
JSON Model:
a Lightweight Featureful DSL for JSON

Fabien Coelho and Claire Yannou-Medrala

Centre de recherche en informatique, Mines Paris – PSL, France

Abstract. JSON is a de facto standard cross-language textual format
used to represent, exchange and store structured data. Data schemas al-
low to document structures and verify values. Three JSON-based schema
description languages have been proposed for JSON so far: JSON Schema,
JSound and JSound-C. These languages are verbose and use a lax valida-
tion semantics: 60% of public schemas have been found defective [18] be-
cause JSON Schema is particularly error-prone. We present JSON Model,
an alternative to previous proposals which is both lightweight and fea-
tureful, discuss key design choices, its efficient implementation, and its
possible integration with other standards such as OpenAPI.

Keywords: JSON; JSON Model; Schema description language; DSL; OpenAPI.

1 Introduction

JSON [10] JavaScript Object Notation has become an ubiquitous cross-language
de facto standard to represent, exchange and store data between computer ap-
plications. Its success stems from the extensive use of JavaScript [12] in web ap-
plications, and that many services rely on this technology. Like the more verbose
XML, JSON can be parsed without knowing in advance the expected structure.
It allows to serialize in textual form simple data structures (Figure 1) built upon
the null value, booleans, numbers, Unicode strings, arrays (list, tuple, sequence,
set) and objects (struct, record, dict, map, association, key-value pairs). How-
ever, it has a limited number of types, no syntax for comments, unbounded but
incomplete numbers (e.g. no NaN). Object properties (key, attribute, field) are
restricted to strings. Only tree structures can be serialized: There is no sharing
of values or cycle. Thanks to these simple features, a wide range of libraries
and tools are available for many programming languages and systems beyond
JavaScript including Python, Java, Shell, and SQL.

{ "name": "Susie", "age": 6, "friends": ["Calvin", "Hobbes"] }

Fig. 1: A JSON object with 3 properties

JSON data are mostly generated and processed automatically from a pro-
gramming language: Humans prefer unquoted structured languages such as YAML

2 F. Coelho and C. Yannou-Medrala

to write structured files (e.g. configurations), or lightweight markup languages
such as Markdown for text formatting. JSON has two main overlapping use cases:

API Data for simple structures exchanged at API interfaces, for instance be-
tween web front ends and back ends in multitier architectures;

Documents for possibly large loosely-structured textual data which are stored,
transmitted, processed and finally displayed for direct human consumption.

The overlap comes from development practices based on JavaScript dynamic
typing (lack of) discipline and loose document-oriented schema-less databases
such as MongoDB which do not require data schemas to be formally declared.
Another example of overlapping usage is open data documentations: They are
structured data often accessed through an API, but they also need extensive
meta-data for documentation purpose.

This paper presents the design and outlines the implementation and inte-
gration of JSON Model, a schema description language for JSON data, which
emphasizes compactness and expressiveness, with a particular interest in the
API data-structure use case. Section 2 first discusses existing data-structure
description languages, with a focus on JSON. Section 3 presents JSON Model
design choices, syntax and semantics. Section 4 introduces our proof-of-concept
implementation, including preprocessing and compiler optimizations. Section 5
outlines its possible integration into OpenAPI, before concluding in Section 6.

2 Related Work

As data structures are a key component of programming languages, describing
them with various degrees of constraints is typically included in language syn-
taxes. This also applies to dynamically typed languages, e.g. TypeScript [5] has
been developed to allow type declarations with JavaScript [12]. When considering
cross-language features such as data interchange, language-independent descrip-
tion languages can been used, for instance SQL, Newgen [14] or CORBA [6] IDL.
These description languages need specialized tools to manipulate actual data,
and require to learn a syntax. Another approach is to use a file format such as
XML and JSON which can be parsed without knowing in advance its structure,
and to do data description separately, e.g. with a DTD or XSD for XML, and
with JSON Schema, JSound or JSound-C for JSON.

