 = 1. We need to show
that m (for v2 = 1) is equal to R (for v1 = 0). Indeed, in this
particular case, m = lcm(r1, r2) = lcm(R,R/k2) = R.

We can now proceed to proving the two conclusion conditions of the
theorem.

• We have to find k such that R = ∆′(o)kv1v2 = (mri)
virik

v1v2 .

First, assume v1 = v2. Then, R must be (mr1)
v1r1k

v1v2 . Choose
k = r1k

v1
1 /m (which is an integer since r1|r1kv11 and r2|r2kv22 =

r1k
v1
1). ThenRmust be (mr1)

v1r1(r1k
v1
1 /m)v1v2 = (mr1)

v1r1(r1k1/m)v1 ,
since v1v2 = v1. After simplification, we get R = r1k

v1
1 , which is

true.

In the second case, the vi are different. Then, wlog, we take
v1 = 0. After simplifying the formula for R, we need to show
that R = m. This is indeed true, since R = r1 = r2k2 and k2 is
an integer, leading to m = r1 = R.

• We need to show that (Ω(Γ), kv∆) ⊑ Γ, with v = v1v2.

First, assume v1 = v2. We have set k = r1k1/m, which gives
kv1v2∆ = (r1k1/m)v1(mr1)

v1∆1, which yields kv1v2∆ = kv11 ∆1, giv-
ing the sought conclusion.

In the second case, with different vi and v1 = 0, we need to show
(Ω(Γ),∆) ⊑ Γ. It is a direct consequence of the induction for ∆1.
For the ∆2 part of ∆, we need to show that (Ω(Γ), (mr2)

1∆2) ⊑
Γ. Yet, we have R = r1 = r2k2, yielding m = r1; we need
(Ω(Γ), (r1r2)∆2) ⊑ Γ, i.e., (Ω(Γ), k2∆2) ⊑ Γ, which is true, by
induction.

26

Lemma 48 (Joinable Environment Scaling Equivalence). If kv11 ∆1 ≃ kv22 ∆2

and r1k
v1
1 = r2k

v2
2 , then (mr1)

v1∆1 ≃ (mr2)
v2∆2, with m = lcm(r1, r2).

Proof. This property must verified for any element y in the intersection of
the ∆i, by case on (v1, v2).

• (0,0). Here, we need to show that (mr1)
0∆1 ≃ (mr2)

0∆2, which is true.

• (0,1). To show that (mr1)
0∆1 ≃ (mr2)

1∆2, we need to ensure that
∆1(y) = (mr2)∆2(y). Yet, by hypothesis, r1 = r2k2 with k2 an integer,
so m = r1, and thus we need to show ∆1(y) = (r1r2)∆2(y) = k2∆2(y),
which is true by environment inclusion.

• (1,0). Idem to previous case.

• (1,1), To show that (mr1)
1∆1 ≃ (mr2)

1∆2, we need to ensure that (mr1)∆1(y) =
(mr2)∆2(y). Since r1k1 = r2k2, we have riki = mm′ for some m′; thus
m
ri

= ki/m
′. We need to show that (k1m′)∆1(y) = (k2m′)∆2(y), which is

true by environment inclusion.

5.6 Rate inference

Rate inference is performed by first computing the local rates of the expres-
sions Ei in the list L of signal outputs; all recursively defined signals used
in Ei are gathered in a mapping D. If a rate can be successfully inferred for
every expression Ei, the next step is to compute a global ∆ by combining
all these ∆vi

i environments. At the end of this process, one compute a re-
duced rate environment ∆. The last point is then to check that all recursive
signals have the same input and output rate. The rate inference algorithm
is provided in Figure 5.6.

Definition 49 (Type/Rate Correctness). A list L = ⟨E0, E1, . . . En−1⟩ of n
signals is type/rate correct iff there exists Γ such that, for all Ei, there exist
type Ti and rate ri such that Γ ⊢ Ei : T

ri
i .

