CENTRE DE RECHERCHE EN INFORMATIQUE

FIRST EXPERIENCE ON SHARED-MEMORY MULTI-PROCESSOR MIMD
MACHINE — BBN T C2000

Lei ZHOU
<zhou@cri.ensmp.fr>

September 1993

Document EMP-CRI E/176/CRI

First Experience on shared-memory multi-processor MIMD
machine

BBN TC2000

Lei Zhou
Centre de Recherche en Informatique
Ecole Nationale Supérieure des Mines de Paris

E-mail: zhou@cri.ensmp.fr

Septembre 1992

Abstract

Precise prediction of an application on a parallel computer is pretty important in per-
formance evaluation. In this paper, we have experimented several sample tests on shared-
memory multi-processor MIMD machine — BBN TC2000. We have found that the expe-
rience obtained from sequential machines can be easily expanded to parallel machine with
minor modification of the algorithm. At the same time, several empirical algorithms have
been extracted from the test results and proven to be correct by the experimentation.

1 Introduction

While performance evaluation on sequential machines had been the topic of evaluation for years,
as parallel machines appear, which quickly replace the sequential machines and become the
center of discussio.

We have gathered some experience of prediction on sequential machines, what we intend
to do is to get some first-hand experience on parallel machines, i.e., practise some tests and
observe the activities of the parallel machines. Because we don’t have much time on observing
the activities of parallel machines, we only executed a small group of sample programs to get
some ideas about execution situation of parallel machines. Our goal is to look into how we could
extend our experience obtained from sequential machines to the parallel ones.

When talked about parallel machines, some computer expert made the following observation
about parallel machines with lots of processors.

Suppose you consider a problem to take the form of a box. The volume of the box
represents the computation of the problem. The surface area of the box represents the
communication required to solve the problem. As you parallelize the problem over
2 processors, it’s the same as cutting the box in half - the cut exposes more surface
area without increasing the volume. The more you parallelize, the more surface area,
or communication, becomes necessary.

Surely, it is the most intuitive description of the overheads caused by parallelizing the se-
quential programs.

Performance is an important aspect of many programs, those intended for sequential exe-
cution as well as those for parallel execution. However, when one sits down to write a parallel

/* Multiprocessor "Hello World" program */
#include <us.h>
long * nodecount;

PrintHello (dummy, index)
int dummy, index;
{ printf ("Index=Y%d: Hello World from node #/d (= h/w node #%x)\n",
index, PhysProcToUsProc(Proc_llode), Proc_Node);
xmatomadd31(nodecount, -1);
while (*nodecount != 0) LockWait (0);

main ()
{ InitializeUs ();
nodecount = (long *) UsAlloc (sizeof (short));
* nodecount = TotalProcsAvailable ();
printf ("\nThere are %d nodes in this cluster\n\n",
* nodecount);
Share (& nodecount);
GenOnI (PrintHello, * nodecount);

Figure 1: ¢ us examplel source code

program, although with much more difficulties than sequential one, it is with the expectation
that the parallel program will execute faster in parallel than not. Furthermore, there is an ex-
pectation that increasing the number of processors will result in a commensurate decrease in
execution time. Actually, it is generally not the case.

We have a very simple multiprocessor program, see Figure 1, it is a multiprocessor version
in C of the “Hello World” program in [4] and is only a little more complicated.

This program causes each processor to print out the greeting message:

Index=n: Hello World from node #m (= h/w node #Yx)

The “Hello World” program uses UsAlloc to reserve space in globally shared memory for
nodecount, a variable used for bookkeeping by the processors. nodecount is initialized with the
number of processors available to program, a number obtained with via TotalProcsAvailable.
After using Share to propagate the location of nodecount to other processors, the program
then uses GenOnl to generate tasks that print the “Hello” message for each processor. The
only tricky part is ensuring that each processor performs exactly one task. In general, without
some form of coordination, some processors could get more than one task and others might get
none. For this program, the coordination is simple. After printing its message, each proces-
sor atomically decrements a counter maintained in globally shared-memory (nodecount) with
xmatomadd31 and then waits until the counter indicates that all messages have been printed.
This guarantees that no processor finishes its task until all messages have been printed, therefore,
all tasks are generated before any processor finishes. The program is shown in Figure 1.

An interesting fact is that if we eliminate the coordination part of the program shown in
Figure 1, only three processors participate the work, one gets 6, one gets 4 and one 2. The

Degree

of
Parallelism
4_
3_
2_
1_
T
0 Time

Figure 2: Parallism Profile of an Application

important fact is that it is 12 times faster than the one with coordination. This illustrates that

if the user does not have much work to do on a parallel machine, the more processor the worse
performance.

2 Background and Terminology

Generally speaking, researchers consider two main degradations of parallelism, load imbalance
and communication cost. The formeris due to uneven distribution of workload among processors,
and is application-dependent. The latter is due to the communication processing and latency,
and it depends on both the application and underlying parallel computer. To give an accurate
performance measurement, both of the degradations need to be considered. Load imbalance is
measured by degree of parallilism.

