
Real Time Systems Compilation
with Lopht

Dumitru Potop-Butucaru
INRIA Paris/ AOSTE team

Jan. 2016

1

Embedded control systems

• Computing system that controls the execution of
a piece of « physical » equipment, in order to
ensure its correct functioning

2

Plant
(controlled

« physical » system)

Embedded control
system

SensorsActuators
Analog domain

Digital domain

Criticality
Allocation
Partitioning
Other real-time

Embedded control systems

3

Continuous-time
model

Functional
specification

Platform-independent
real-time specification

Controller
discretization

Other non-functional
requirements

Platform
model

(HW+OS)

Other engineering fields
(HW design, reliability, etc…)

Plant+Controller

C
o

m
p

u
te

r
en

gi
n

ee
ri

n
g

Non-functional specificationCyclic control Periods
Deadlines
Latency constraints

Implementation

Executable
implementation

Functional
correctness

CPU, bus, etc.
Topology
WCET/WCCT
OS/drivers

C
o

n
tr

o
l

en
gi

n
ee

ri
n

g

Respect of
requirements

Embedded systems implementation

• Still largely a craft in the industry
– Important manual and/or unformalized phases

• Some that could be automatized with existing industry-grade
tools (modulo certification arguments)
– Discretization of the continuous-time model
– Construction of tasks from pieces of C code
– Allocation and scheduling of tasks for functional correctness
– Programming and implementing complex timed behaviors

• Some that cannot (to my knowledge)
– Building platform and implementation models for precise and safe

timing analysis
– Allocation & scheduling providing hard guarantees of respect for real-

time and other non-functional requirements

– Resource-consuming, error-prone
– Ultimately rely on test to check system correctness

4

Hand-crafting implementations
no longer scales

• Complexity explodes
– Large numbers of resources (multi-/many-cores)
– Large amount of SW (more tasks, more system SW)
– More complex hardware, OS, SW

• Communication networks (NoCs, AFDX, etc.), hierarchical schedulers,
dependent tasks

• Efficiency becomes critical
– Parallelized filters = dependent task systems

• Can rapidly lose performance if multi-processor scheduling is not efficient

– Performance highly depends on mapping, need to fine tune all
system parameters
• Allocation, scheduling
• Memory allocations
• Synchronizations, communications…

• Delegating mapping to HW/OS results in impredictability
– Cache coherency, GPUs, dynamic allocation and scheduling, etc.5

Off-line automation is needed

• Requires full formalization:
– Functional specification

– Non-functional requirements

– Execution platform models
• Sound abstraction issue

– Formalization of implementation correctness

• Requires efficient algorithms for analysis and
synthesis

Standardization is a prerequisite
(allows cost-effective tool-building)

6

A success story of off-line automation:
compilation

• Low level of the embedded implementation flow.
• Made possible by the early standardization of

programming languages, and execution platforms
(ISAs, ABIs, APIs).

• Almost complete replacement of assembly coding,
even in embedded systems design.

7

C/Ada/…
programs

Compiler

Executable
implementation

Platform model
(ISA+ABI+API+ti

ming)

Real-time scheduling vs. compilation

Functional
specification

Platform-independent
real-time specification

Other non-functional
requirements

High-level
platform

model

Real time scheduling

Abstract implementation
model

8

C/Ada/…
programs

Compiler

Executable
implementation

Off-line vs. On-line
(RM/EDF/RTC/etc.)

Scheduling tables
Task models

R-T calculus models

Platform model
(ISA+ABI+API+ti

ming)

R
ea

l-
ti

m
e

sc
h

ed
u

lin
g

C
o

m
p

ila
ti

o
n

Real-time scheduling vs. compilation

Functional
specification

Platform-independent
real-time specification

Other non-functional
requirements

High-level
platform

model

Real time scheduling

Abstract implementation
model

9

C/Ada/…
programs

Compiler

Executable
implementation

Platform model
(ISA+ABI+API+ti

ming)

R
ea

l-
ti

m
e

sc
h

ed
u

lin
g

C
o

m
p

ila
ti

o
n

Abstraction layer (WCET analysis, protocol synthesis, code generation) Rarely sound

