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Abstract

In order to choose the relatively best optimized version of a real Fortran program, we
have to compare the execution times of different optimized versions of the same Fortran
program. Since the real scientific Fortran programs can run for hours on the expensive
machines, it’s useful to perform a static analysis without lack of the accuracy. In this
baper, we propose to use the complexity, which is composed of polynomial and statistics,
to present the time evaluations of the Fortran program. Then, one real example is presented
in the PIPS programming environment. Finally, we shall mention what we plan to do about
complexity in the near future.
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Chapter 1

Introduction

Complexity plays an important role in computer science. For an algorithm, the cost of the
algorithm is always presented, because we are interested in not only complexity but also
results. For a machine, how fast it works is one of the key features to show its ability.

In this report, we’ll talk about complexity...

1.1 PIPS project

PIPS is French acronym which stands for Paralléliseur Interprocédural de Programmes
Scientifiques, developped at Centre de Recherche en Informatique de I’Ecole Nationale
Supérieure des Mines de Paris.

PIPS is a source-to-source parallelizing compiler that transforms Fortran77 programs
by replaceing parallelizable nests of sequential DO loops with either Fortran90 vector in-
structions or DOALL constructs. It is not targeted towards any particular supercomputers,
although only shared machines have been considered. The principal characteristics of PIPS
are:

1. Interprocedural parallelization.
2. Interprocedural analysis

3. Relative efliciency

See [1JT90] for more information.

1.2 Complexity in PIPS

Static evaluation is always useful to predict the performance of a program. Automatic
parallelizers apply the program transformation to detect the hidden parallelism which is
sometimes forgotten by the programmers or sometimes very difficult to find by human
being. Among these tramsformations, some lead to an increase of parallelism, some, in
the contrary, don’t. Now comes a question: Which transformation would we use? In some



cases, we choose one ; in some other cases, we choose the other. A static comparison would
help to make the decision.

There are several ways we can use to get the performance evaluation of a certain algo-
rithm or certain Fortran program.

1. The easiest way is to run it on the real paralle]l machine with varing number of
processors, such as Cray, Transputer, CM. it’s not a good way sinply because it’s the

most expensive one.

2. The cheapest one is statically evaluate or simulate.

3. The most approriate one ( at least I think ) is to well balance the former two ways
to get the best tradeoff.

Here is a brief sketch of what’s in the remaining chapters appendices:

e Chapter 2 shows the previous status of complexity program, explains the algorithm
of complexity.

e Chapter 3 describes what we have added for the complexity program, that is the
enhanced part of the program.

e Chapter 4 shows the result on a real example tmines.f, tells the difference between
the results obtained by hand and by our enhanced complexity evaluator.

o Chapter 5 describes what we can do in the near future about the evaluator.



Chapter 2

Previous Status of Complexity

Static evaluation is always useful to predict the performance of the program. See [Bert] for
more information.

2.1 Complexity’s Components in PIPS

The complexity of PIPS project is composed of two elements: a polynomial and statistics
counters about the variables.

2.1.1 Polynomial

The polynomial library has been created by several people of CRI, especially Pierre Berthomier.
It’s the component of C3 library. It’s made from the monomes, which are made from vec-
tors. The vector library is the essential part of C3 library.

2.1.2 Statistics

Although it’s almost impossible to get the precise execution time of a given set of in-
structions, we can expect a good approximation. The statistics counters contain three
kinds of counters to summarize the different sorts of approximations performed during the
evauation.

Variable Counting

1. symbolic counts the variable which appears literally and needs not to be evaluated.
What we need to know is its type.

2. guessed counts the variable which has to be evaluated and whose value can be found.

3. bounded counts the variable which has to be evaluated and whose value can not be
found exactly. In this case, we chose the worst estimation.

4. unknown counts the variable which is totally unknown.



Range Counting

1. profiled counts the loop range whose range is measured with some profiling. ( not
implemented )

2. guessed counts the loop range whose bound contains variable of the kind symbolic
and guessed.

3. bounded counts the loop range whose bound contains variable of the kind bounded.

4. unknown counts the loop range which is totally unknown.

