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Embedded control systems

• Computing system that controls the execution of 
a piece of « physical » equipment, in order to 
ensure its correct functioning
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Embedded systems implementation

• Still largely a craft in the industry
– Important manual and/or unformalized phases

• Some that could be automatized with existing industry-grade 
tools (modulo certification arguments)
– Discretization of the continuous-time model 
– Construction of tasks from pieces of C code
– Allocation and scheduling of tasks for functional correctness
– Programming and implementing complex timed behaviors

• Some that cannot (to my knowledge)
– Building platform and implementation models for precise and safe 

timing analysis 
– Allocation & scheduling providing hard guarantees of respect for real-

time and other non-functional requirements

– Resource-consuming, error-prone
– Ultimately rely on test to check system correctness
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Hand-crafting implementations
no longer scales

• Complexity explodes
– Large numbers of resources (multi-/many-cores)
– Large amount of SW (more tasks, more system SW)
– More complex hardware, OS, SW

• Communication networks (NoCs, AFDX, etc.), hierarchical schedulers, 
dependent tasks

• Efficiency becomes critical
– Parallelized filters = dependent task systems

• Can rapidly lose performance if multi-processor scheduling is not efficient

– Performance highly depends on mapping, need to fine tune all 
system parameters
• Allocation, scheduling
• Memory allocations
• Synchronizations, communications…

• Delegating mapping to HW/OS results in impredictability
– Cache coherency, GPUs, dynamic allocation and scheduling, etc.5



Off-line automation is needed

• Requires full formalization:
– Functional specification

– Non-functional requirements

– Execution platform models
• Sound abstraction issue 

– Formalization of implementation correctness

• Requires efficient algorithms for analysis and 
synthesis

Standardization is a prerequisite
(allows cost-effective tool-building)
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A success story of off-line automation: 
compilation

• Low level of the embedded implementation flow.
• Made possible by the early standardization of 

programming languages, and execution platforms
(ISAs, ABIs, APIs).

• Almost complete replacement of assembly coding, 
even in embedded systems design.
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Challenge: full automation
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Challenge: full automation

• Historically: difficult, due to lack of standardization

• Recently: functional and non-functional specification
languages
– Dynamic systems specification languages: 

• Simulink, LabView, Scade, etc.
• Code generation ensuring functional correctness, not schedulability
• Discretization

– Systems engineering languages: 
• SysML, AADL… 
• Real-time, Criticality/partitioning, Allocation…

• Today: Execution platforms with support for real-time:
– ARINC 653, AUTOSAR, TTP/TTEthernet,  etc.
– Many-cores (some of them)
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Real time systems compilation

• Move from specification to running implementation
– Fully automatically

• No human intervention during the compilation itself

– Inputs and outputs must all be formalized
• Functional and non-functional inputs, (model of) generated code
• Provide formal correctness guarantees (functional&non-functional) 
• No break in the formal chain

– Formal proof possible

– Failure traceability
• Functional and non-functional causes
• Easy to do trial-and-error systems design

– Fast and efficient
• Fine-grain platform and application modeling
• Use of fast heuristics

– Compilation, real time scheduling, synchronous languages, etc.
– Exact techniques (e.g. SMT-based) do not scale [FORMATS’15] 12



Real time systems compilation

• Start with statically scheduled systems

• Timing analysis-friendly (if HW&OS are also friendly)
– Good performance  and timing predictability

– Checking functional correctness and computing WCET/WCRT is easy
using existing tools

– We have good experience with static scheduling approaches

• Classes of applications with practical importance
– Critical embedded control applications

– Signal/image processing

• Implementation model: scheduling/reservation tables
– Shared between real-time scheduling and compilation

» Facilitate reuse of algorithms

13



Previous work

• Work on superscalar/VLIW/many-core compilation
– Optimization, not respect of requirements
– No hard real-time guarantees
– Finer level of control 

• Work on off-line real-time scheduling
– AAA/SynDEx (Sorel et al.)