Challenge: full automation

Functional
specification

Platform-independent
real-time specification

Other non-functional
requirements

High-level
platform

model

Real time scheduling

Abstract implementation
model

10

C/Ada/…
programs

Compiler

Executable
implementation

Platform model
(ISA+ABI+API+ti

ming)

Abstraction layer (WCET analysis, protocol synthesis, code generation) Rarely sound

R
ea

l-
ti

m
e

sc
h

ed
u

lin
g

C
o

m
p

ila
ti

o
n

Challenge: full automation

• Historically: difficult, due to lack of standardization

• Recently: functional and non-functional specification
languages
– Dynamic systems specification languages:

• Simulink, LabView, Scade, etc.
• Code generation ensuring functional correctness, not schedulability
• Discretization

– Systems engineering languages:
• SysML, AADL…
• Real-time, Criticality/partitioning, Allocation…

• Today: Execution platforms with support for real-time:
– ARINC 653, AUTOSAR, TTP/TTEthernet, etc.
– Many-cores (some of them)

11

Real time systems compilation

• Move from specification to running implementation
– Fully automatically

• No human intervention during the compilation itself

– Inputs and outputs must all be formalized
• Functional and non-functional inputs, (model of) generated code
• Provide formal correctness guarantees (functional&non-functional)
• No break in the formal chain

– Formal proof possible

– Failure traceability
• Functional and non-functional causes
• Easy to do trial-and-error systems design

– Fast and efficient
• Fine-grain platform and application modeling
• Use of fast heuristics

– Compilation, real time scheduling, synchronous languages, etc.
– Exact techniques (e.g. SMT-based) do not scale [FORMATS’15] 12

Real time systems compilation

• Start with statically scheduled systems

• Timing analysis-friendly (if HW&OS are also friendly)
– Good performance and timing predictability

– Checking functional correctness and computing WCET/WCRT is easy
using existing tools

– We have good experience with static scheduling approaches

• Classes of applications with practical importance
– Critical embedded control applications

– Signal/image processing

• Implementation model: scheduling/reservation tables
– Shared between real-time scheduling and compilation

» Facilitate reuse of algorithms

13

Previous work

• Work on superscalar/VLIW/many-core compilation
– Optimization, not respect of requirements
– No hard real-time guarantees
– Finer level of control

• Work on off-line real-time scheduling
– AAA/SynDEx (Sorel et al.)

• Does not have: classical compiler optimizations (pipelining), fine-grain
execution condition analysis, time triggered code generation, partitioning,
preemptable tasks, memory allocation…

– Simulink -> Scade -> TTA (Caspi et al.)
• Does not have: Automatic allocation, conditional execution, preemption,

mapping optimizations (pipelining, memory bank allocation, etc.).

– Prelude (Forget et al.)
• Does not have: Partitioning, deadlines longer than periods, memory bank

allocations.

– PsyC/PharOS
• Input is lower-level (can be used as back-end to our approach) 14

The real time compiler Lopht

• Compiler for statically-scheduled real-time systems
– Functional specification: Data-flow synchronous (e.g. Lustre/Scade)
– Target execution platforms:

• Distributed time-triggered systems
– ARINC 653-based processors, TTEthernet
– Full generation of ARINC 653 configuration & partition C/APEX code & bus schedule

• « WCET-friendly » many-cores (our own, Kalray MPPA)
– Full generation of C bare metal code, including communication and synchronization

operations, memory allocations, NoC configuration, etc.
– WCET analysis of generated parallel code, including synchronization code (sound

architecture abstraction layer)

– Meaningful applications:
• Space launcher model (Airbus DS)

– Complex non-functional requirements

• Passenger exchange (Alstom/IRT SystemX)
– Focus on mixed criticality

• Platooning application model (CyCab)
– Parallelized image processing code inside a control loop

15

The principle: table-based scheduling

• Example: Engine ignition application

– Functional specification: dataflow synchronous
• Cyclic execution model
• 4 modes determined by 2 independent switches 16