If Counting
1. profiled counts the test whose probability was measured. ( not implemented )
2. computed counts the test whose probability was computed.

3. halfhalf counts the test that we know nothing about and whose probability was
supposed to be fifty-fifty.

2.2 Target machine model

Each computer manufacturers has its own way to deal with the numerical computations.

As computer technology advances, the supercomputer is getting more powerful. We need
to know the approximate cost for each operation, memory accesses, etc.

2.2.1 Cost Table

We present here the ideal complexity of the basic operators. It is the first step towards
the real world. Our purpose is to let it work first, so the values have not the importance
( surely, it will have in the future )- For the time being, we give the complexity unit for
every operation.

# cost_basic_ops_1 - Unity cost for basic operations

# int float double complex double-complex <-- type of argument(s)
+ 1 1 3 1 1

= 1 i i 1 -

* 1 i 1 1 <

4 1 1 1 1 1

= 1 i 1 1 : 4

s 1 1 1 1 1

Equally, we have the other cost tables for memory access, array element address com-
putation and transcendental functions which have the same format as the above one.



2.2.2 TImplemented machines

The simplest model has been chosen for a prototype implementation. The machine has one
ALU and one FPU, and they don’t overlap. There is neither cache memory, nor virtual
memory system. With some more time, we would have included 2 parametrable number of
processors: either a constant, or a symbolic pseudo-variable that would have appeared in
the expression of the complexity. For the time being, the evaluator only processes sequential
programs. Vector processing isn’t either taken into account. File inputs/outputs can only
receive a static constant cost, as well as each Fortran intrinsic (static in the sense that it
doesn’t depend on the environment in the source code). For the time being, we ignore the
kind of cost. In the case of mathematical functions, a cost is defined for each type of the
arguments: integer, floating-point, double precision, complex numbers.

2.3 Complexity Algorithms

We initially started the evaluation of the complexity in terms of floating-point operations;
then it gradually appeared that integer operations could be equally important, and also

that after all, memory accesses could as well be the real bottleneck, so we decided to count
them all.

2.3.1 Complexity of a variable

The cost of a variable depends upon its type, then we can find the cost in the cost table of
memory.

2.3.2 Complexity of an operator

To know the cost of an operator, one must first know the types of its arguments to determine
which kind of operation takes place, then find the relative cost for the operator in the cost
table.

2.3.3 Complexity of an expression

The evaluation of an expression cost is complicated by the overloading of most arithmetic
operators. To know the cost of an addition, for instance, one must first know the type
of its arguments. So we evaluate the expression bottom-up, beginning with the leafs of
the syntax tree (constants, variables or function calls) which type is known. The types of
sub-expressions are propagated towards the root. For example, IM *JM will have the cost
3 according to our current cost table.

2.3.4 Complexity of a statement

We have differnet complexity for different statements.



Complexity of an assignment

We refer to it as ezpression = ezpression, so the total complexity equals the sum of the
two expressions. For example, the following assignment has the the cost 5.

c 5 (STAT)

JJ = I+J-2

In PIPS, the assignment is considered as a call. Because the memory access has been
costed, so the assignment is considered to have zero cost.

Complexity of a call

The complexity of a call is exactly the summary complexity of the corresponding subroutine
or function.

Complexity of a Structured IF
IF boolezpr THEN stat;.,. ELSE stats,,. ENDIF

This statement is structured if there is no GOTO jumping in or out of stat,.,. or stat [

Let’s call p the probability that boolezpr is true, ¢ the probability that it is false, p+¢ = 1.
We use the following probabilistic definition of the complexity:

C(IF...) = C(boolezpr) + p-C(statyy.) + q.C(statsy,.)

If boolexpr isn’t particular, as a first coarse approximation, awaiting for run-time mea-
sures, we use the values p= ¢ = 1.
Complexity of a Sequential DO
Suppose that we have a loop:

DO indez = lower, upper, increment
body
ENDDO

The evaluation of lower, upper, increment may call functions, whose complexity must
be summed to the overall execution time. The complexity of the body may depend on the
index, so we must integrate it on the index rather than multiply it by the range width. We
hereafter include in Cjoqy the complexity of the loop index test and index incrementation.

upper
CDO...) = Uppert Crper + Clrnsomanr+ Z Chody (2.1)
indez=lower

This formula applies if we are able to properly evaluate lower, upper and increment as
polynomials.