Definition 1 Degree of Parallilism: An integer which indicates the mazimum number of pro-
cessors that can be busy computing at a particular instant in time.

Apparently, degree of parallilism is function of time. Processors can not start to work at
the same time. We can imagine that the processors get to work one by one until no more
processors available on the machine, and when there are no more tasks, the processors gradually
stop working. By drawing the degree of parallelism over the execution time of an algorithm, a
graph can be obtained, see Figure 2. We refer to this graph as the parallelism profile.

Definition 2 Parallelism Profile: The profile of ezecution time of an algorithm on a parallel
machine.

Communication cost is an important factor contributing to the complexity of a parallel
algorithm. Unlike degree of parallelism, communication cost is machine-dependent. It depends
on the communication netwotk, the routing scheme, and the adapted switching technique.

In our testing suite, we are considering a relatively simpler case. We now introduce some
definitions here.

Definition 3 Time of Task Tt: The ezecution time needed to finish one task.
Of course, we assume that the tasks are identical.

Definition 4 Time of Interval Ti: The waiting time between the two consecutive tasks on the
same processor.

We have known that all processors are same, so we can equally assume that waiting time is
same on different processor.

Definition 5 Alloted Number of Processor Np: The number of processors available for a certain
job, which is alloted before the job gets started.

Np can be alloted by cluster (see [2]) and can be obtained by TotalProcsAvailable
during the execution.

Definition 6 Effective Number of Processor Ne: The number of processors that fully participate
the job.

Ne in general case is equal to Np when the job is big enough. But when the job is not big
enough, all processors available can not be all exploited, only a small part of them can be used.

Definition 7 Formal Number of Processor Nf: The processor that only does one task during the
work.

The processor participates the job but it does only one and quits. Because of start-up
overhead. In this case, more processors can only deteriorate the performance because the heave
cost for start-up overhead.

Definition 8 Desired Number of Processor Nd: Given the amount of tasks, the number of
processors that can be effectively exploited to exzecute the job.

That means under Nd, the more processors, the better performance; and beyond Nd, the
more processors, the worse performance.

3 The Machine Description

Before we proceed our test program, we briefly introduce the machine — BBN TC2000 and its
environments.

3.1 Basic Characteristics of TC2000

The TC2000 computer is a powerful new multiprocessor[1]. It builds upon BBN’s experience
in design of parallel processor and extends to a state-of-the-art machine. It has the following
features:

1. It employs a number of microprocessors, each executing individually on the users’ tasks
in a controlled and coordinated way.

2. It employs shared memory to store information. All main memory of the machine is
accessible to every processor.

3. The TC2000 processors access the shared memory through an interconnection network
called the Butterfly switch. The switch provides a fast, efficient and effective access
path.

4. The TC2000 design is modular and scalable. Processors, memory and IO capacitty can
be added board by board, as needed by the application.

5. The TC2000 has a balanced architecture. The integer computation, floating point com-
putation, memory and input/output capabilities are approximately equal in power.

3.2 Architecture of TC2000

The TC2000 architecture consists of function boards interconnected by a high performance
Butterfly Switch. In addition, the Test and Control System (TCS) monitors the entire
machine,

Each function board contains some or all of the following : a processor, cache and memory
management unit, memory, a VMEbus interface, a switch interface, TCS circuitry and power
supplies. The processor is Motorola 88000 chip group comprised of an 88100 CPU chip and
at least two 88200 cache/memory management unit (CMMTU) chips. One or two 88200 chip(s)
handle instruction reference, and one other 88200 chip handles data reference. The memory is
dynamic RAM, with parity, addressable as byte, halfword (2 bytes) or word (4 bytes), aligned
on boundaries of the size being addressed.

3.3 nX Operating System

It is the operating system base on UNIX that runs on the TC2000 for multiprocess application.

There is a big difference between nX operating system and the one we use on SUN work-
station. nX, just as you can imagine, is supposed to be an n-processors operating system, you
need to specify how many processors (called nodes in parallel machines) are alloted to a certain
application.

3.4 Uniform System Library

The TC2000 hardware and nX operatng system are a foundation on which a variety of software
structures may be built. The Uniform System Library contains subroutines that can be used
with either C or Fortran programs. The approach to memory management used by the Uniform
System Library is based on two principles:

e Use a single address space shared by all processes to simplify programming; and
e Scatter application data across all memories of the machine to reduce memory contention.

The benefit of this strategy is that you can treat all processors as identical workers, each able
to do any application task, since each has access to all application data. This greatly simplifies
programming the machine, a benefit that far outweighs the modest cost.

The TC2000 multiprocessor can work very efficiently with individual tasks a few milleseconds
in length; if necessary, it can also work on tasks in the hundred of microseconds. For shorter
tasks, various overheads begin to interfere with good performance.

