
JSON Model: a Lightweight Featureful
Description Language for JSON Data Structures

Fabien Coelho and Claire Yannou-Medrala
firstname.lastname@minesparis.psl.eu

Centre de recherche en informatique, Mines Paris – PSL University
France

ABSTRACT
JSON is a simple de facto standard cross-language textual format
used to represent, exchange and store structured data in computer
systems. Data schemas need to be described for documentation and
verification purposes. Three JSON-based schema description lan-
guages have been proposed for JSON so far: JSON Schema, JSound
and JSound-C. These languages are quite verbose and have a lax
validation semantics: 60% of public schemas have been found de-
fective [15] because JSON Schema is particularly error-prone. We
introduce JSON Model, a work-in-progress alternative to previous
proposals which is both lightweight and featureful, discuss key
design choices and possible variants.

KEYWORDS
JSON Model; Schema description language; DSL;

1 INTRODUCTION
The JSON [8] JavaScript Object Notation format has become in
recent years an ubiquitous cross-language de facto standard to
represent, exchange and store data between computer applications,
partially replacing XML [12]. Its success can be attributed to the
extensive use of JavaScript in web and mobile development. Like
the more verbose XML, JSON can be parsed without knowing in
advance the expected structure. It allows to serialize in textual form
simple data structures (Figure 1) built upon the null value, booleans,
numbers, Unicode strings, arrays (aka list, tuple, sequence, set) and
objects (aka struct, record, dict, map, association, key-value pairs).
Its drawbacks include the limited number of types, the absence
of a syntax for comments, its unbounded numbers which cannot
express some values (e.g. NaN), the restriction of object properties
(aka key, attribute, field) to strings, and that only tree structures
can be serialized, i.e. there is no sharing of values or cycle. Thanks
to these simple features, a wide range of libraries and tools are
available for many programming languages and systems beyond
JavaScript [10] including Python, Java, Shell, and SQL.

{
"name": "Susie",
"age": 6,
"friends": ["Calvin", "Hobbes"]

}

Figure 1: A JSON object with 3 properties

JSON data are mostly generated and processed automatically
from a programming language: Humans tend to prefer unquoted
structured languages such as YAML to write structured files (e.g.
configurations), or lightweight markup languages such as Mark-
down for text formatting. JSON has two main overlapping use cases:

API Data for simple structures exchanged between computer sys-
tems at API interfaces, for instance between web front-ends
and back-ends in multitier architectures;

Documents for possibly large loosely-structured textual datawhich
are stored, transmitted, processed and finally displayed for di-
rect human consumption.

The overlap comes from development practices based on JavaScript
dynamic typing (lack of) discipline and loose document-oriented
schema-less databases such as MongoDB which do not require data
schemas to be formally declared. Another example of overlapping
usage is open data documentations: They are structured data often
accessed through an API, but they also need extensive meta-data
for documentation purpose.

In this paper, we present the design of JSON Model, a schema
description language for JSON data, which emphasizes compact-
ness and expressiveness, with a particular interest in the API data-
structure use case. Section 2 first discusses existing data-structure
description languages, with a focus on JSON. Section 3 presents
JSON Model design choices, syntax and semantics. Section 4 dis-
cusses particular aspects and possible alternatives, before conclud-
ing in Section 5.

2 RELATEDWORK
As data structures are a key component of programming languages,
describing them with various degrees of constraints is typically
included in language syntaxes. This also applies to dynamically
typed languages, e.g. TypeScript [5] has been developed to allow
type declarations with JavaScript [10].

TABLE Person(
name TEXT,
age INT,
friends TEXT[]

);

(a) SQL

person =
name:string x
age:int x
friends:string*

;

(b) Newgen

struct Person {
string name;
short age;
sequence<string>

friends;
};

(c) IDL

Figure 2: Descriptions for a Person

When considering cross-language features such as data inter-
change, language-independent description languages can been used.
Three examples are shown in Figure 2. Example (a): SQL relational
databases are neutral from programming languages which can ac-
cess data through libraries. Example (b): Newgen [11] provides a
data description language, compiler and libraries which allows to
share data between C and Common Lisp. Example (c): CORBA [6]
includes an interface description language (IDL) to describe struc-
tures which can be exchanged between clients and servers These

Fabien Coelho and Claire Yannou-Medrala

description languages need specialized tools to manipulate actual
data, and require to learn a syntax.

Another approach is to use a file format such as XML and JSON
which can be parsed without knowing in advance its structure. For
these, data description can be done later, e.g. with a DTD or XSD
for XML, and with JSON Schema, JSound or JSound-C for JSON.