For the sequential loop as well as the parallel ones, the statistics of the loop are computed
by adding those of the expressions lower, upper, increment, and body.



Complexity of a Parallel DO

DOALL indez = lower, upper
body
ENDDO

The complexity of the parallel loop is equal to the complexity of its largest iteration:

C(DOALL...) = Clower + Cupper + _max_ Chogy (2.2)

lower <indez<upper
This maximum is impossible to find in the general case. But note that thebest perfor-
mance is obtained when all iterations last the same time, for all processors to run together.

So when we are unable to compute the maximum, we can approximate it with the com-
plexity of the first iteration.

2.3.5 Complexity of a block

statement,
statement,

statement,

Once the control graph is computed, the construction of PIPS internal representation
of programs garantees that there is no GOTO jumping in or out of the middle of a block,

so that the n statements are always executed sequentially. The complexity of the block is
simply:

n

C(block) = 3 C(statement;)

=1

The statistics of the whole block is the sum counter to counter of the statistics of its
statements. PIPS detects only loop parallelism (nor COBEGIN ... COEND neither FORK,
JOIN).

2.3.6 Complexity of an unstructured control flow graph

Control flow graph and PIPS programs representation

Any Fortran program, even those containing GOTOs, can be represented by a graph whose
nodes are structured or elementary instructions, and whose edges stand for GOTO jumps.
Most of nodes have one outgoing edge, IF-GOTO-ELSE-GOTO nodes have two, and the
computed and assigned GOTO can have more. This graph is called a control flow graph
([ASU86]); PIPS’ outline internal representation is such a graph. Moreover, little unstruc-
tured pieces of code are encapsulated into one node in such graphs and viewed from the
rest of the program as if they were single, structured blocks of instructions.



Complexity of an unstructured control flow graph

Let’s now define a complexity for an unstructured program represented by its control flow
graph. Let {5:,5,,...,5,} be the set of the graph nodes, and S; the entry node. We are
sure there is only one, because of the definition of the graph: if there were more than one
entry point, that would mean there would be GOTOs reaching from outside of the graph into
the middle of it; the origin vertex would actually be a part of it.

Let ¢;, ¢z, .., ¢, be the complexities associated with 51,525+« ., 8, and supposed known.
Let’s call p;; the probability to go to node S; when you are in node S;. The probability to
go to any node, from node S;, is 1, so Y1 pij = 1. We'll at last associate to each node S;
the average complexity g; of the code still to be executed between S; and the exit of the
graph (g; is a sort of “global cost”). Our goal is the evaluation of g1 as it is the average
complexity of the code executed between the first node S1 and the exit node.

Here is a recursive definition of the g;: the global cost of a node is its proper cost ¢; plus
the sum of the global costs of its successors g; weighted by the associated probabilities Dije

gi=c+ > Pij-9; (2.3)
S; successor of S;



Chapter 3

New Features of Complexity

3.1 Complexity Zero

The complexity consists of two elements : polynomial and statistics. Ideally, we give the
statement CONTINUE zero as complexity value. It has the same idiosyncrasis as arithmetic
zero. When the polynomial is null, we refer to it as the complexity 0. There was an imple-
mentation problem at the beginning, because it was just a symbol to present complexity

zero, it had not the memory space. So we have to define complexity zero to deal with this
specific case.

3.2 Sorted Complexity Output

To make the complexity output more readable, we sorted the complexity output according
to the following criteria.

1. sum of the power number
2. alphabetical order about the variable names
3. constant is always at the end ( power equals zero )
The following is the complexity output of an example.
c 2*M"2.W + 15xM.N"2 + B*N"2 + 9*N + 3%K~(-1) - 8 (SUMMARY)

You see that, although the first and second term have the same sum power 3, we put M"2.N
because the M is alphabetically smaller than N. The second to the last has power —1, we
put it the second to the last because there’s a constant.

3.3 Utilization of the preconditions

All the preconditions depend heavily upon the C3 libraries, especially upon the systeme
constraint library where we can get all the information we want about the preconditions.