3.5 Xtra Programming Environment

The X Tools for Runtime Analysis (Xtra) programming environment is a software development
environment (based on the X Window System) for debugging, analyzing, and tuning the
performance of parallel programs. See [2] for more information. The Xtra environment includes
(1) the TotalView debugger; (2) the ELOG library for generating user event logs; and (3) the Gist
performance analyzer for analyzing event logs. The Xtra package also includes special macros
and the gisttezt tool for generating text event logs. This package is designed to help users develop
parallel programs on the TC2000 system and port serial applications to the parallel environment
of the TC2000 system.

3.5.1 TotalView Debugger

The principal advantage of the TotalView debugger over conventional UNIX debuggers (e.g. dbz)
1s that it was designed to debug the multiple processes of parallel programs. Furthermore, since

the TotalView debugger runs under the X Window System, its graphic interface is easy to learn
and ideal for conveying the concepts of parallel programs. I have not tried my hands on this
debugger because of my major prediction work, but some people in newsgroup comp.parallel
said this debugger is very,very impressive.

3.5.2 The ELOG library and Gist performance analyzer

I have used the other two components of the Xtra environment — the ELOG library and Gist
performance analyzer. They were designed to tune the performance of multiprocess programs.
The performance analyzer also has a graphic interface that is based on the X Window System.

We need to elaborate this utility because all the data we got for the BBN TC2000 are through
this interface.

4 Gist Performance Analyzer

This utility is provided by the manufacturer. We will introduce how to create the events, obtain
the data and analyze the them.

4.1 Logging Events with the Event Logging Library

An event log is a file containing a record of events for each process in your program. Bach
event recorded for a process contains:

e A time stamp, which is the real-time clock value when the event was recorded.

o An event code, which is an integer identifying the event.

o A user-defined 32-bit data item, which is used by the Gist program in analyzing the log.
In order to create an event log, you complete the following steps:

1. Decide what events should be logged from the program.

2. Understanding the library of event logging routines.

3. Instrument the program with the appropriate event logging routines.

4. Compile and link the program with the appropriate compiler switches.

5. Generate the event log by running the program.

4.1.1 Deciding on the Events to be logged

The event logging routines can be used for two purposes: 1) analyzing the performance of a
program and 2) debugging a program. We only need to pay attention to several important
points here:

e Log events for the major components of you program, such as procedures, functions and
subroutines.

o Log events for any parts of your program that use multiprocess programiming.

e If you application requires user input, gather it before you begin logging.

4.1.2 Understanding the Routines

The event logging library, /usr/lib/libelog.a consists of six routines. These routines initialize
an event log, allocate space for individual processes to record events, specify what to do if a
buffer overflows, define events to be logged, log events, and write the recorded events to the
event log file. You must link your program to the libelog.a library in order to call the routines
for the library.

It takes about 6 to 7 microseconds on the TC2000 to log an event. The amount of runtime
overhead incurred by the event log instrumentation depends on how you use the event logging
routines. The instrumentation in this work uses event-logging macros, it requires that ELOG
be defined. If not, program will incur no runtime overhead by the presence of the event log
instrumentation.

4.1.3 Instrumenting a Program

A sample C program, simple.c is located in the / usr/example/gist directory. This program
generates tasks simply take up time in the processes. You can specify the number of tasks. the

size of each task (e.g. the number of iterations of the task), and the number of the event log
files.

4.1.4 Compiling and Linking the Program

For C programs, you compile in different ways depending on whether or not you define the
symbol ELOG for expansion of the event logging macros. To compile the program with macros,
do as follows:

¢¢ -DELOG -o simple.c -lus -leleog simple.c
where
1. -DELOG defines the symbol ELOG (required when you use the C mMacros)

2. -lus links the prograam to the Uniform Systems library (required when you use the
Uniform System)

3. -lelog links the program to the event logging library (required all the time)-

4.1.5 Initializing the Event Log with giststart

giststart is a program that lets you initialize the event log file from the command line. Use

this method when it is difficult or inconvenient to instrucment your program with a call to
ELOGINIT.

4.2 Output of Event Logs with the Gist

If Gist does not provide a function that you need to analyze your event log, you can write the
event log to a text file. And then you can analyze the text file with standard operating system
utilities, such as awk, sed, etc. or write your own program to perform the analysis desired. We
use this method in our simple test.

Generally, it has two kinds of output formats, one is brief format, a relatively simpler format,
and the other is gisttext format. The two formats will be simply introduced below.