• Does not have: classical compiler optimizations (pipelining), fine-grain 
execution condition analysis, time triggered code generation, partitioning, 
preemptable tasks, memory allocation…

– Simulink -> Scade -> TTA (Caspi et al.)
• Does not have: Automatic allocation, conditional execution, preemption, 

mapping optimizations (pipelining, memory bank allocation, etc.).

– Prelude (Forget et al.)
• Does not have: Partitioning, deadlines longer than periods, memory bank

allocations.

– PsyC/PharOS
• Input is lower-level (can be used as back-end to our approach) 14



The real time compiler Lopht

• Compiler for statically-scheduled real-time systems
– Functional specification: Data-flow synchronous (e.g. Lustre/Scade)
– Target execution platforms: 

• Distributed time-triggered systems
– ARINC 653-based  processors, TTEthernet
– Full generation of ARINC 653 configuration & partition C/APEX code & bus schedule

• « WCET-friendly » many-cores (our own, Kalray MPPA)
– Full generation of C bare metal code, including communication and synchronization

operations, memory allocations, NoC configuration, etc.
– WCET analysis of generated parallel code, including synchronization code (sound

architecture abstraction layer)

– Meaningful applications:
• Space launcher model (Airbus DS)

– Complex non-functional requirements

• Passenger exchange (Alstom/IRT SystemX)
– Focus on mixed criticality

• Platooning application model (CyCab)
– Parallelized image processing code inside a control loop
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The principle: table-based scheduling

• Example: Engine ignition application 

– Functional specification: dataflow synchronous
• Cyclic execution model
• 4 modes determined by 2 independent switches 16
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The principle: table-based scheduling

• Example : Non-functional specification

– 3 CPUs, 1 broadcast bus

– WCETs/WCCTs

– Allocation constraints

P0 P1

BUS

read_input=1
F1 = 3
F2 = 8
F3 = 5

F1 = 3
F2 = 8
F3 = 5
G  = 3Bool=2

ID=5
V=2
x=2

P2

F1 = 3
F2 = 8
F3 = 2
N  = 3
M = 1
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The principle: table-based scheduling

• List scheduling (like in compilers, SynDEx, etc.)
– Allocate and schedule the blocks 1 by 1

– Allocation and scheduling are optimal for each block
• Criterion: Cost function

– All legal allocations are tried, we retain the one that minimizes the 
cost function

– Cost functions: 

» Simplest: worst-case end date of the block (this example)

» More complex can include e.g. locality-related terms

• Does not imply global optimality (heuristic)
– No backtracking

– Communication mapping is done during block mapping

– Failure reporting: current scheduling status, blocking 
reason

18



The principle: table-based scheduling

• Result: conditioned scheduling table
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P0 P1 P2temps

6
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HS)
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if(not 
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if(FS)
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send(P0,FS)
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F3
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if(HS)
G

if(not FS)M

if(not HS&
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send(P0,ID)

if(HS&
not FS)

send(P1,ID)



Before scheduling: flattening the 
dataflow
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Before scheduling: flattening the 
dataflow

• Translation to non-hierarchic data-flow
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Scheduling algorithm

• Step 1: order the dataflow blocks (« list
scheduling »)
– Total order compatible with the data dependencies

(except for delayed ones)
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Scheduling algorithm

• Step 1: order the dataflow blocks (« list
scheduling »)
– Total order compatible with the data dependencies

(except for delayed ones)
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Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1
– Allocation and scheduling are optimal for each block, 

taken separately.
• Criterion: Cost function

– Try all legal allocations, but retain only one of those that minimize
the cost function

– In this example, cost function = reservation end date

• Local optimality does not imply global optimality
– No backtracking

– Communication scheduling is done on demand, 
during block scheduling.
• Multiple routes possible => more complicated

24



Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1
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Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1
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Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1
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Bus
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Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1
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0
1
2
3
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P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN

Operation F1 can be
allocated on P0, P1, 
or P2. We retain the 
allocation on P0 (in 
darker blue) be-
cause in this case F1 
terminates at date 
5, whereas on P1 or 
P2 it would end at
date 6 (due to the 
communication of 
HS, needed to 
compute the 
activation 
condition).