Theorem 50 (Rate Inference Soundness). Assume L, a list of signal ex-
pressions. If rate inference(L) returns Γ, then L is type/rate correct for
this Γ.

Proof. By definition of type/rate correctness, picking rate inference(L)
for Γ, one needs to show that, for all Ei, there exist a type and rate. We use
Local Rate Inference, for each expression Ei, after checking that each of its
conditions is valid.

27

The first condition is satisfied since sample type inference is performed
on each Ei with the sample type inference algorithm (not described here).
Use then the weakening typing rule, from Ωi to Ω.

The second condition is ensure by calls to local rate inference.
For the third condition, for each expression Ei, using p = ∆(oi)/ri, we

see that Γ is build so that (Ω, pvi∆i) ⊏ Γ.
The fourth and final condition is satisfied by the final checks on Γ.
Thus, by Local Rate Inference, proper sample type Ω(oi) and rate ∆(oi)

exist for each expression Ei.

Theorem 51 (Minimum Rate). The rates provided by rate inference are
minimal.

Proof. This is a direct consequence of the Local Rate Inference Integer
Completeness theorem, since all k there are integers.

6 Related Work

As a specifically audio-oriented DSL, Faust takes its roots into at least three
domains: functional languages, music languages and synchronous languages.
The last two families are strongly related to clocking issues.

Music languages such as Faust or Csound [3] make a clear distinction
between audio rates, the pervasive digital audio sample rate information
(44 kHz or 48 kHz), and control rates (kr in Csound parlance), related to
the frequency at which, for instance, user interface components are sampled.
The distinction is, in fact, mostly motivated by performance issues. Our rate
information provides a much more fine-grained and flexible way to handle a
wide variety of rate requirements.

Regarding synchronous languages, the most relevant references are the
ones related to the Synchronous Dataflow Model (see Lee et al’s seminal
work [10], or [1] for a more recent, parametrized variant). In fact, our work
can be seen as both (1) a reframing of the solving of “balance equations”
in SDF [11] in the framework of annotated type systems [12] and (2) an
extension of this scheme to rational rates. Contrarily to Lee et al’s global,
integer matrix-based version, our rate algorithm is defined by induction on
the syntax of expressions, allowing for the early and precise detection of rate
inconsistencies and type theoretic-like correctness proofs. Our technique can
also handle explicit rate and type constraints on input-output signals; in
particular, typical audio environments expect them to carry scalar values,
with no buffering required and fixed rates. More generally, our type and

28

rate scheme is intended to include more involved typing and rational rating
conditions (see Section 7). We believe that our static semantics approach,
complimentary to the one usually adopted in the literature, is thus quite
flexible.

Moving to other synchronous languages such as Lustre [4], Signal [2] or
Lucid Synchrone [5], to mention a few, Faust does not attempt to provide the
wide spectrum of clocking and data manipulation specifications present in
these general-purpose synchronous languages. The emphasis is, as presented
in the introduction, to match audio DSP features and their associated hard
real-time, efficiency requirements. If our rational model for rates can be seen,
in some sense, as a special case of the more abstract clocking mechanisms
provided in these frameworks, i.e., “clocks as abstract types” [6] or integer
clocks [7], we believe that the tight intertwining of our rate model and
efficient inference algorithm will provide value to Faust users.

Even though some papers on type-based clock mechanisms mention ex-
plicit rate inference algorithms, most authors limit their covering of this
topic to a few comments about Hindley-Milner-based schemes. Yet, inter-
estingly, in [14], a more precise description of a clock inference system is
provided. In some sense, our usage of scalability parameters can be seen as
a way of handling the equivalent of “rate schemes” within the rate inference
algorithm itself. But, in addition to the usual structural type information
found in Hindley-Milner systems, our problem alss addresses the richer al-
gebra of rate annotations.