JSON Schema [17] has been under development for 10 versions over nearly
15 years. The latest proposal (2020-12) defines 60 keywords to describe JSON
structures, much like classic data structures, but also includes constraints on
element sizes (strings, arrays. . .), uniqueness properties, regular expressions on
property names, schema composition (allOf anyOf oneOf) and logical assertions
(if then else not). Its open-document mindset means that schemas are loose by
default, allowing any type or property unless otherwise stated. There is a meta-
schema which can validate itself. Figure 2 tight schema is suitable for Figure 1
data and is 4 times larger than this sample. The overall complexity [4, 2, 18]

JSON Model: a Lightweight Featureful DSL for JSON 3

{ "$schema": "https://json-schema.org/draft/2020-12/schema",
"title": "A Person",
"type": "object",
"properties": { "name": { "type": "string", "minLength": 1 },

"age": { "type": "integer", "minimum": 0 },
"friends": { "title": "The Person's Friends",

"type": "array",
"items": { "type": "string", "minLength": 1 },
"minItems": 1 } },

"required": ["name", "age"],
"additionalProperties": false }

Fig. 2: Tight JSON Schema for Figure 1

{ "types": [
{ "name": "Person",

"kind": "object",
"content": [{ "name": "name", "type": "string", "required": true },

{ "name": "age", "type": "integer", "required": true },
{ "name": "friends",

"type": { "name": "list-of-friends",
"kind": "array",
"content": "string" } }],

"closed": true }] }

Fig. 3: Tight JSound for Figure 1

{ "Person": { "!name": "string",
"!age": "integer",
"friends": ["string"] } }

Fig. 4: Loose JSound-C for Figure 1

results in a majority of public schemas to be defective because of mistyping,
misplacement, misnaming and other mistakes.

JSound [1] is an alternative JSON-based description format proposed to de-
scribe JSON and TYSON (a typed extension of JSON) data structures (Figure 3).
It is inspired by XML Schema and simpler than JSON Schema. It addresses some
of its shortcomings, e.g. types are mandatory, and extensive types appropriate to
programming are available. Although some JSON Schema features (composition
operators, property name constraints) are not available, it provides inheritance.
It shares the same open-document mindset with optional properties by default.
JSound comes with a compact variant called JSound-C (Figure 4), which cannot
be mixed with full JSound. The whole description syntax must be switched if any
feature is not available, such as tight object (mandatory properties) definitions.

We propose an alternate JSON system for describing JSON data which is
more compact than JSound-C, but still retains most features from JSON Schema.

4 F. Coelho and C. Yannou-Medrala

3 JSON Model

This section introduces the design criteria, the basic syntax and semantics, the
representation of values (constants, references, regex), constraints, composition
and complements.

3.1 Design Criteria

JSON data structures exchanged at REST API by web or mobile applications
are typically not-deeply-nested objects with few properties. Data structures are
mostly tight, because from a programming perspective it is easier to write code
when assumptions can be made about actual types. For this use case, we want to
provide simple and compact type declarations that are smaller than correspond-
ing values. Furthermore, we still want to make it possible to constrain values
with regular expressions and sizes. We thus define the following wish list, which
sets desirable features for a new JSON meta-data description language:

self-hosted description in JSON, with a tight meta schema.
compact much shorter than JSON Schema and JSound.

convenient optimized for the simple data structure API use case.
intuitive easy to understand for humans.

frugal avoid multiple redundant concepts.
tight models should be tight by default.

expressive power of description comparable to JSON Schema.
composable by defining and referencing new types.

efficient allow fast (compiled) validation functions.
extensible allow to add new concepts if needed.
universal human and computer language independent.

distinguishable the description is easy to separate from what is described.

To achieve the universal and distinguishable features when properties are
used in the description language, they are always prefixed with a symbol such as
ˆ _ $ & | = +. This choice ensures the language independence of models, and
that alphabetical properties described are distinct from modelling properties.

3.2 Model Basics: Type Inference

In order to have a compact and intuitive representation, JSON Model relies on
type inference [11], so that each type is represented by a value. The 5 basic
types and 2 constructs of JSON are thus expressed directly: null as a model
stands for the null value, true is a boolean value (true or false), -1 0 1
are integers (signed, ≥ 0 and > 0), -1.0 0.0 1.0 are numbers (any, positive,
strictly positive), "" (empty string) is a string, [] and {} are empty arrays and
objects. The special definition of positive values stems from the observation that
in most cases numbers are really expected to be positive, even if this is rarely
declared. A notable exception is geospacial data (e.g. GeoJSON).