HS_IN

ID

F3

IDG

if (HS)

if (not HS)
ID

F2

F1

FS_IN

M

N

if (FS)

if (not FS)

ID

V
x

Δ HS: High speed mode
FS: Fail-safe mode

The principle: table-based scheduling

• Example : Non-functional specification

– 3 CPUs, 1 broadcast bus

– WCETs/WCCTs

– Allocation constraints

P0 P1

BUS

read_input=1
F1 = 3
F2 = 8
F3 = 5

F1 = 3
F2 = 8
F3 = 5
G = 3Bool=2

ID=5
V=2
x=2

P2

F1 = 3
F2 = 8
F3 = 2
N = 3
M = 1

17

The principle: table-based scheduling

• List scheduling (like in compilers, SynDEx, etc.)
– Allocate and schedule the blocks 1 by 1

– Allocation and scheduling are optimal for each block
• Criterion: Cost function

– All legal allocations are tried, we retain the one that minimizes the
cost function

– Cost functions:

» Simplest: worst-case end date of the block (this example)

» More complex can include e.g. locality-related terms

• Does not imply global optimality (heuristic)
– No backtracking

– Communication mapping is done during block mapping

– Failure reporting: current scheduling status, blocking
reason

18

The principle: table-based scheduling

• Result: conditioned scheduling table

19

0
1
2
3
4
5

P0 P1 P2temps

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN
FS_IN

if(not
HS)
F1

if(not
HS)
F2

if(FS)
N

send(P0,FS)

if(not HS)
F3

if(not HS)
send(P0,V)

send(P0,HS)

if(HS)
G

if(not FS)M

if(not HS&
not FS)

send(P0,ID)

if(HS&
not FS)

send(P1,ID)

Before scheduling: flattening the
dataflow

20

HS_IN

ID

F3

IDG

if (HS)

if (not HS)
ID

F2

F1

FS_IN

M

N

if (FS)

if (not FS)

IDx

Init=v0
HS: High speed mode
FS: Fail-safe mode

V

• Translation to non-hierarchic data-flow

Before scheduling: flattening the
dataflow

• Translation to non-hierarchic data-flow

21

HS_IN G

FS_IN

M

HS: High speed mode
FS: Fail-safe mode

N

true

true
HS

ID
FS

FS
HS

F2

F1
x

Init=v0

F3
V

HSHS

HS

HS FS

HS FS

HS

HS

HSHS

Scheduling algorithm

• Step 1: order the dataflow blocks (« list
scheduling »)
– Total order compatible with the data dependencies

(except for delayed ones)

22

HS_IN G

FS_IN

M

N

true

true
HS

ID
FS

FS
HS

F2

F1
x

F3
V

HSHS

HS FS

HS FS

HSHS

Scheduling algorithm

• Step 1: order the dataflow blocks (« list
scheduling »)
– Total order compatible with the data dependencies

(except for delayed ones)

23

HS_IN G

FS_IN

M

N

true

true
HS

ID
FS

FS
HS

F2

F1
x

F3
V

HSHS

HS FS

HS FS

HSHS

2

1

3

4 6

7 5

8

Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1
– Allocation and scheduling are optimal for each block,

taken separately.
• Criterion: Cost function

– Try all legal allocations, but retain only one of those that minimize
the cost function

– In this example, cost function = reservation end date

• Local optimality does not imply global optimality
– No backtracking

– Communication scheduling is done on demand,
during block scheduling.
• Multiple routes possible => more complicated

24

Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1

25

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus

At first, the
scheduling table is
empty.

Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1

26

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN

Operation HS_IN
can only be
allocated on P0. The
optimal schedule
places the
operation at date 0.

Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1

27

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN

Operation FS_IN can
only be allocated on
P0. The optimal
schedule places the
operation at date 1.

FS_IN

Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1

28

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN

Operation F1 can be
allocated on P0, P1,
or P2. We retain the
allocation on P0 (in
darker blue) be-
cause in this case F1
terminates at date
5, whereas on P1 or
P2 it would end at
date 6 (due to the
communication of
HS, needed to
compute the
activation
condition).