001200
0 750 3 160
c 1563 3 116

Figure 3: Brief Format of Gist Output

4.2.1 Brief Format
A text file for an event log in brief format contains four columns of information for each event:
1. The process label (in hexadecimal)
2. The time the event occurred, in microseconds
3. The event codes
4. The datum logged with the event

Figure 3 is the standard output of brief format, for this format is less useful than the following,
we give up this format,

4.2.2 gisttext Format

A text file in gisttext format contains the same seven columns as the output produced by the
gisttext program. They are:

1. The line type (always E, for Event)

2. The processor and process for the process trace

The time the event occurred, in microseconds

The elapsed time since the previous event, in microseconds
The unique integer(event code) identifying the event

A text string identifying the type of event

N o o oa W

The formatted data item for the event

Figure 4 is the standard output of gisttext format. We will analyze this format in the following
section.

4.3 Analyzing Event Logs with the Gist

This section describes how to analyze event logs that were generated by the event logging library
introduced in the previous section.

Gist can display more information about each event in a process trace. (All of the information
about an event cannot fit in the event box.) Specifically, Gist can display 1) the time the event
occurred (in microseconds), 2) the event code, 3) the event name and 4) the data that is logged
with the event. Now let us see the Figure 4, for the Node 0, at the 0 microseconds, the work
starts and lasts 0, after that there is an interval (waiting time) 186 psec and worker task #

E 0x0 0 0 1 Start Generator

E 0x0 186 186 2 Start Worker Task #0
E 0x0 598 412 3 End Worker Task #0

E 0x0 625 27 2 Start Worker Task #1
E Oxe 998 373 2 Start Worker Task #2
E 0x0 1031 33 3 End Worker Task #1
E 0x0 1049 18 2 Start Worker Task #3
E Oxe 1411 362 3 End Worker Task #2
E Oxe 1432 21 2 Start Worker Task #4
E 0x0 1455 23 3 End Worker Task #3

E 0x0 1473 18 2 Start Worker Task #5
E Oxe 1838 365 3 End Worker Task #4
E Oxe 1854 16 2 Start Worker Task #6
E 0x0 1879 25 3 End Worker Task #5

E 0x0 1898 19 2 Start Worker Task #7
E Oxe 2260 362 3 End Worker Task #6
E Oxe 2277 17 2 Start Worker Task #8

AN B

3 4 5 6 7

—_ —

L]

Figure 4: Gisttext Format of Gist Output

0 starts there, after 412 psec, that is at 598 usec worker task # 0 finishes. Node 0 begins the
work again at 1049 for the worker task # 3 and ends at 1455. And the same thing for the rest
of nodes.

So actually, we have every details about node’s execution trace, i.e., for each node, how many
jobs it has done, its overall start-up time and finish time, even start-up time and finish time for
every task it has executed, we know exactly when it starts and finishes and interval between the
two consecutive tasks.

It is convenient to write a awk script to analyze the output of gisttext. Figure 5 shows that
script which will be used in the next section to analyze the gisttext.

4.4 Summary of the Analyzer

Up to now, we have every information necessary to analyze the program. A figure is worth
thousands of words, so we draw a picture to illustrate the complete procedure.

Figure 6 is the complete procedure of the analysis. We have got two sorts of outputs after
a bbn-ized program is run. 1) standard result of the program on issue, but it is out of our
consideration, we simply ignore this output. And 2) side effect of the program. While the
standard result is produced, logging file with events is formed too. As we have mentioned
earlier, all information about each node is available in that file.

5 Experimentations

We have instrumented a sample C program, simple.c located in the /usr/example /gist di-
rectory. This program generates tasks simply take up time in the processes. You can specify

BEGIN { maxnu = 0 }
$2 is the processor number
{ c=0 # convert proc number from hex to decimal
for (i=3;i<=length($2);i++)
{
a=substr($2,i,1)
if (a=="a") a=10
if (a=="b") a=11
if (a=="c") a=12
if (a=="d") a=13
if (a=="e") a=14
if (a=="f") a=15
a=a%*1
c=16*c+a
}
$3 is the time stamp
event #5=start of task, event #7=end of task, c¢ = proc number
each time a processor finishes a task, compute it’s duration
if ($5==2) { debut[c]=$3 }
if ($5==3)
{
line += 1 # finished number of the task
duree[c]=$3-debut[c] # dural time of the task
proc = ¢
if (length(begin[proc]) == 0) begin[proc] = line
if (end[proc] < line) end[proc] = line
total[proc] = totallproc] + dures[c]
count [proc] += 1
if (maxnu < proc) maxnu = proc

}
}
END { printf("\t Proc \t Ntask \t First \t Last \t Average Time Per Task\n")
for (i=0;i<= maxnu;i++)
printf("\t %d \t %d \t %d \t %d \t %f\n",\
i,count[i],begin[i],end[i],total[i]/count[i])
for (i=0;i<= maxnu;i++) {
sum_count += count[i]
sum_squa += count[i]*count[i]
}
av_count = sum_count/(maxnu+1) ;
sigma = sqrt(sum_squa/(maxnu+l) - av_count*av_count)
printf("For Task Distribution: %d tasks per processor\n",av_count)
printf("The absolute standard deviation is %f\n\
The relative standard deviation is %f %\n",\
sigma, (sigma*x100/av_count));