7 Future work

The typing rules and inference of Sections 4 and 5 are probably too strict
to be of real practical interest. In particular, constant signals, for instance
numbers, have to be up-sampled to be used in any expression of rate r > 1,
which is very inconvenient. In this section we propose possible future work
related to relaxing the typing and rate rules, and mention the probable
impact on the rate inference process.

One possible evolution of the typing rules is to accept to combine signals
of different rates provided one rate is a multiple of the other. This can done
with the introduction of a single Rate coercion rule, as follows, assuming
n ∈ N∗.

Γ ⊢ E : Tr

Γ ⊢ E : Tnr
(Rate coercion)

All equations r1 = r2 that appeared in the strict rate inference algorithm,
and had to be enforced via unification, have, in the relaxed rate inference

29

algorithm, to be replaced by appropriate parametrized equalities of the form
n1r1 = n2r2. Note that the introduction of the (Rate coercion) rule is
equivalent to adding implicit up sampling operations in the language, thus
allowing, in theory, to get rid of the explicit (Upsampling) rule. We suggest
to keep it nonetheless, if only for documentation purposes.

Another possibility would be to add an explicit subrating rule such as

Γ ⊢ Ei : T
ri
i T r = Tr1

1 ⊔ Tr2
2

Γ ⊢ E1 ⋆ E2 : T r
(Subrating)

which would allow subrated expressions to be passed to primitive operations.
We introduce here a natural extension of the ⊔ relation over sample types
with

Tr1
1 ⊔ Tr2

2 = (T1 ⊔ T2)
max(r1,r2), whenever min(r1,2)|max(r1, r2) .

The subtle difference between the two approaches is that, for instance, the
constant signal 10 becomes a signal with multiple rates in the first case,
while, with the second approach, it is the flexibility of the subrating rule
that allows to pass 10 (with its rate of 1) to an operator where a signal of a
different rate, 2 say, is expected, as would be the case in an expression such
as 10 + 7 ↑2. Referential transparency issues, and more experiments, can
help decide which approach is best.

More unusual, and intriguing, would be to allow some sort of “contravari-
ant” subrating on constant expressions. For instance, when connecting a
constant signal K of value 10 at Rate 1 to a slow-going signal expression S
(for instance a slider enabling some sort of user interfacing at Rate 1/100),
it would interesting to allow K to be deemed equivalent rate-wise to this
slower signal (note this is going the opposite way of the previous proposals,
which would have forced S to go as fast as K, i.e., adopt a rate of 1). This
makes sense since our knowledge of the constancy of K makes it amenable
to a slower rate without loss of information. Moreover, this information is
explicitly present with our type system, K having the type int[10, 10]1 (and
this behavior would be generalized automatically to all expressions proven
constant by the typechecker).

Finally, we are envisioning the possibility of adding rate constraints ex-
plicitly, either at the language level or within the embedding sound architec-
ture, for instance to enforce a particular I/O rate, required by the outside
world (e.g., the fact that a particular rate must be an integer, say 44kHz).
The best way of doing so is also a matter of more experimenting, at the
language-design and usage levels.

30

8 Conclusion

We show in this paper how the Faust digital audio processing language,
traditionally based on scalar monorate signals, can be extended to handle
multi-dimensional multi-rate signals. Specifically, we provide a formal def-
inition of a new Intermediate Representation for Faust extended to enable
the handlingof the multi-rate framework proposed in [8]. We show how such
signals can be formally defined on a rational model of its clocking mecha-
nism.

On the practical side, we designed a new (type and) multirate inference
algorithm, for which both soundness and (relative) completeness theorems
are specified and proven. A prototype implementation of this algorithm
in the Faust compiler static semantics phase, in a experimental multi-rate
version of Faust, is underway.

Acknowledgments

Part of this project was funded by the ANR FEEVER project.