3.3.1 Exploitations of constants

Example:

n =10
doi=1,n

enddo
In this loop, N is replaced automatically by 10.

3.3.2 The check of the effects

Example:

n=f£(..)
doi=1,n

enddo

n=g(.)
doi=1,n

enddo

Note that N has been changed between the two loops. We have to use different values for
each loop. If they are unknown, the complexity result can not be added.

3.3.3 Final complexity result using formal parameters

When a subroutine is called, maybe several formal parameters have been passed. The
complexity results should contain the formal parameters as output and at the same time,
delete the middle variable(s). The same thing for the COMMON variables and explicitly-

asked variables.
Look at the following example:

subroutine sub(a,m,n)
real a(m)
integer m,n
k=3=*xn+ 2
do 10 i =1, k
t =%+ 1.0
10 continue
return
end

10



For this example, the complexity result should contajn n instead of k , for k is a private
integer and is not known by the outside world and is called middle variable.

We'll point out that no matter how complex the function is , as long as the function is
linear, the final complexity result always contains k as its component.

3.3.4 Nested-loop case

One of the most tricky things comes here. When inner loop bound is a linear function of
outer loop index.

Example:

subroutine sub2(m)
integer m
de 10 i =1, m
ii =1+ 1
do 20 j = ii, m + 2
jj=i+j-2
do 30 k = jj + 10, 100

t=1t%t+ 1.0
u=u+1.0
30 continue
20 continue
10 continue
return
end

There are three loops here loop 10, loop 20 and loop 30 respectively, one is embedded into
the other. For the innermost loop 30, its lower bound jj + 10 is dependent on the outer
loop 20’s index, which is determined by the two outer loop indexs. Remember that we use
the bottom-up method to accumulate the complexity. confined in this innermost loop 30,
we don’t know the relation between this loop and outer loops. So we must obtain what we
need in the innermost loop. Naturally preconditions comes into use.

We give the output of complexity result for this example in the following.

c 29*M~2 + 98*M + 1 (SUMMARY)
SUBROUTINE SUB2(K)
INTEGER M
c 29%M~2 + 98xM + 1 (DO)
DO10I =1, X 0003
C 3 (STAT)
II = I+1 0004
c 9%I°2 - 12*I.M + 3*M~2 - 84xI + 72*M + 135 (DO)
DO 20 J = II, M+2 0006
G 5 (STAT)
JJ = I+J-2 0007

11



-6*I - 6xJ + 6xM + 70 (DO)

DO 30 K = JJ+2, M+10 0009

c 3 (STAT)
T = T4+1.0 0010

¢ 3 (STAT)
U = U+1.0 0011

c 0 (STAT)
30 CONTINUE 0012
c 0 (STAT)
20 CONTINUE 0013
c 0 (STAT)
10 CONTINUE 0014
c 0 (STAT)

RETURN

ERD

Our method is to put each induction variable into a hash table to let it not be evaluated by the
complexity program when encountering a loop, and delete that induction variable when going out
of that loop. So for the innermost loop 30, what we can see about the complexity contains only
outer loops’ induction variables i, j and formal parameter m. For loop 20, the result contains i
and m, for outermost loop 10, the result contains merely the formal parameter m.

According to our complexity algorithm, The total complexity for the loop is 6% ((M+10)-(JJ+2)+1)+4
that equals -6*I - 6%J + 6%M + 70 by substituting JJ with the expression JJ = I+J-2 . Where
6 is loop body complexity, 1 is added because K is read each time in the loop, and 4 is the range
complexity, that is, 2 for the expression JJ+2 ( variable JJ and plus sign, each has one complexity
unit.) The same thing for the expression H+10.

3.4 User Interface for complexity

As a part of the PIPS project, one can get the complexity output using the PIPS interfaces, that
is TPIPS for “terminal” PIPS interface and WPIPS for multi-window PIPS interface. See [Baron]
for more details.

The original interface for complexity in PIPS environment is to call complexity directly.
After using TPIPS command Init to prepare everything, then we can use complexity .