JSON Model: a Lightweight Featureful DSL for JSON 5

As arrays are often used to hold extended homogeneous lists or fixed tuples of
heterogeneous items, these two usage patterns are prioritized. A list is expressed
as an array of one type, e.g. [1] is a list of strictly positive integers. A tuple
is expressed as an array of two or more types: ["", true, [0.0]] is a
tuple containing a string, a boolean, and a list of positive numbers. Although
this induces a non uniformity as a tuple of one element cannot be expressed,
this degenerate case does not seem worth preserving, as the homogeneous list
use case is frequent and objects are generally preferred over tuples.

Objects are the most versatile JSON constructs, possibly with mandatory,
optional, and unknown properties. JSON Model simply expresses properties as
properties, each property name mapped to its type. The first character is used to
express whether the constant property is mandatory (!, the default) or optional
(?). Optional properties can also be described with references and regular expres-
sions, as discussed in the next section. Open documents are allowed through the
special "" catch-all property, which is consistent with its interpretation as any
string value. Mandatory and optional constant properties are directly validated.
For other properties, first all optional references are tried: if the property name
matches then the corresponding value must match as well. If properties did not
match, all optional regex are tried. Finally, the catch-all property is applied.

{ "name": "", "age": 0, "?friends": [""] }

Fig. 5: Tight JSON model for Figure 1

Figure 5 shows a tight model for the Figure 1 object with 3 properties. This
tight model is slightly shorter than, and quite similar to, the sample value.

3.3 Model Constants and Types

Constants from different types are often needed in data structures, e.g. for
declaring an enumeration. In JSON Model, non-empty constant strings which
start with an alphabetical character represent themselves, thus "Susie" means
"Susie". All non-alphabetical first characters are reserved as a generic mecha-
nism for extensions, e.g. ? ! for property names in Section 3.2 and = $ ˆ which
are defined below. Character _ (underscore) is the escape prefix, thus "_Susie"
is also string "Susie", "_|" is simple string "|", and "_" is the empty string,
distinct from "" which means any string. Other basic constants use = (equal)
followed by the expected value: "=null" is the null value, "=false" is boolean
false, "=0" is integer 0, and "=6.02E23" is the Avogadro number.

Character $ (dollar) is a generic entry point for references to predefined or
locally defined models or types. As a convention, predefined values are in upper
case. They include $ANY for any possible value, $NONE for no possible value,
$U32, $U64, $I32, $I64, $F32 and $F64 for unsigned/signed integers and floats
in their 32-bit and 64-bit variants, $REGEX for valid regular expressions, $URI

6 F. Coelho and C. Yannou-Medrala

for URIs, $DATE for dates. . . As a convenience, all basic types have equivalent
explicit names: $STRING for "", $BOOL for true, $INTEGER for -1, $NUMBER for
-1.0, $NULL for null. This is useful for contexts where a very short model would
seem awkward, as discussed in Section 5. This mechanism allows to add more
formatting or type constraints. Such references can also be used for constraining
optional property names, provided that the value is a string.

A common use-case is to constrain string patterns with regular expressions.
Character / (slash) introduces a regex which must end with / followed by options,
e.g. "/^[a-z]*$/i" means all case-insensitive words in the Latin alphabet. Only
safe regular expressions are allowed by default, excluding inefficient backtracking
implementations [15]. Implementation may optionally allow unsafe regex. Regex
can be used as optional property names, matching any property of that name if
it was not already matched.

{ "character": "/^(Calvin|Susie)$/", "forty-two": "=42",
"pi": "=3.1415927410125732421875", "empty-string": "_",
"birth": "$DATE", "$URI": "$STRING",
"/^(Mon|Tue|Wed|Thu|Fri)$/": "$BOOL", "": "$INTEGER" }

Fig. 6: Constants and Types

Figure 6 presents a model for an object with 5 mandatory properties: Prop-
erty character matches a regex, forty-two is integer 42, pi is float π, empty-string
is the empty string, birth is a valid date. Optional properties are allowed: URI
properties are strings, week-day properties are booleans, and all other properties
are integers.