FS_IN
if(not 
HS)
F1

send(P0,HS)

if(not HS)
F1

if(not HS)
F1



Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1
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Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1
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Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1
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6
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Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1
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0
1
2
3
4
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P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN

N can only be
allocated on P2. 
This forces the 
transmission of FS.
The 2 operations
are scheduled as 
soon as possible 
(ASAP).

FS_IN
if(not 
HS)
F1

if(not 
HS)
F2

if(FS)
N

send(P0,FS)



Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1
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P0 P1 P2time

6
7
8
9
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16

Bus
HS_IN

F3 can be allocated
on P0, P1, or P2. It is
executed much
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the needed
communication 
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on P2 is therefore
retained.

FS_IN
if(not 
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if(not 
HS)
F2

if(FS)
N

send(P0,FS)

if(not HS) 
F3

if(not HS)
send(P0,V)

send(P0,HS)

if(not 
HS) F3

if(not HS) 
F3



Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1
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Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1
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Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1
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Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1
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6
7
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9
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HS_IN

M can be allocated
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ding on the value of 
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this data is not 
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not executed, hence
the execution
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send operations.

FS_IN
if(not 
HS)
F1

if(not 
HS)
F2

if(FS)
N

send(P0,FS)

if(not HS) 
F3

if(not HS)
send(P0,V)

send(P0,HS)

if(HS)
G

if(not FS)M

if(not HS&
not FS)

send(P0,ID)

if(HS&
not FS)

send(P1,ID)



Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1
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0
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3
4
5

P0 P1 P2time

6
7
8
9
10
11
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14

12

15
16

Bus
HS_IN

Generated
schedule:
- Latency: 17 
- Throughput: 

1/17

FS_IN
if(not 
HS)
F1

if(not 
HS)
F2

if(FS)
N

send(P0,FS)

if(not HS) 
F3

if(not HS)
send(P0,V)

send(P0,HS)

if(HS)
G

if(not FS)M

if(not HS&
not FS)

send(P0,ID)

if(HS&
not FS)

send(P1,ID)



But this is not enough (1/3)

• General-purpose optimization, to reduce 
communications, reduce makespan, and 
increase throughput

– Software pipelining of scheduling tables

• Reduce throughput without changing makespan

• Take into account conditional execution to allow double 
reservation between successive cycles

– Safe double reservation of resources

• Precise analysis of execution conditions

39



But this is not enough (1/3)

• Example: software pipelining
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P0 P1 P2time

6
7
8
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11

13
14

12

15
16

Bus
HS_IN

Generated
schedule:
- Latency: 17 
- Throughput: 

1/17

FS_IN
if(not 
HS)
F1

if(not 
HS)
F2

if(FS)
N

send(P0,FS)

if(not HS) 
F3

if(not HS)
send(P0,V)

send(P0,HS)

if(HS)
G

if(not FS)M

if(not HS&
not FS)

send(P0,ID)

if(HS&
not FS)

send(P1,ID)



But this is not enough (1/3)

• Example: software pipelining
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P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN

Generated
schedule:
- Latency: 17 
- Throughput: 

1/17

FS_IN
if(not 
HS)
F1

if(not 
HS)
F2

if(FS)
N

send(P0,FS)

if(not HS) 
F3

if(not HS)
send(P0,V)

send(P0,HS)

if(HS)
G

if(not FS)M

if(not HS&
not FS)

send(P0,ID)

if(HS&
not FS)

send(P1,ID)

17
18
19

HS_IN
FS_IN

if(not 
HS)
F1

if(FS)
N

send(P0,FS)

if(not 

send(P0,HS)

if(HS)
G



But this is not enough (1/3)

• Example: software pipelining

42

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11
12

Bus
HS_IN

Generated
schedule:
- Latency: 17 
- Throughput: 

1/13

Software pipelining 
(classical compil. 
technique) can be
applied.