References

[1] Vagelis Bebelis, Pascal Fradet, Alain Girault, and Bruno Lavigueur.
Bpdf: A statically analyzable dataflow model with integer and boolean
parameters. In Proceedings of the Eleventh ACM International Confer-
ence on Embedded Software, EMSOFT ’13, pages 3:1–3:10, Piscataway,
NJ, USA, 2013. IEEE Press.

[2] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Syn-
chronous programming with events and relations: the Signal language
and its semantics. Science of Computer Programming, 16(2):103 – 149,
1991.

[3] R.C. Boulanger. The Csound Book: Perspectives in Software Synthesis,
Sound Design, Signal Processing, and Programming. The Csound Book:
Perspectives in Software Synthesis, Sound Design, Signal Processing,
and Programming. MIT Press, 2000.

[4] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: A declar-
ative language for real-time programming. In Proceedings of the 14th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’87, pages 178–188, New York, NY, USA, 1987. ACM.

31

[5] Paul Caspi, Grégoire Hamon, and Marc Pouzet. Lucid synchrone: un
langage pour la programmation des systèmes réactifs. In Systèmes
temps réel. Lavoisier, 2007.

[6] Jean-Louis Colaço and Marc Pouzet. Embedded Software: Third Inter-
national Conference, EMSOFT 2003, Philadelphia, PA, USA, October
13-15, 2003. Proceedings, chapter Clocks as First Class Abstract Types,
pages 134–155. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[7] A. Guatto. A Synchronous Functional Language with Integer Clocks.
PhD thesis, Université de recherche PSL, France, 2016.

[8] Pierre Jouvelot and Yann Orlarey. Dependent vector types for data
structuring in multirate Faust. Comput. Lang. Syst. Struct., 37(3):113–
131, July 2011.

[9] S. C. Kleene. General recursive functions of natural numbers. Mathe-
matische Annalen, 112(1):727–742, 1936.

[10] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75(9):1235–1245, Sept 1987.

[11] Edward Ashford Lee and David G. Messerschmitt. Static scheduling
of synchronous data flow programs for digital signal processing. IEEE
Trans. Comput., 36(1):24–35, January 1987.

[12] Flemming Nielson. Annotated type and effect systems. ACM Comput.
Surv., 28(2):344–345, June 1996.

[13] Y. Orlarey, D. Fober, and S. Letz. Syntactical and semantical aspects
of Faust. Soft Comput., 8(9):623–632, September 2004.

[14] J. P. Talpin and S. K. Shukla. Automated clock inference for stream
function-based system level specifications. In Tenth IEEE International
High-Level Design Validation and Test Workshop, 2005., pages 63–70,
Nov 2005.

[15] Rina Zazkis and Jeffrey Truman. From trigonometry to number theory
and back: Extending lcm to rational numbers. Digital Experiences in
Mathematics Education, 1(1):79–86, 2015.

32

rate_infererence(L) :

%-- Input: List L of n signal outputs Ei.

%-- Output: Typing environment Γ
% (with oi bound to the type/rate of Ei)

D = mapping_for_recursive_signals(L);

%-- Infer types and local rates

for each Ei in L
(Ωi,Ti) = sample_type_inference((Ei, D));
(∆vi

i , ri) = local_rate_inference((Ei,Ωi));

%-- Compute the global sample type environment

Ω =
∪n−1

i=0 Ωi[oi → Ti];

%-- Compute the global rate environment

Rs =
∪n−1

i=0 {∆i[oi → ri]
vi};

while there exist intersecting R1 and R2 in Rs
Rs = Rs ∪ {R1 +R2} − {R1, R2};

∆ =
∪

R∈RsR;

%-- Build the global signal type environment

Γ = [];

for each x in Dom(∆)

Γ = Γ[x → Ω(x)∆(x)];

%-- Check recursive signals

for each X in Dom(D)
for each i from 0 to length(D(X))− 1

Ti
ri = type_and_rate_check(Γ, (πi(D(X)), D));

check (Ti
ri == Γ(πi(X)));

return Γ;
end

Figure 6: The rate inference signal rate inference algorithm

33