3.4 Model Constraints

JSON Schema has a dedicated syntax to validate constraints on values or sizes.
We think that such a feature is not an important requirement for data struc-
tures, thus it is not prioritized. Constraints are represented as an object with
Property @ (at sign) to denote the target type, and a limited number of addi-
tional properties to describe constraints. Keyword properties >= > <= < = !=
express length or order constraints, their interpretation depending on the values
and types: For an array, an object or a string and if the value is an integer, the
constraint is on the array size, number of properties or string length respectively;
If both target type and value are strings, the constraint is a string lexicographic
comparison. Optional constraints can be declared with additional keywords, e.g.
! tells whether values are to be distinct in an array, or characters are distinct in
a string. Unknown or unapplicable properties are rejected.

In Figure 7, Model (a) is an array of 42 unique strings, (b) is a lower-case
word of length between 8 and 10, and (c) is a date in May’23.

JSON Model: a Lightweight Featureful DSL for JSON 7

{ "@": [""],
"=": 42,
"!": true }

(a) Array

{ "@": "/^[a-z]*$/",
">=": 8,
"<=": 10 }

(b) String

{ "@": "$DATE",
">=": "2023-05-01",
"<=": "2023-05-31" }

(c) Date

Fig. 7: Constraints with @

3.5 Model Composition

With these building blocks, data structures can be constructed from basic types
and by combining objects and arrays. The next step is to combine elements
with operators to express accumulation (and), alternative (or, exclusive-or) and
object merging (merge). JSON Model four combinators use objects with specific
properties, one at a time, applied to an array of models. The one-at-a-time
restriction simplifies the semantics and intelligibility of composed objects.

The or combinator uses Property | (pipe) to express an union or tagged-
union, or to list the values of an enumeration. The generalized exclusive-or (xor),
with Property ˆ (caret), is a particular case where only one case must match,
which may require implementations to check all alternatives.

{ "season": { "|": ["Spring", "Summer", "Fall", "Winter"] },
"movie": { "^": [{ "lang": "français", "titre": "" },

{ "lang": "Íslensk", "titill": "" },
{ "lang": "Runasimi", "suti": "" }] } }

Fig. 8: JSON Model with Combinations

Figure 8 illustrates or and xor combinators on an object with two proper-
ties. Property season is one of four strings. Property movie is a tagged union
with Property lang as a discriminator, to provide a movie title. A JSON Model
compiler can detect and take advantage of the discriminator to validate values
without checking all cases.

It is useful in some rare cases to check that a value matches several con-
straints simultaneously, which is done with Property & (ampersand). However,
this operation is useless with tight object models because each submodel cannot
be extended by the very definition of tight. The typical use case is rather to
build an object with different sets of already defined properties, much like mul-
tiple inheritance in an object-oriented programming language. To address this,
the merge operator, with Property + (plus), allows to combine properties from
different objects. It must be understood as a pre-processing macro to merge
directly-provided or referenced objects, which are then interpreted as a stan-
dard object. This operator is distributive over ˆ and |, as used by Model Elem
in Figure 15. Note that it cannot be distributive over & as it leads to contra-
dictions. Property definitions are merged when they have the same name and

8 F. Coelho and C. Yannou-Medrala

the same model value. If one is mandatory and the other optional, the result
is mandatory. Then optional reference and regex properties are merged, then
the catch-all property. When model values are not equal, merging fails and the
model is rejected.

{ "+": [
{ "!a": "", "?b": 0, "/^[a-z]+$/": "" },
{ "!b": 0, "?c": "", "": 0 }] }

(a) Merging. . .

{ "!a": "", "!b": 0,
"?c": "", "": 0,
"/^[a-z]+$/": "" }

(b) Merged

Fig. 9: JSON Model Merge Composition

Figure 9 Model (a) illustrates the merging of two objects definitions. In the
resulting Model (b), each object contributes one mandatory property (a and b).
First object optional Property b becomes mandatory because of the merge rule
with b in the second object. Property c remains optional. Properties matching
the regular expression must be strings (1st object). Other properties are also
allowed if they are integers (2nd object).