FS_IN
if(not
HS)
F1

send(P0,HS)

if(not HS)
F1

if(not HS)
F1

Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1

29

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN
FS_IN

if(not
HS)
F1

Operation F1 can be
allocated on P0, P1,
or P2. We retain the
allocation on P0 (in
darker blue) be-
cause in this case F1
terminates at date
5, whereas on P1 or
P2 it would end at
date 6 (due to the
communication of
HS, needed to
compute the
activation
condition).

Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1

30

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN

Same for F2.
FS_IN

if(not
HS)
F1

send(P0,HS)

if(not
HS)
F2

if(not HS)
send(P0,x)

if(not HS)
F2

if(not HS)
F2

Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1

31

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN

Same for F2.
FS_IN

if(not
HS)
F1

if(not
HS)
F2

Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1

32

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN

N can only be
allocated on P2.
This forces the
transmission of FS.
The 2 operations
are scheduled as
soon as possible
(ASAP).

FS_IN
if(not
HS)
F1

if(not
HS)
F2

if(FS)
N

send(P0,FS)

Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1

33

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN

F3 can be allocated
on P0, P1, or P2. It is
executed much
faster on P2, which
compensates for
the needed
communication
time. The allocation
on P2 is therefore
retained.

FS_IN
if(not
HS)
F1

if(not
HS)
F2

if(FS)
N

send(P0,FS)

if(not HS)
F3

if(not HS)
send(P0,V)

send(P0,HS)

if(not
HS) F3

if(not HS)
F3

Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1

34

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN

F3 can be allocated
on P0, P1, or P2. It is
executed much
faster on P2, which
compensates for
the needed
communication
time. The allocation
on P2 is therefore
retained.

FS_IN
if(not
HS)
F1

if(not
HS)
F2

if(FS)
N

send(P0,FS)

if(not HS)
F3

if(not HS)
send(P0,V)

send(P0,HS)

Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1

35

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN

G can be allocated
on P0, P1, or P2.
Allocation on P1
minimizes the end
date, so it is
retained.

FS_IN
if(not
HS)
F1

if(not
HS)
F2

if(FS)
N

send(P0,FS)

if(not HS)
F3

if(not HS)
send(P0,V)

send(P0,HS)

if(HS)
G if(HS)

G

if(HS)
G

Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1

36

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN

G can be allocated
on P0, P1, or P2.
Allocation on P1
minimizes the end
date, so it is
retained.

FS_IN
if(not
HS)
F1

if(not
HS)
F2

if(FS)
N

send(P0,FS)

if(not HS)
F3

if(not HS)
send(P0,V)

send(P0,HS)

if(HS)
G

Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1

37

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN

M can be allocated
only on P2. Depen-
ding on the value of
HS, its input ID
comes from either
P0, or from P1. Also
this data is not
needed when M is
not executed, hence
the execution
conditions of the
send operations.

FS_IN
if(not
HS)
F1

if(not
HS)
F2

if(FS)
N

send(P0,FS)

if(not HS)
F3

if(not HS)
send(P0,V)

send(P0,HS)

if(HS)
G

if(not FS)M

if(not HS&
not FS)

send(P0,ID)

if(HS&
not FS)

send(P1,ID)

Scheduling algorithm

• Step 2: allocate and schedule the blocks 1 by 1

38

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN

Generated
schedule:
- Latency: 17
- Throughput:

1/17

FS_IN
if(not
HS)
F1

if(not
HS)
F2

if(FS)
N

send(P0,FS)

if(not HS)
F3

if(not HS)
send(P0,V)

send(P0,HS)

if(HS)
G

if(not FS)M

if(not HS&
not FS)

send(P0,ID)

if(HS&
not FS)

send(P1,ID)

But this is not enough (1/3)

• General-purpose optimization, to reduce
communications, reduce makespan, and
increase throughput

– Software pipelining of scheduling tables

• Reduce throughput without changing makespan

• Take into account conditional execution to allow double
reservation between successive cycles