The following session will help you run complexity program.

linz /home/users/pips/Pips/Development/Lib/complexity: cat s.f
subrountine sub

n = 10
do 10 i = 1, n
t=%t + 1.0
10 continue
end

linz /home/users/pips/Pips/Development/Lib/complexity: Init -f s.f s
linz /home/users/pips/Pips/Development/Lib/complexity: complexity -p s SUB

The option -p means to save the complexity result in the database. When execution is done,
we can find the complexity result in s.database/SUB.comp .

12



linz /hqme/users/pips/Pips/Development/Lib/complexity: cat s.database/SUB.comp
You can also use interative TPIPS to get result directly:
linz /home/users/pips/Pips/Development/Lib/complexity: Display -m sub comp

It calls the complexity program to obtain the complexity result and prints that in the screen.

3.5 Debugging tools for complexity

When the complexity evaluator is developped, at the same moment, two useful by-products came
into existence too — Tracing tool and Printing internal preconditions values.

3.5.1 Tracing tool

This tool is triggered by adding -t option to the executable complexity program. With it, we
can know where we are when we have problems, it can print out useful information, including

statement numbering; statement name etc. We use the above example s.f to show the tracing
tool as the following.

complexities SUB
>statement @, ordering 1
>instruction
| >unstructured
| >statement @, ordering 65537
>instruction
| >block
| >statement @, ordering 65538
>instruction
| >call TOP-LEVEL:=
| >arguments
>expression
| >syntax
| >reference SUB:HN
| >indices
| <
| <
| <
<
| >syntax
| ~ >call TOP-LEVEL:10
<

I
| <
<

I
I
I
I I
I I
| I
I I
I |
I |
| |
I I
I I
I I
| I
I !
| I
I I
I I
I I
I I
I I
I I

|
|
|
|
I
I
I
I
i >expression
I
I
!
I
I
!
I

<

13



| I

| I <

I | >statement @, ordering 65539
I ! >instruction

| | | >loop SUB:I label SUB:@10
| I | >range

! | | >expression

Omitted some parts of output.

| | <

I I <

| <

| <

| >statement €00000, ordering 65543
| >instruction

| | >call TOP-LEVEL:RETURN
I |  >arguments

| <

| <

|

I

I

<

I
|
I
I
|
[
|
|
I |
| |
| <
|
|
I
|
|
<

3.5.2 Printing internal preconditions values

If we want to make sure that the preconditions are good enough , we can append the -i option
to complexity program to print out the current internal precondition values. It will help us to
check where the error emerges, in the C3 library or complexity program itself.

14



Chapter 4

A Real Example

In this chapter, we will let our complexity program run on a real Fortran program ¢mines.f, which
is a compilable program from ONERA. (Office National pour ’Etude et Recherche de Aerospace).

4.1 Introduction to Fortran program TMINES

The Fortran program tmines.f, coded be Marc BREDIF, calculates the potential flow in a tube

in varing rectangular section. It resolves potential equation and calculats irrotational flow. See
[Emad] for more details.

Figure 4.1 shows the Interprocedural control flow graph. Among the most important subrou-
tines, we can say:

e calmat matrice constitution
e romat decomposition

e calcg application

4.2 Manual Results

In order to check the results obtained by our parallelizer PIPS is consistent to the original ones,
we need to know all the information about the Fortran program tmines.f. The work has been
done by Nahid Emad. She has got the all the complexity results for all procedures of tmines.f.
(See [Emad] for more details)

4.2.1 Programme TMINES.

Suppose ni, nj and nk be parameters used for the dimensions of the table in the program. Let :
a=nixnjxnk,B =nj *nk,y =nixnj,( =nixnk
d=(ni—1)%(nj—1)%(nk—1),8 = (nj— 1) % (nk—1)

7 = (ni—1) % (nj — 1),{ = (ni — 1) * (nk — 1)

The following table shows the floating point complexity of each routine called by TMINES or
by one of its procedures :

15



mailla

oltri
romat prepcg
TMINES
calmat
prod
caleg rep
des
resul

Figure 4.1: Interprocedural control flow graph of TMINES

16



procedure Cy
mailla Txa—3%8+543 xni — 517
calmat 8584 x & + A
prod 54xa—36xp
poltri 7277
romat 600 % & — 56 % ( — 26
prepcg 129%xa — 56 % (
calcg nmaz*(llS*a—36*B—36*C+8)
resul 45 % ni — 28
des 27xa— 18 % (
rep 27— 18 % (

4.3 Complexity Results

Generally our complexity result contains not only floating point complexity, but also one of
integers, etc. So in order to check our result, we have to make some small changes of cost table

to calculate merely floating point complexity.