{ "a": "Calvin",
"b": 5432,
"c": "R.03",
"Age": 6 }

(a) Calvin

{ "a": "Susie",
"b": 12345,
"c": "R.02",
"AGE": 7 }

(b) Susie

{ "a": "Hobbes",
"B": 666,
"c": "R.07",
"age": 6 }

(c) Hobbes

Fig. 10: Three Sample Values

Figure 10 (a) and (b) conform to the merged model, but (c) does not because
mandatory b is missing (vs B) and age is lower case so should be a string.

3.6 Model Complements

This section addresses additional features: meta-data, defining and reusing ele-
ments, and importing external definitions.

Comments in a data structure description help understanding and mainte-
nance. As JSON does not have a syntax for comments, we use Property # (sharp)
for this purpose and for meta-data. Its value may be a string or an arbitrary
object, allowing model designers to put any information they need. Property
version, in the # section at the root of the model, must denote the JSON Model
version of the model. Validator implementations may use properties in the object
values for special configuration purposes, such as whether to consider 1.0 as an
integer or not.

JSON Model: a Lightweight Featureful DSL for JSON 9

{ "#": { "name": "A Book", "version": 1 },
"%": { "Section": { "title": "/./",

"?text": "",
"?sections": ["$Section"] } },

"+": [{ "authors": ["/./"], "publisher": "/./" }, "$Section"] }

Fig. 11: JSON Model for a Book

{ "title": "JSON Model: A DSL for JSON",
"authors": ["Calvin", "Susie"],
"publisher": "Hobbes",
"sections": [{"title": "Introduction", "text": "JSON [10] ..."},

{"title": "Related Work", "text": "As data st..."}] }

Fig. 12: Example Book Data

When developing large models, it is useful to factor out parts that can be
reused consistently, avoiding repetitions. As we already have a mechanism for
referencing a model with a string ($), we only need to add new definitions inside
a model. Property % (percent), only at the root of the model, introduces an
object with properties as identifiers and values as the corresponding model, in a
unique namespace. As a convention, as predefined names are in uppercase, these
user-defined names are expected to be capitalized, to enhance readability. To
allow simple recursive structures, naming an element can also be done directly
in its definition with Property $ (dollar) and the name as a value.

Figure 11 is a recursive data model, where Section uses itself as an array
item in sections. The recursion is well-founded because Property sections is
optional, or the list can be empty. Figure 12 shows a conforming value.

For large data structures, and to reuse already defined models, it is conve-
nient to reference a model which is stored outside of the model definition. This
is achieved by allowing URLs in $-references, including a possible fragment,
similarly to JSON Schema, e.g. "$https://json-model.org/geom#Polygon" refer-
ences the Polygon model with % in the referenced model. Note that, unlike JSON
Schema, it is intentionaly not possible to use a path to reference an element in
the model: only named elements can be reused.

{ "#": "Definitions at https://json-model.org/geom",
"%": { "Coord": { "x": 0.0, "y": 0.0 },

"Segment": ["$Coord", "$Coord"],
"Polygon": ["$Coord"] } }

Fig. 13: Geometric Definitions

{ "%": { "Geo": "$https://json-model.org/geom" }, "pol": "$Geo#Polygon" }

Fig. 14: Geometric Use

10 F. Coelho and C. Yannou-Medrala

{ "#": { "name": "Compact Self-Validating JSON Model", "version": 1 },
"%": {

"Val": { "^": [null, true, -1, -1.0, ""] },
"Meta": { "^": ["", { "": "$ANY" }] },
"Array": ["$Model"],
"Cons": { "_@": "$Model",

"/^(<=|>=|<|>)$/": { "^": [-1, -1.0, ""] },
"/^(=|!=)$/": "$Val", "?!": true },

"Or": { "_|": "$Array" },
"And": { "_&": "$Array" },
"Xor": { "_^": "$Array" },
"Merge": { "_+": "$Array" },
"Combi": { "^": ["$Or", "$And", "$Xor", "$Merge"] },
"Obj": { "": "$Model", "/^[|@&^+]$/": "$NONE" },
"Elem": { "+": [{ "?$": "", "?#": "$Meta" },