– Safe double reservation of resources

• Precise analysis of execution conditions

39

But this is not enough (1/3)

• Example: software pipelining

40

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN

Generated
schedule:
- Latency: 17
- Throughput:

1/17

FS_IN
if(not
HS)
F1

if(not
HS)
F2

if(FS)
N

send(P0,FS)

if(not HS)
F3

if(not HS)
send(P0,V)

send(P0,HS)

if(HS)
G

if(not FS)M

if(not HS&
not FS)

send(P0,ID)

if(HS&
not FS)

send(P1,ID)

But this is not enough (1/3)

• Example: software pipelining

41

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11

13
14

12

15
16

Bus
HS_IN

Generated
schedule:
- Latency: 17
- Throughput:

1/17

FS_IN
if(not
HS)
F1

if(not
HS)
F2

if(FS)
N

send(P0,FS)

if(not HS)
F3

if(not HS)
send(P0,V)

send(P0,HS)

if(HS)
G

if(not FS)M

if(not HS&
not FS)

send(P0,ID)

if(HS&
not FS)

send(P1,ID)

17
18
19

HS_IN
FS_IN

if(not
HS)
F1

if(FS)
N

send(P0,FS)

if(not

send(P0,HS)

if(HS)
G

But this is not enough (1/3)

• Example: software pipelining

42

0
1
2
3
4
5

P0 P1 P2time

6
7
8
9
10
11
12

Bus
HS_IN

Generated
schedule:
- Latency: 17
- Throughput:

1/13

Software pipelining
(classical compil.
technique) can be
applied.

FS_IN
if(not
HS)
F1

if(not
HS)
F2

if(FS)
N

send(P0,FS)
if(not HS)

F3

if(not HS)
send(P0,V)

send(P0,HS)

if(HS)
G

if(not FS)M

if(not HS&
not FS)

send(P0,ID)
if(HS&
not FS)

send(P1,ID)

Using software pipelining required some modifications to classical algorithms:
• Bi-criteria: latency first, throughput second
• Improved predication handling (conditions between cycles, no delay slot needed)

But this is not enough (1/3)

• Application

43

MC

Init = 1

if(m=3)
F3

if(m=2)
F2

if(m=1)
F1

G

m=1 m=2 m=3

But this is not enough (1/3)

• Latency-optimizing scheduling

44

MC@true

F1
@m=1

F2
@m=2

F3
@m=3

G
@m=1

G
@m=2

G
@m=3

temps P1 P2

0

1

2

3

4

5

6

Latency = 7
Throughput = 1/7

But this is not enough (1/3)

• Pipelined scheduling

– Using mode transition information

45

MC@true

F1
@m=1

F2
@m=2

F3
@m=3

G
@m=1

G
@m=2

G
@m=3

temps P1 P2

0

1

2

3

Latency = 7
Throughput = 1/4

G
@m=2

G
@m=3

But this is not enough (1/3)

• Pipelined scheduling

– Without using mode transition information

46

MC@true

F1
@m=1

F2
@m=2

F3
@m=3

G
@m=1

G
@m=2

G
@m=3

temps P1 P2

0

1

2

3

4

Latency = 7
Throughput = 1/5

G
@m=1

G
@m=2

But this is not enough (1/3)

• Software pipelining => memory replication

– Rotating registers

– Conditional execution => not clear which version of a
register to access

• Need an indirection table, dynamically updated

• Real-time guarantees

– Worst-case analysis

– Account for artefacts

• E.g. rotating register operations

47

But this is not enough (2/3)

• Time triggered applications
– Target: ARINC 653-compliant OSs, time-triggered comm.