4.3.1

Changed Cost Table

You have seen the general cost table in Chapter 2.

# cost_basic_ops_1

- Unity cost for basic operations

# int float double complex double-complex
+ o) 1 0 0 0
= 0 1 0 0 0
* 0 i 0 0 0
/ 0 1 0 0 0
= 0 1 0 0 0
*% 0 1 0 0 0

4.3.2 Complexity Output

The following complexity results are obtained by the complexity program with changed cost table.

Notice that IM is ni, JM is nj and KM is nk.

17
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procedure Cq

mailla TxIMJM.KM —3xIM. KM +431xIM + 5+ U _RANGE — 422
calmat | 5664 x IM.JM.KM — 5664 « IM.JM — 5664 x IM.KM — 5663 « JM. K M+
5664 x IM + 5664 x JM + 5664 « KM — 5664

prod 54 xIM.JM.KM — 36« JM.KM

poliri 7277
romat 489 x IM.JM.KM — 369 x IM.JM — 425 x IM.K M — 369 % JM.KM+
369 x IM 4 369 x JM + 369 « KM — 349

prepeg 120« IM.JM.KM — 56 « IM.K M
resul 55xIM — 46
des 2T« IM.JM.KM - 18 x IM.KM
rep 2T« IMJM.KM — 18 x IM. KM

For calcg, there is a line

HPHMAX = IM*JHM=*KH

and NPMAX serves as upper loop bound. But this is not a linear function, so output of complexity
program is very bad, we ignore that.
For mailla,

I2=IM/2 + 1

and I2 serves as upper loop bound. The U_RANGE in the table means I2.
You can see that for prod, poliri, des, rep, the results are identical. For the prepeg, 1 think
that it was a typo of Nahid Emad, it should be 120 instead of 129. For mailla, the two largest

terms are identical. For the calmat, romat, resul, there are several differences and I don’t know
who made the mistakes.

4.3.3 DES procedure

We choose the DES subroutine to show the whole complexity result.

c 27*IM.JH.KH - 18xIM.KM (SUMMARY)
SUBROUTINE DES(IM,JM,KM,T,B)

INTEGER IM,JM,KM,JMM,KMM,K,EU,I,IL,IU,J
REAL*8 T(1:IM,1:JM,1:KM),B(1:14,1:IM,1:JM,1:KM),TIK(1:25)

¢ 27%IM.JM.KM - 18*IM.KM (UNSTR)
¢ 27*IM.JM.KM - 18*IM.KM (BLOCK)
g 0 (STAT)
JMM = JM-1 0002
4 0 (STAT)
KMM = KM-1 0003
C 27+IM.JM.KH - 18+IM.KM (DO)
c
C-—mmmmmmmmme e DESCENTE= === == s m oo m oo e e
¢
DO 100 K = 1, KM 0005

18



(]

12

27*IM.JM - 18*IM
o]

KU = MINO(KM, K+1)