Figure 5: Awk script to analyze the gisttext output

10

Original BBN-ize BBN-type Compile Executable Run
Fortran or C Program - BBN-type
Program + Logging with Events + Options Program on BBN
Standard Result of
BBN-type
Result Program
Side Logging Gist Gist Awk Data,
File Standard > Needed
Effect with Events Analyzer Output Script to Analyze

Figure 6: The Complete Procedure of Analysis

11

Proc Ntask StartTime FinishTime AverageTimePerTask AveragelInterval

0 1006 4370 4104378 4059.95 15.62
1 995 49942 4105011 4059.36 16.10
2 1000 25758 4101243 4059.93 15.57
3 996 44032 4103198 4059.88 15.61
4 999 31689 4103061 4059.84 15.62
5 1005 11605 4102828 4060.00 10.88
6 1002 19427 4102786 4059.37 15.86
7 997 37893 4101113 4059.60 15.86

Figure 7: Data of Test Program on 8 nodes

Proc Ntask StartTime FinishTime AverageTimePerTask AverageInterval
0 1014 4672 4137212 4059.70 15.80
1 998 66113 4136782 4063.27 15.58
2 997 72894 4136147 4059.62 15.87
3 1008 29133 4137078 4059.50 15.85
4 1002 51676 4135487 4059.82 15.85
5 1013 12436 4136878 4060.34 11.18
6 994 86167 4136968 4059.50 15.77
7 989 104488 4135148 4059 .86 15.65
8 988 110525 4137049 4059 .48 15.97
9 1004 44618 4136409 4059.53 15.97

10 992 92379 4135544 4059.72 16.07

11 1000 58835 4134372 4060.05 15.50

12 1010 21324 4137709 4059.75 15.89

13 990 98309 4133768 4060.38 15.86

14 1006 37256 4137738 4060.02 16.02

15 995 79539 4135101 4060.20 15.75

Figure 8: Data of Test Program on 16 nodes

the number of tasks. the size of each task (e.g. the number of iterations of the task), and the
number of the event log files.

5.1 Explanation of Test Program

We implemented the simple.c program to obtain the data for each processor.

We don’t need to present all data obtained during the experimentation. We only present the
three represetative ones, when number of processors is 8, 16 and 24 respectively.

See Figure 7, Figure 8 and Figure 9, we have to take notice that the first processor is numbered
0 instead of 1.

5.2 Startup Time

From the data we presented above, we can put all start-up times in a picture, as you can see in
Figure 10. From the picture, we see that start-up times almost form a line for the start-up.

Definition 9 Stari-up line: The line formed by start-up points of all processors.

12

Proc Ntask StartTime FinishTime AverageTimePerTask Averagelnterval

0 1021 4305 4166433 4059.61 16.93
1 990 135410 4170263 4059.78 15.84
2 982 167444 4169620 4059.96 15.59
3 1010 51743 4168428 4060.09 15.85
4 985 155121 4169089 4059.24 15.87
5 1020 13455 4166355 4060.80 10.68
6 995 114219 4169168 4059.70 15.64
7 1008 59747 4167856 4059.90 15.62
8 1002 83067 4166893 4059.83 15.76
9 986 148870 4167895 4060.04 16.06
10 981 170496 4168890 4059.83 16.02
11 1000 20978 4166817 4060.05 15.81
12 988 141954 4168847 4060.13 15.69
13 999 98534 4170290 4060.11 156.74
14 983 161295 4167995 4059.74 16.27
15 991 128607 4167651 4059.65 16.09
i6 1012 44208 4168585 4059.95 15.54
17 1017 21664 4166695 4059.92 15.83
18 1016 29221 4169859 4059.64 15.81
19 1004 75595 4167422 4059.80 15.74
20 1006 67424 4167617 4059.83 15.92
21 993 121806 4168712 4059.55 15.90
22 1014 36647 4169501 4059.80 16.01
23 997 106553 4170137 4059.96 15.87

Figure 9: Data of Test Program on 24 nodes

13

Processor Number
| 24 ®

| 23 °
L 22 ©
L 21 °

L 20 °

119 ®

L 18 o

L 17 o

L 16 *)

L15 * @

L 14 * e

L 13 * @

12 * ®

111 *®

110 *®

L7 x @ * Startup Time for 8 Nodes
L6 * & * Startup Time for 16 Nodes

L5 * & e Startup Time for 24 Nodes

Time
| le 1000 msec

D10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Figure 10: Startup Time for 8, 16 & 24 Nodes

14

Processor Number

| 1% |

L 1 1 L 1 1 1

Time
1000 msec

0 10 20 30 40 50 60 70 380 390 400 410 420 430

Figure 11: Startup Time and Finishing Time for 8 Nodes

Because we can suppose that start-up makes a straight line which starts from the origin, in
order to facilitate the stating, we introduce the following definition:

Definition 10 Start-up angle a: The angle formed by start-up line and processor-axis.