• Synthesis of inter-partition communication code (and considering it
during scheduling)

– Non-functional properties taken as input:
• ARINC 653 partitioning (all or part or none, application and platform)
• Real time (release dates, deadlines – can represent end-to-end latency)
• Preemptability of each task
• Allocation requirements

– Optimizations:
• Deadline-driven scheduling (to improve schedulability)
• Minimize the number of tasks at code generation (at most one per

input acquisition point)
• Minimize the number of partition changes

– Hypotheses: The scheduler and I/O impact on WCETs can be
bounded. 48

But this is not enough (3/3)

• Many-core (bare metal)
– Sound architecture abstraction layer with support for

efficiency
• Precise platform modeling:

– NoC: one resource per DMA and NoC arbiter
» Wormhole scheduling synchronizes schedules along the path of each

packet
– Memory banks are resources

» Reserve them for data, code, and stack to avoid contentions

• WCET analysis for parallel code
– Considers synchronization overheads

– Synthesis of communication and synchronization code (lock-
based) on the processors
• Account for communication/synchronization initiation costs

– Precomputed preemptions for communications
• Account for preemption costs

49

But this is not enough (3/3)

• Synchronized &
preemptive comm.

x
y

z
u

f

g

Tile
(1,1)

DMA
(1,1)

N(1,1)
(1,2)

N(1,2)
(2,2)

In
(2,2)

Tile
(2,2)

f z

y
y

u

h
x

x
x

x

x
x

x
x

500

1000

1500

2000

2500

0

g
50

x

x
x

x

Other related results (1/3)

• Many-core platform with support for efficient
predictability
– Principle: avoiding contentions through mapping

• No shared caches

• Hardware locks for mutual exclusion during RAM access

– Expose NoC arbitration to programming
• Efficiency bottleneck is in both CPUs and interconnect, and

similar arbitration is required of both (in various contexts), so
they should provide the same level of control.

• General-purpose:
– No change in processor programming (gcc)

– Not programming the NoC arbiters maintains functional correctness

• Small hardware overhead

• Automatic mapping (global optimization) -> good results ! 51

Other related results (2/3)

• Heuristics vs. exact methods (SAT/SMT/etc.)

– Recent constraint solvers (Cplex, Gurobi, Yices2, etc.)
have largely improved performance

– Question: Can they solve scheduling problems ?

– Answer: Yes, up to a certain size, which largely
depends on problem complexity, problem type
(schedulability vs. optimization), system load.

• From a few tasks (optimization, preemptive, multi-periodic)
to more than 100 tasks.

– Conclusion: Developing heuristic methods still has
its use, especially for complex problems like ours.52

Other related results (3/3)

• Automatic delay-insensitive implementation of
synchronous programs
– Objective: separation of concerns between functional and

non-functional aspects
• Optimal synchronization protocols ensuring functional

determinism

– Characterization of delay-insensitive synchronous
components (weak endochrony)
• Set theoretical limits

– Weak endochrony checking
• New representation of the behavior of concurrent systems by

means of sets of atomic behaviors

– Synthesis of delay-insensitive concurrent
implementations

53

Avionics GNC application

• Simplified version:

– 3 tasks TFast ,TGNC et Tthermal

– 3 partitions PFast, PGNC et Pthermal

– WCETs: 40ms, 200ms et 100ms

– Periods: 100ms, 1s, 1s

54

Fast GNC Thermal

Avionics GNC application

• Simplified version:

– 3 tasks TFast ,TGNC et Tthermal

– 3 partitions PFast, PGNC et Pthermal

– WCETs: 40ms, 200ms et 100ms

– Periods: 100ms, 1s, 1s

– Hyperperiod expansion : MTF = 1s

55

Fast Fast FastFastFastFast Fast Fast FastFast

GNC

Thermal

D

D

Avionics GNC application

• Real time requirements

– Tfast reads inputs arriving periodically in an infinite
buffer

56

Fast Fast FastFastFastFast Fast Fast FastFast

GNC

Thermal

D

D

0 100 200 300 400 500 600 700 800 900 1000

Avionics GNC application

• Real time requirements

– Tfast reads inputs arriving periodically in a buffer of
size 2

57

Fast Fast FastFastFastFast Fast Fast FastFast

GNC

Thermal

D

D

0 100 200 300 400 500 600 700 800 900 1000

Avionics GNC application

• Real time requirements

– Infinite buffers

– « A full flow formed of 10 instances of Tfast

followed by an instance of TGNC and then by an
instance of Tfast should take less than 1400 ms »