{ "^": ["$Cons", "$Combi", "$Obj"] }] },
"Model": { "^": ["$Val", "$Array", "$Elem"] },
"Root": { "+": [{ "?%": { "": "$Model" } }, "$Elem"] }

},
"^": ["$Val", "$Array", "$Root"]

}

Fig. 15: JSON Model Self-Validating Tight Meta-Model

Figures 13 and 14 show a definition used indirectly. Geometric types are
defined in the geom model, and then imported and used in another model.

Figure 15 is a self-validating tight meta-model for JSON Model. The def-
inition of Obj excludes special properties from appearing directly in objects,
avoiding ambiguities. This meta model uses disjunctions and two merges, and is
recursive on Model. It could be made tighter, e.g. by using regular expressions to
restricts string constants, local definition identifiers or list predefs.

3.7 JSON Model Summary

JSON Model, introduced in [18, 7], relies on 15 special keywords and 6 sentinel
characters on top of JSON syntax, which is much lower than JSON Schema (60).
It uses symbols with well-known semantics from programming languages, such
as # for comments, | & + ˆ for combinators, $ for references, /.../ for regex.
Keywords are short to avoid mistyping: they use symbols to be language inde-
pendent and easy to distinguish from the described data structure.

Seldom used features from JSON Schema [3, 18] such as multiple-of, in-array
containment and mime-types are discarded. They could be added with more
constraint symbols, e.g. * ˜ mime. Logical assertions are also ignored: This rarely
used feature creates very hard to understand schemas and requires expensive
evaluations for validation. Further ideas include: Variadic tuples could be covered
with minimal conventions in constrained elements; Numbers strictly above 1
could be used to express maximum values.

JSON Model: a Lightweight Featureful DSL for JSON 11

4 JSON Model Implementation

Proof-of-concept implementations of JSON Model are available [8] in Python and
were used extensively in [18]. Compared to JSON Schema, JSON Model simple
structure allows to generate definite functions for target elements, without having
to care about the external context or keeping track of checked and unchecked
elements. This locality feature allows the efficient compilation of models. Our
implementation offers three validators: a direct model interpreter; a dynamic
compiler which generates check functions on the fly; a static compiler which
generates source code for these. Our implementation also includes partial model-
to-schema and schema-to-model converters.

The validators share a common preprocessing step: Combinators are flat-
tened to simplify the structure, possibly following $-definitions (inlining); Merge
operators are distributed over or and xor -operators and eliminated by comput-
ing the resulting objects following property merging rules (Section 3.5); Partial
evaluation simplifies empty or one-item combinators and propagates some values
when appropriate; When models are demonstrably distinct, xor combinators are
changed to less costly or.

{ "%": {
"A": { "p": 0 },
"B": { "^": ["$A", { "q": 0 }] },
"C": { "+": [{ "r": 0 }, "$B"] },
"D": { "^": [true, { "^": [1, 1.0] }] }

},
"^": ["$D",

{ "^": ["$A", { "|": [] }] }]
}

(a) Before

{ "%": {
"A": { "p": 0 },
"B": { "|": ["$A", { "q": 0 }] },
"C": { "|": [{ "r": 0, "p": 0 },

{ "r": 0, "q": 0 }] },
"D": { "|": [true, 1, 1.0] }

},
"|": [true, 1, 1.0, "$A"]

}

(b) After

Fig. 16: JSON Model Preprocessing

Figure 16 illustrates these steps: C definition is expanded to remove the merge
combinator; D combinators are flatten. All xor combinators are switched to or
because the combined models are structurally distinct; the root combinators are
simplified thanks to partial evaluation and inlining.