So tga has the physical meaning, the time to start another processor, so it introduces another
definition:

Definition 11 Start-up Slope Ta: The time needed to start up a processor.

Here, from the data presented, we can conclude that start-up slope for the BBN TC2000 is
about 7300 msec/node.

5.3 Finish Time

Now let us turn our attention to the finishing time of processors. We reuse the data for 8 nodes.

From Figure 11, we can observe that there won’t be any idle processor (node) when there is
a task in the waiting queue. i.e., the time between the node which finishes the job the first and
the one which does the last is equal or smaller than average task time. So from the observation,
we can simply assume that difference between the processor which finishes the work first and
the one which does the last is exactly one task time Tt. At the same time, because we are only
concerned with the surface surrounded by the start-up line and finish time, so we could sort the
finish time in ascending order and we can also assume that finish time forms a line and difference
between the processor which finishes the work first and the one which does the last is exactly
one task time Tt. See Figure 12 is a theoritical model for the parallel execution.

We introduce another definition:

15

Proc

Startup Time Finishing Time

R 1
N\ /7

Execution on a certain node

Time

Figure 12: Startup Time and Finishing Time of Theoretical Model

Definition 12 Finish line: The theoretical line which simulates the curve formed by finishing
points according to ascending order. The difference the processor which finishes the work first
and the one which does the last is exactly one task time Tt

From this later assumption, we can get the following algorithms for parallel machines.

6 Algorithm for Parallel Machines

Before we introduce our algorithms for the parallel machines, we summarize the assumptions we
have made earlier.

1. Start-up is a straight line from the origin.

2. Start-up slope is a constant for a fixed BBN TC2000 machine.
3. Finish time form a line
4

. the difference between the processor which finishes the work first and the one which does
the last is exactly one task time Tt.

With all these assumptions, we describe the symbols we will use in our algorithms.
Np Number of processors available
Ne Effective Number of processors which participate
Nt Number of tasks
Tt Time for a task
Ti Time of interval or waiting time.

Ta Start-up slope tg(a)

16

Algorithm for Trapezoid Form

Now we are considering a general case, i.e., when the parallism profile takes the shape of trape-
zoid. We assume that all processors effectively participate the work, i.e. the number of tasks is
greatly larger than the number of processors — Nt > Np; so all nodes participate i.e. Np = Ne
and we assume that amount of time spent on a task and amount of waiting time be identical.

Under the above assumptions, for a node j, it has Nj tasks to execute, it has (Nj — 1)
intervals, one less than the number of tasks, the time is Tj = Ny-Tt+ (Nj-1)-Ti =
Nj . (Tt+Ti) - Ti.

Now consider that the trapezoid as a whole, we can imagine that 2;"\31 Nj = Nt and

E;\z’l 1 = Np. So the sum of execution times for all the processors is:

Np Np
DTj = Y (Nj-Tt+(Nj-1)-Ti)
= =
¥ JN;
= Z(Nj-(THTé)—Tz‘)
=1
JNp Np
= (Q_NG) @t+Ti) - (3 1)-Ti
j=1 =]

= Nt-(Tt+Ti)— Np-Ti

It means that there are Nt tasks and because of there are Np processors, so there are Nt— Np
intervals, Np is largely less than the number of overall tasks, i.e., Np < Nt. Because the height
is an unit, so from this point of view, we think the surface of the trapezoid is:

S1 = Nt-(Tt+Ti)—Np.Ti (1)

The standard formula to get the surface is Sur face = H eight-(Upper Length+Lower Length) /2.
For the this trapezoid , we have Height = Np, which is the number of processors alloted (of
course, Nt > Np); LowerLength = T, which is overall finishing time; and Upper Length =
T-Tt—Np-Ta

Here we have

52 = Height - (Upper Length + Lower Length) /2
= Np-((T'-Tt-Np-Ta)+T)/2 (2)

Both S1 in Equation 1 and S2 in Equation 2 denote the same amount of trapezoid surface
from two different points of view, so they are equal: S1 = $2. Hence we have:

Nt-(Tt+Ti)— Np-Ti=Np-((T - Tt — Np-Ta) + T)/2 (3)

And this equation can be simplified to:

Np- T Nt Tt

T = pz a+N—-(Tt+Tz‘)—Tz’+ - (4)
S — 2 S v e
partl part2 partd

This equation has intuitive meaning: part 1 in Equation (4) is half of start-up line projected
on the time-axis, part 2 is the average length of upper length and lower length and part 3 is half
of finish line projected on time-axis. As shown in Figure 13.