58

Fast Fast FastFastFastFast Fast Fast FastFast

GNC

Thermal

D

D

0 100 200 300 400 500 600 700 800 900 1000

Avionics GNC application

• Step 1 : remove delayed dependencies

– Replace them by timing barriers

– Heuristic approach (sub-optimal)

59

Fast Fast FastFastFastFast Fast Fast FastFast

GNC

Thermal

D

D

0 100 200 300 400 500 600 700 800 900 1000

Avionics GNC application

• Step 1 : remove delayed dependencies

– Replace them by timing barriers

– Heuristic approach (sub-optimal)

60

Fast Fast FastFastFastFast Fast Fast FastFast

GNC

Thermal

0 100 200 300 400 500 600 700 800 900 1000

1300

Avionics GNC application

• Step 2 : off-line scheduling
– Allocate and schedule blocks one by one (no

backtracking)
– Deadline-driven

• Of all tasks that can be executed, consider the one with
earliest deadline

• Deadline = minimum of all successor deadlines

61

Fast Fast FastFastFastFast Fast Fast FastFast

GNC

Thermal

0 100 200 300 400 500 600 700 800 900 1000

1300

Avionics GNC application

62

0 100 200 300 400 500 600 700 800 900 1000

GNC is pipelined

Fast Fast FastFastFastFast Fast Fast FastFast

GNC

100 200 300 400 500 600 700 800 900 1000

Thermal

1300

0

• Step 2: off-line scheduling

0 ∞

Avionics GNC application

63

0 100 200 300 400 500 600 700 800 900 1000

• Step 3: post-scheduling optimization

– Deadline-driven scheduling routine
• Many context/partition changes
• Reduce their number by moving reservations subject to timing and

data dependency requirements
– Low complexity

– Possible results

0 100 200 300 400 500 600 700 800 900 1000

Infinite
buffer

0 100 200 300 400 500 600 700 800 900 1000

Buffer of
size 3

Avionics GNC application

• Full application

– 4 processors, 1 broadcast bus

– 13 tasks before hyper-period expansion

– 7 partitions

– 10 end-to-end latency constraints

– Result:

• Processor loads: 82%, 72%, 72%, 10% (last one for
telemetry)

• Bus: 81%

Conclusion (1/3)

• Full-fledged real-time systems compilation is
feasible

– At least for certain application classes

– Ensures correctness and efficiency

– Allows a trial-and-error design approach for complex
embedded systems

• Simple theoretical and algorithmic principles

– Independence, isolation, list scheduling, timetables,
pipelining…

65

Conclusion (2/3)

• But no not mistake a list of simple principles for a
compiler

– Integration requires careful adaptation of the concepts
and techniques

– Match the needs of realistic applications to give good
results

• Good resource use

• Good timing precision

– Few percent difference between guarantees and actual execution for
certain many-core applications.

– Lopht: not a scheduling toolbox, nor a classical compiler

• Hence the title « real time systems compiler » 66

Conclusion (3/3)

• Major difficulties

– Few benchmarks/case studies

• Sharing is difficult (technical, legal, will issues)

– Publication

• Cross-domain, everybody sees it as interesting « for the
other domain » (sort of NIMBY syndrome)

– Sharing between various targets

• No general platform definition language

67

Future work (1/2)

• Short/medium term (ongoing):
– Execution platform modeling

– Provide compiler correctness guarantees/proofs

– Improve treatment of multi-periodic applications
• Trade-off between scheduling freedom (and thus efficient

resource use) and compactness of representation
(architectural limits, legibility)

– New platforms
• TTEthernet – taking into account platform-related tools

• Kalray MPPA – Generate code over the Kalray hypervisor,
NoC handling

– New case studies for/from the industry 68

Future work (2/2)

• Longer term:

– Improve embedded systems mapping by
adapting/combining models and techniques from
compilation, real-time scheduling, and synchronous
languages

• Compilation: Code replication, Loop unrolling…

• Real-time scheduling: CRPD computation…

• Synchronous languages: n-synchronous clock calculus…

69

70