FS_IN
if(not 
HS)
F1

if(not 
HS)
F2

if(FS)
N

send(P0,FS)
if(not HS) 

F3

if(not HS)
send(P0,V)

send(P0,HS)

if(HS)
G

if(not FS)M

if(not HS&
not FS)

send(P0,ID)
if(HS&
not FS)

send(P1,ID)

Using software pipelining required some modifications to classical algorithms:
• Bi-criteria: latency first, throughput second
• Improved predication handling (conditions between cycles, no delay slot needed)



But this is not enough (1/3)

• Application

43

MC



Init = 1

if(m=3)
F3

if(m=2)
F2

if(m=1)
F1

G

m=1 m=2 m=3



But this is not enough (1/3)

• Latency-optimizing scheduling
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MC@true
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6

Latency = 7
Throughput = 1/7



But this is not enough (1/3)

• Pipelined scheduling

– Using mode transition information

45

MC@true
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But this is not enough (1/3)

• Pipelined scheduling

– Without using mode transition information
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@m=1

G
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G
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But this is not enough (1/3)

• Software pipelining => memory replication

– Rotating registers

– Conditional execution => not clear which version of a
register to access

• Need an indirection table, dynamically updated

• Real-time guarantees

– Worst-case analysis

– Account for artefacts

• E.g. rotating register operations
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But this is not enough (2/3)

• Time triggered applications
– Target: ARINC 653-compliant OSs, time-triggered comm. 

• Synthesis of inter-partition communication code (and considering it 
during scheduling)

– Non-functional properties taken as input: 
• ARINC 653 partitioning (all or part or none, application and platform)
• Real time (release dates, deadlines – can represent end-to-end latency)
• Preemptability of each task
• Allocation requirements

– Optimizations:
• Deadline-driven scheduling (to improve schedulability)
• Minimize the number of tasks at code generation (at most one per 

input acquisition point)
• Minimize the number of partition changes

– Hypotheses: The scheduler and I/O impact on WCETs can be 
bounded. 48



But this is not enough (3/3)

• Many-core (bare metal)
– Sound architecture abstraction layer with support for 

efficiency
• Precise platform modeling:

– NoC: one resource per DMA and NoC arbiter
» Wormhole scheduling synchronizes schedules along the path of each 

packet
– Memory banks are resources

» Reserve them for data, code, and stack to avoid contentions

• WCET analysis for parallel code
– Considers synchronization overheads

– Synthesis of communication and synchronization code (lock-
based) on the processors
• Account for communication/synchronization initiation costs

– Precomputed preemptions for communications
• Account for preemption costs
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But this is not enough (3/3)

• Synchronized & 
preemptive comm.
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Other related results (1/3)

• Many-core platform with support for efficient 
predictability
– Principle: avoiding contentions through mapping

• No shared caches 

• Hardware locks for mutual exclusion during RAM access

– Expose NoC arbitration to programming
• Efficiency bottleneck is in both CPUs and interconnect, and 

similar arbitration is required of both (in various contexts), so 
they should provide the same level of control.

• General-purpose: 
– No change in processor programming (gcc)

– Not programming the NoC arbiters maintains functional correctness

• Small hardware overhead

• Automatic mapping (global optimization) -> good results ! 51



Other related results (2/3)

• Heuristics vs. exact methods (SAT/SMT/etc.)

– Recent constraint solvers (Cplex, Gurobi, Yices2, etc.) 
have largely improved performance 

– Question: Can they solve scheduling problems ?

– Answer: Yes, up to a certain size, which largely 
depends on problem complexity, problem type 
(schedulability vs. optimization), system load.

• From a few tasks (optimization, preemptive, multi-periodic) 
to more than 100 tasks.