The compilers generate functions for each named types (%) and for the target
root model, and handles recursion by re-selecting the function when needed.
Several optimizations are implemented: Discriminant properties on or and xor
combinators over objects are automatically detected, the generated code inlines
the object definitions and takes advantage of the discriminant to call only one
object check function; Duplicated models in xor combinators are checked once
and eliminated directly; { "^": ["$ANY", "$X"] } is optimized as model
X complement. Enums are detected to generate simple and efficient code. The
generated code could be further optimized with partial evaluation. A particular
attention is needed to generate accurate messages when a value is rejected, to
identify the precise issue and where it occurs in the value and the model.

12 F. Coelho and C. Yannou-Medrala

{
"#":

"float/word",
"^": [

0.0,
"/^[a-z]+$/i"

]
}

(a) Model

import re
re_0 = re.compile("^[a-z]+$", re.IGNORECASE).search
def check_model(val: Any, path: str = "$") -> bool:

res = isinstance(val, float) and val >= 0.0
if not res:

res = isinstance(val, str) and \
re_0(val) is not None

return res

(b) Generated Code

Fig. 17: JSON Model Static Compilation

Figure 17 illustrates a model and the code generated by our static compiler:
The regex is pre-compiled; The code relies on Python dynamic type introspection
to handle any value.

5 JSON Model Integration with OpenAPI

Many web and mobile applications use the HTTP protocol to interact with a
server, following REST architecture principles [13] to create, read, update, delete
and search (CRUDS) data. Swagger then OpenAPI [16] are language-agnostic
JSON or YAML descriptions of such interfaces, with JSON Schema [17] used
to describe the type of exchanged JSON data. OpenAPI 3.1.0 (2021) extends
the latest JSON Schema (2020-12) with some keywords, allows extension prop-
erties and defines new formats for usual computer integers and floats. Schema
definitions appear as /components/schemas in the OpenAPI object, and schemas
can be used directly in MediaType and Parameter objects as schema properties, to
describe input (request) and output (response) data, either with a reference to
a definition or as direct type descriptions.

For assessing qualitatively typical use cases, we have collected 20 API spec-
ifications ([19] in corpus/OpenAPI) from various sources, ranging from v2.0 to
v3.1: 10 API focus on services, with a variety of HTTP methods, and 10 are
dedicated to data access (get only), either public open data (6) or private spe-
cific data (4). It would be interesting to extend this corpus to study OpenAPI
usage. JSON schemas were extracted, analysed [9] and converted automatically
to JSON model with our tools [8]. These specs involve non-trivial nested ob-
jects and arrays, justifying the need for type specification and documentation,
as suggested by frequent meta-data such as description and examples.

In this sample, format extensions (int32 . . .) are frequent. Advance features
such as combinators and regex are occasional, and a few schemas include size
constraints. Some schemas use many loose objects (unknown or mostly optional
properties, null values), but in the context should probably be tight. Confirm-
ing our earlier findings [18], the overall schema quality is low: Two files contain
fully broken schemas (ebay, walmart), with similar but invalid types and struc-
tures, probably generated by the same tool; On the 6 small schemas extracted

JSON Model: a Lightweight Featureful DSL for JSON 13

components:
schemas:

Pet:
type: object
properties:

id:
type: integer
format: int64

name:
type: string

required:
- id
- name
additionalProperties: false

paths:
/pets/{petId}:

get:
...

(a) with JSON Schema (partial)

components:
models:

Pet:
id: $I64
name: $STRING

paths:
/pets/{petId}:

get:
parameters:
- name: petId

in: path
required: true
model: $I64

responses:
'200':

content:
application/json:

model: $Pet

(b) with JSON Model (full)

Fig. 18: YAML OpenAPI Comparison (simplified)

from OpenAPI v3 own documentation, 3 have type errors (missing type or in-
valid format); On the 12 other real-world APIs, only 2 do not have any kind
of type errors, and 2 others have minor errors (inconsistent type in examples).
Altogether, two-thirds of schemas in our limited sample contain type errors.

JSON Model can be integrated into OpenAPI following JSON Schema ap-
proach. As YAML is a superset of JSON, it can be used to represent models.
Figure 18 compares OpenAPI with schemas and models. Models are declared
in components/models, and described in model properties. As expected, type
definitions are much shorter. For readability, we have used explicit type names in-
stead of relying only on type inference. Moreover, for homogeneity, JSON Schema
style references in OpenAPI could use a more direct JSON Model style reference.