17

Proc

Startup Time Finishing Time

oy 2

part 1 e part 2 part|3 Time

Figure 13: Startup Time and Finishing Time

Algorithm for Triangle Form

Now we consider the critical case, i.e., when the parallism profile takes the shape of triangle.
First 12 processors have been allocated, and then we gradually increase the number of tasks
while keeping the task size same.

Here we need to introduce another definition:

Definition 13 Critical Finish Time Tec: The finish time when parallism profile takes the shape
of triangle and all processors alloted are effective if given the fized number of PTOCESSOTS.

Which means that if we increase a little more work, parallism profile will be the trapezoid,
and if we decrease a little, not all processors are effective.

Now we use the different ways to compute the surface of the triangle. From the standard
formula, the surface of critical triangle S3 is:

83 = TC-Q.NG (5)

and from the point of view of execution, the surface of critical triangle S4 is:

S4 = Nt- (Tt+Ti) - Ne-Ti (6)

Certainly, 53 = 54 because both present the same amount of surface. We have:

T"'2Ne = Nt-(Tt+Ti) - Ne-Ti)
(8)
while
Te-Tt

18

JPmc \
12

| 11
L 10
L9
| 8
LT
|6
| 5 Startup Time Moving Finishing Time Critical Finishing Time Final Finishing Time
| 3 —__ " Increasing — Increasing
Tasks — Tasks
2
L1
Ti
Tm Te i e

Figure 14: Triangle Form

19

Np | Experiment | Formula | Difference
8 4105011 4106084 0.03%
16 4137738 4135614 0.05%
24 4170290 4164614 0.14%

Table 1: Trapezoid Formulas Verification

After deduction, we have:
T+ (2-Ti-Tt)-Tc—2-Nt-(Tt+Ti)-Ta—2-Ti-Tt =0 (10)

Because, the total finishing time can not be negative, so the negative time does not make
any sense, we neglect negative solution. Finally, we have unique solution:

Toe —(2-Ti—Tt)+/(2-Ti —Tt)* +8-Nt- (Tt +Ti) - Ta+8-Tt-Ti

7 (11)

Besides the final finishing time, we can also compute the desired number of ProCessors.

a = @ (T4 T0))

7 Verification of Formulas

In order to check our empirical formulas are adequate for the real world, we use the data obtained
in Section 5 to compare.

Verification for Trapezoid Form

We only choose three cases when Np is 8, 16 and 24.
See Table 1, we can find that the difference is too satisfactory to believe. In effect, it is
because task size is too small, so for a larger task size, bigger difference is expected.

Verification for Triangle Form

Now let us consider triangle form. See Figure 15, we gradually increment the total tasks number,
40*p means the total task number is 40 times alloted number of processors, (in the example,
it is 12). And then we have measuredFT which stands for measured finishing time, EffectP
for effective number of processor, FormalP for formal number of processor, FTFormulal for
finishing time when using formula 1, which is T'c is Equation 11, FTFormula2 for finishing time
of formula2, which is 7" in Equation 4, DesiredP for desired number of processor, which is Nd in
Equation 12.

Maybe the Figure 15 is a little bit misleading, let us just extract some data from that figure
and compare these data in Table 2.

8 Discussion

During the experimentation, we have observed something that we can not explain.

20

TotalTask MeasuredFT EffectP FormalP FTFormulal FTFormula? DesiredP InterTime TaskTime
40%p 14538 2 4 13596.48 44861.88 1.86 16.62 9.80

50*p 18051 2 7 16430.20 45348.77 2.25 20.99 9.88
60*p 18781 3 3 17861.55 45629.07 2.44 20.61 9.79
T70*p 26292 3 9 24038.95 47112.18 3.29 37.49 9.76