27*IM.JH - 18+IM
DO 1I=1, IM

27*J4 - 18
0
IL = MAXO(I-1, 1)
0
IU = MINO(I+1, IM)
3%JH - 3
DO 10 J = 1, JMM
3
1
TIK(J) = T(I,J,K)*B(1,I,J,K)
2
T(I,J+1,K) = T(I,J+1,K)-B(2,I,J,K)*TIK(J)
1
TIK(JH) = T(I,JM,K)*B(1,I,JM,K)
8*JM
DO 11 J =1, JM
8
0
T(1,J,K) = TIK(J)
2
T(1U,J,K) = T(IU,J,K)-B(4,I,J,K)*TIK(J)
2
T(IL,J,KU) = T(IL,J,KU)-B(6,I,J,K)*TIK(J)
2
7(I,J,KU) = T(I,J,KU)-B(8,I,J,K)*TIK(J)
2
T(IU,J,KU) = T(IU,J,KU)-B(10,I,J,K)*TIK(J)
8*JM - 8
DO 12 J = 1, JMM
8
2
T(IU,J,K) = T(IU,J,K)-B(3,I,J+1,K)*TIK(J+1)
2
T(I,J,KU) = T(I,J,EKU)-B(7,I,J+1,K)*TIK(J+1)
2
T(IL,J,KU) = T(IL,J,KU)-B(11,I,J+1,K)*TIK(J+1)
2
T(IU,J,KU) = T(IU,J,KU)-B(13,I,J+1,K)*TIK(J+1)
8*xJM - 8
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(BLOCK)
(STAT)

0006
(p0)

0008
(BLOCK)
(STAT)

0009
(STAT)

0010
(D0)

0012
(BLOCK)
(STAT)

0013
(STAT)

0014
(STAT)

0015
(Do)

0017
(BLOCK)
(STLT)

0018
(STAT)

0019
(STAT)

0020
(STAT)

0021
(STAT)

0022
(po)

0024
(BLOCK)
(STAT)

0025
(STAT)

0026
(STAT)

0027
(STAT)

0028
(po)



13

Q=

100

The complexity program output is exactly the same as the result obtained by hand.

DO 13 J = 2,

T(IU,J,K)
T(I,J,KU)
T(IL,J,KU)
T(IU,J,KU)

CONTINUE

CONTINUE

RETURN
END

JK

T(IU,J,K)-B(5,I,J-1,K)*TIK(J-1)
T(I,J,KU)-B(9,I,J-1,K)*TIK(J-1)
T(IL,J,KU)-B(12,I,J-1,K)*TIK(J-1)

T(IU,J,KU)-B(14,1,J-1,K)*TIK(J-1)
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0030
(BLOCK)
(STAT)

0031
(STAT)

0032
(STAT)

0033
(STAT)

0034
(STAT)

0035
(STAT)

0036
(STAT)



Chapter 5

Future work and Conclusion

5.1 Machine model — Cost table

It is necessary for the performance evaluator to be aware of the relative amount of time required by
different operations. For instance on the IBM RISC System/6000 computer, handfuls of floating-
point multiplication and additions can be performed in the time it takes to do a single fixed-point
multiply or to service a cache miss or even to get the result of a comparison to the branch unit.
In many instances, compilers cannot exploit these facts. So we need several tables to present the
machine’s characteristics.

Because the arithmatic calculation is very machine-dependent, so the factor depends heavily
upon which machine it runs. We should fetch the factors at the first time when PIPS is installed.

5.2 Implementation — Half static and half dynamic

Both static and dynamic evaluations have the shortcomings that we can’t solve it separately. We
have to find a way to combine the advantages of the two evaluations and get rid of the drawbacks
as most as possible. We think that method of half static and half dynamic is a good way to
evaluate the performance of program. The aim of this method is to get rid of static evaluation

problems, while keeping advantages of the symbolic expression of complexity. This method runs
in three steps.

1. It begins with a first pass of static evaluation, accumulating informations about its failures:
the locations of the IF tests which probability could not be computed (almost all), and the
locations of the DO loops which ranges were not exactly computed. These are the only
counters needed to complete the stastic complexity evaluation.

2. Then it makes a copy of the program, inserting counters at all places where a failure occured
during the first pass. The second step is to execute the modified program. At the end of
the run, the counters are written in a file that will now be exploited by a second pass of
“static” evaluation.

3. The last step is to rerun the “static” evaluation with all the counters obtained by the second
step to get the overall complexity of the program.
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The only use of the first pass of complexity evaluation is to insert counters only where it
is necessary, to gain time on the execution of the modified program. Actually, it may be more
interesting to skip it and choose to spy every IF test probability and every DO loop range width.

An advantage of this method is that the profiling execution can run on any machine (once
again, having the same floating-point numbers internal representation). As it uses much less
profiling information than the dynamic approach, and because the output evaluation is parametric,
its results are less sensitive to the choice of the data set provided for this particular sample run.
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