6 Conclusion

JSON Model satisfies the criteria set for its design: self-hosted, compact, con-
venient, frugal, tight, expressive, composable, efficient, extensible, universal and
distinguishable as defined in Section 3.1. Intuitiveness is judgemental in nature:
We think that model illustrations in Section 3 can be understood by a developer
without knowing in advance the formal syntax. The design allows its efficient
compilation, and it can be integrated simply in OpenAPI.

Future work includes writing a formal specification, developing a JavaScript
reference implementations, and distributing these productions widely with an
illustrated tutorial and example use cases. More optimization could be imple-

14 F. Coelho and C. Yannou-Medrala

mented in the preprocessor and the compiler: or combinators could reorder mod-
els so that more frequent models are checked and matched earlier; model inclu-
sions could be used to simplify some combinators.

Thanks to O. Hermant for his help in proofreading this paper.

References

1. Andrei, C., Florescu, D., Fourny, G., Robie, J., Velikhov, P.: JSound 2.0 – The
Complete Reference (2018), https://jsound-spec.org

2. Attouche, L., Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C., Scherzinger, S.:
Validation of Modern JSON Schema: Formalization and Complexity. In: Proceed-
ings of POPL. ACM (Jan 2024)

3. Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C., Scherzinger, S.: An Empirical
Study on the ”Usage of Not” in Real-World JSON Schema Documents. In: 40th
Int. Conf. on Conceptual Modeling ER 2021. Lecture Notes in Computer Science,
vol. 13011, pp. 102–112. Springer (Oct 2021)

4. Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C., Scherzinger, S.: Negation-
closure for JSON Schema. Theoretical Computer Science 955, 113823 (2023)

5. Bierman, G., Abadi, M., Torgersen, M.: Understanding TypeScript. In: European
Conf. on Object-Oriented Programming. pp. 257–281. Springer (2014)

6. Boldt, J.: The Common Object Request Broker: Architecture and Specification.
Specification Formal/97-02-25, Object Management Group (Jul 1995)

7. Coelho, F., Yannou-Medrala, C.: JSON Model: a Lightweight Featureful Descrip-
tion Language for JSON Data Structures. Tech. Report A/795/CRI, CRI, Mines
Paris – PSL (May 2023)

8. Coelho, F., Yannou-Medrala, C.: JSON Model Implementation (2023–2024),
https://github.com/clairey-zx81/json-model

9. Coelho, F., Yannou-Medrala, C.: JSON Schema Statistics Tools (2023–2024),
https://github.com/clairey-zx81/json-schema-stats

10. Crockford, D.: The application/json Media Type for JavaScript Object Notation
(JSON). RFC 4627, IETF (Jul 2006)

11. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: PoPL.
pp. 207–212 (1982)

12. ECMA International: Standard ECMA-262 – ECMAScript Language Specification.
5.1 edn. (June 2011), 846 pages. First edition in 1999

13. Fielding, R.T.: REST: Architectural Styles and the Design of Network-based Soft-
ware Architectures. Doctoral dissertation, University of California, Irvine (2000)

14. Jouvelot, P., Triolet, R.: NewGen: A Language-Independent Program Generator.
EMP-CRI 191, CRI, Mines Paris – PSL (Jul 1989)

15. Mitre: Inefficient Regular Expression Complexity. CWE 1333 (2021)
16. OAS: OpenAPI. Specification v3.1.0, Linux Foundation (Feb 2021), https://spec.

openapis.org/
17. Wright, A., Andrews, H., Hutton, B., Dennis, G.: JSON Schema: A Media Type

for Describing JSON Documents. Draft 2020-12, IETF (Jun 2022)
18. Yannou-Medrala, C., Coelho, F.: An Analysis of Defects in Public JSON Schemas.

In: BDA 2023: 39ème conf. sur la gestion de données – Principes, technologies et
applications

19. Yannou-Medrala, C., Coelho, F.: Yet Another JSON Schema Corpus (2023–2024),
https://github.com/clairey-zx81/yac