80*p 24156 2 10 20097.85 46113.62 2.75 19.25 9.61

90%*p 24190 3 9 22836.00 46786.21 3.12 23.24 9.89
100=p 28127 3 9 24610.48 47267.56 3.37 24.68 9.96
110*p 27247 3 9 24928.46 47356.88 3.41 22.34 9.95
120%p 27716 4 8 26430.93 47797.92 3.62 23.31 9.96
180*p 34605 5 7 34003.53 50412.94 4.65 26.41 10.30
190%p 35368 5 7 34663.08 50671.40 4.74 26.12 10.02
200%p 38801 4 8 33868.11 50355.09 4.63 22.90 9.85
210*%p 39325 5 T 36478.14 51408.86 4.99 25.98 10.23
220%p 42143 4 8 35797.46 51126.75 4.90 23.51 9.77
230*p 39076 4 8 36471.70 51404.83 4.99 22.59 10.45
240%p 40526 5 7 38637.38 52334.78 5.29 24.95 10.59
250%p 43103 5 7 38797.65 52405.13 5.31 23.96 10.44
260%p 42669 6 6 41258.31 53531.47 5.65 26.86 10.55
270*p 46249 5 7 40884.16 53355.00 5.60 24.79 10.58
280%p 50867 7 5 49381.67 B7743.07 6.76 39.24 10.54
290*p 48599 6 6 43308.60 54521.31 5.93 26.06 10.88
300*p 49289 6 6 46043.14 55918.41 6.30 29.64 10.73
310*p 46818 6 6 44695.75 55218.43 6.12 26.24 10.58
320%p 48375 T 5 49060.71 57558.68 6.71 32.09 10.88
330%p 53975 8 4 51719.31 59090.78 7.08 35.49 10.83
340%*p 51953 7 5 50070.46 58129.85 6.85 31.26 10.87
350=*p 53042 5 T 48394.65 57185.44 6.62 27.60 10.63
360%*p 56590 e 5 538656.54 60384.62 7.37 34.83 11.22
370%p 94815 4 8 43990.61 54857.99 6.02 19.93 9.95
380%p 61136 8 4 58249.23 63194.87 T7.97 40.31 10.72
390*p 55396 8 & 56179.14 61838.79 7.69 35.19 11.05
400*p 59231 ¥ 5 53208.79 59979.76 7.28 29.55 10.88
410*p 59816 5 7 51022.77 58676.29 6.98 25.62 10.65
420=xp 65658 9 3 62359.30 66027.05 8.54 41.84 11.07
430*p 67213 6 6 57051.22 62401.07 7.81 32.85 10.398
440%p 63268 8 4 57691.89 62820.62 7.90 32.37 10.85
450%p 73360 11 1 72766.81 T74069.86 9.96 55.66 11.59
460%p 73287 10 2 73045.55 74301.15 10.00 54.63 11.66
470%p 69647 9 3 65186.14 68085.26 8.92 40.64 11.02
480%p 75210 11 1 74671.37 75673.21 10.22 55.09 11.30
490%p 74598 10 2 68117.77 70318.88 9.32 43.02 11.08
500%p 78052 11 1 74955.26 75913.97 10.26 52.94 1120
510%p 76573 11 1 76685.03 77413.55 10.50 54.63 11:27
520%p 77898 i1 1 74682.08 75678.12 10.22 50.15 11.15
530%p 86900 12 0 86509.37 86584.54 11.84 69.18 11.53
550*p 102887 12 0 99080.03 99935.51 13.56 91.88 10.18

Figure 15: Triangle Formulas Verification

21

Ne | Experiment | Formula | Difference

3 24190 22836 5.93%

4 27716 26430 4.87%

5 34605 34003 1.74%

6 42669 41258 3.42%

7 50867 49382 3.01%

8 53975 51719 4.36%

9 65658 62359 5.29%
10 73287 73045 0.33%

Table 2: Trapezoid Formulas Verification

8.1 Processor

There is always at least one processor which needs less waiting time considerably and at the same
time does more job than the rest. As you can see from Figure 7 and Figure 8, the 5th (logical
number) processor in both experiments. We have asked the machine owner in Toulouse, they
replied that all processors are identical. We once tried to locate physical number of the fastest
processor in one suite, and tried the same experimentation again without the that processor. It
turned out that another processor emerged as the fastest one.

8.2 Intertask Time of Triangle Form

We can not explain why waiting time of triangle is going up steadily while incrementing the
number of tasks.
We are guessing that more communication cost is needed when more tasks are involved.

9 Summary
From the experiments we have done, we can see that:

1. Time for each task is identical on each processor.

2. Waiting time between the consecutive two tasks is identical on each processor. i.e., the
interval between the adjacent two tasks is same.

3. Starting time for nodes forms a line.

4. There won’t be any idle processor (node) when there is a task in the waiting queue. i.e.,
the time between the mode which finishes the job the first and the one which does the last
is equal or smaller than average task time.

As we have claimed several times, this experimentation is the first step towards the parallel
machine to see whether it is feasible to use our experience on parallel machines. Therefore all
these observations consolidate the idea that performance on parallel machines can be predicted
and assure that the experience we got from the sequential machines can be expanded to parallel
ones. This method looks very promising.

22

10 Acknowledgements

I would to express my special thanks to CERFACS in Toulouse for letting us practice the experi-
mentations on BBN TC2000 machine and providing helps when we were stuck. Also I am grateful
to Ms. Danny Durand for initiating this work and guiding me all along the experimentation. I
also find that the discussion with Frangois Irigoin and Fabien Coelho is very enlightening.

References

(1] “Inside the TC2000 Computer”, Revision 1.0 BBN Advance Computers Inc. 1990

[2] “Using the Xtra Programming Environment”, Revision 2.0 BBN Advance Computers Inc.
1990

[3] “Uniform System Programming in C*, Revision 2.0 BBN Advance Computers Inc. March
1990

[4] Brian W. Kernighan and Dennis M. Ritchie “The C Programming Language”, Second
edition 1988 Prentice Hall

[5] R.H. Thomas and W. Crowther “The Uniform System: A approach to runtime support for
large scale shared memory parallel processors”, ICPP’88

23