– Conclusion: Developing heuristic methods still has 
its use, especially for complex problems like ours.52



Other related results (3/3)

• Automatic delay-insensitive implementation of 
synchronous programs
– Objective: separation of concerns between functional and 

non-functional aspects
• Optimal synchronization protocols ensuring functional 

determinism

– Characterization of delay-insensitive synchronous 
components (weak endochrony)
• Set theoretical limits

– Weak endochrony checking
• New representation of the behavior of concurrent systems by 

means of sets of atomic behaviors

– Synthesis of delay-insensitive concurrent 
implementations
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Avionics GNC application

• Simplified version:

– 3 tasks TFast ,TGNC et Tthermal

– 3 partitions PFast, PGNC et Pthermal

– WCETs: 40ms, 200ms et 100ms

– Periods: 100ms, 1s, 1s

54
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Avionics GNC application

• Simplified version: 

– 3 tasks TFast ,TGNC et Tthermal

– 3 partitions PFast, PGNC et Pthermal

– WCETs: 40ms, 200ms et 100ms

– Periods: 100ms, 1s, 1s

– Hyperperiod expansion : MTF = 1s
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Avionics GNC application

• Real time requirements

– Tfast reads inputs arriving periodically in an infinite
buffer
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Avionics GNC application

• Real time requirements

– Tfast reads inputs arriving periodically in a buffer of 
size 2
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Avionics GNC application

• Real time requirements

– Infinite buffers

– « A full flow formed of 10 instances of Tfast

followed by an instance of TGNC and then by an 
instance of Tfast should take less than 1400 ms »
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Avionics GNC application

• Step 1 : remove delayed dependencies

– Replace them by timing barriers

– Heuristic approach (sub-optimal)
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Avionics GNC application

• Step 1 : remove delayed dependencies

– Replace them by timing barriers

– Heuristic approach (sub-optimal)
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Avionics GNC application

• Step 2 : off-line scheduling
– Allocate and schedule blocks one by one (no 

backtracking)
– Deadline-driven

• Of all tasks that can be executed, consider the one with
earliest deadline

• Deadline = minimum of all successor deadlines
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Avionics GNC application
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Avionics GNC application
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Avionics GNC application

• Full application

– 4 processors, 1 broadcast bus

– 13 tasks before hyper-period expansion

– 7 partitions

– 10 end-to-end latency constraints

– Result:

• Processor loads: 82%, 72%, 72%, 10% (last one for 
telemetry)

• Bus: 81%



Conclusion (1/3)

• Full-fledged real-time systems compilation is
feasible

– At least for certain application classes

– Ensures correctness and efficiency

– Allows a trial-and-error design approach for complex
embedded systems

• Simple theoretical and algorithmic principles

– Independence, isolation, list scheduling, timetables, 
pipelining…
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Conclusion (2/3)

• But no not mistake a list of simple principles for a 
compiler

– Integration requires careful adaptation of the concepts 
and techniques

– Match the needs of realistic applications to give good 
results

• Good resource use

• Good timing precision

– Few percent difference between guarantees and actual execution for 
certain many-core applications.

– Lopht: not a scheduling toolbox, nor a classical compiler

• Hence the title « real time systems compiler » 66



Conclusion (3/3)

• Major difficulties

– Few benchmarks/case studies

• Sharing is difficult (technical, legal, will issues)

– Publication

• Cross-domain, everybody sees it as interesting « for the 
other domain » (sort of NIMBY syndrome)

– Sharing between various targets

• No general platform definition language

67



Future work (1/2)

• Short/medium term (ongoing):
– Execution platform modeling

– Provide compiler correctness guarantees/proofs

– Improve treatment of multi-periodic applications
• Trade-off between scheduling freedom (and thus efficient 

resource use) and compactness of representation
(architectural limits, legibility)

– New platforms
• TTEthernet – taking into account platform-related tools

• Kalray MPPA – Generate code over the Kalray hypervisor, 
NoC handling

– New case studies for/from the industry 68



Future work (2/2)

• Longer term: 

– Improve embedded systems mapping by 
adapting/combining models and techniques from
compilation, real-time scheduling, and synchronous
languages

• Compilation: Code replication, Loop unrolling…

• Real-time scheduling: CRPD computation…

• Synchronous languages: n-synchronous clock calculus…

69



70