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"title": "A Person",
"type": "object",
"properties": {

"name": { "type": "string", "minLength": 1 },
"age": { "type": "integer", "minimum": 0 },
"friends": {

"title": "The Person's Friends",
"type": "array",
"items": { "type": "string", "minLength": 1 },
"minItems": 1

} },
"required": ["name", "age"],
"additionalProperties": false

}

Figure 3: Tight JSON Schema for Figure 1

JSON Schema [14] has been under development as an Internet
Draft for over 13 years and 10 versions. The latest proposal (2020-
12) defines 60 keywords to describe JSON structures, much like
classic programming language data structures, but also includes
constraints such as element sizes (strings, arrays. . .), specific proper-
ties (uniqueness), regular expressions to validate unexpected prop-
erty names, schema composition (allOf anyOf oneOf) and logical
assertions (if then else not). It has an open-document mindset:
schemas are loose by default, allowing any type or property unless
explicitly stated otherwise. As JSON Schema uses JSON to describe
JSON, there is a meta-schema which can validate itself. Figure 3
shows a tight schema suitable for Figure 1 data, which is 4 times
larger than the sample it describes. The overall complexity [2, 4, 15]
results in a majority of public schemas to be defective because of
mistyping, misplacement, misnaming and other mistakes.

JSound [1] is an alternative JSON-based description format that
has been proposed to describe JSON and TYSON (a typed extension
of JSON) data structures (Figure 4). It is inspired byXML Schema and
simpler than JSON Schema. It differs from the later in its syntax and
addresses some of its shortcomings, e.g. types are mandatory, and
extensive types appropriate to programming are available. Some
JSON Schema features, such as composition operators or constrain-
ing unknown property names, are not available, but it provides
inheritance. It shares the same open-document mindset: Properties
are optional by default, and unspecified properties must be explic-
itly forbidden. JSound comes with an interesting compact variant
called JSound-C (Figure 5). This variant is incompatible with full
JSound: It cannot be mixed with it. The whole description syntax
must be switched if any feature is not available. In particular, the
compact version does not allow tight object definitions.

In this paper, we propose an alternate JSON system for describing
JSON data which is even more compact than JSound-C, but still
retains most (useful) features from JSON Schema.

{
"types": [

{
"name": "Person",
"kind": "object",
"content": [

{ "name": "name", "type": "string", "required": true },
{ "name": "age", "type": "integer", "required": true },
{

"name": "friends",
"type": {

"name": "list-of-friends",
"kind": "array",
"content": "string"

} }
],
"closed": true

}] }

Figure 4: Tight JSound for Figure 1

{
"Person": {

"!name": "string",
"!age": "integer",
"friends": ["string"]

} }

Figure 5: Loose JSound-C for Figure 1

3 JSON MODEL
This section introduces the design criteria, the basic syntax and se-
mantics, the representation of values (constants, references, regex),
constraints, composition and complements.

3.1 Design Criteria
JSON data structures exchanged with REST API by web and mo-
bile applications are typically not-deeply-nested objects with few
properties. Data structures are usually tight, because from a pro-
gramming perspective it is easier to write code when assumptions
can be made about actual types. For this kind of use cases, we
want to provide simple and compact type declarations that are
smaller than corresponding values. Furthermore, we still want to
make it possible to constrain values with regular expressions and
sizes. We thus define the following wish list, which sets desirable
characteristics for a new JSON meta-data description language.
self-hosted description in JSON, with a tight meta schema.
compact much shorter than JSON Schema and JSound.
convenient optimized for the simple data structure API use case.
intelligible easy to understand for humans.
frugal avoid multiple redundant concepts.
tight models should be tight by default.
expressive power of description comparable to JSON Schema.
composable by defining and referencing new types.
efficient allow fast (compiled) validation functions.
extensible it should possible to add new concepts if needed.

3.2 Model Basics
In order to have a compact and intelligible representation, JSON
Model relies on type inference [9], so that each type is represented

JSON Model: a Lightweight Featureful Description Language for JSON Data Structures

by its simplest value. The 5 basic types and 2 constructs of JSON
are thus expressed directly: null as a model stands for the null
value, true is a boolean value, i.e. true or false, 0 is an integer,
0.0 is a number, "" (empty string) is a string, [] and {} are empty
arrays and objects. Obviously, these two later constructs are not
very useful in themselves.

Arrays are typically used to hold extended homogeneous lists or
fixed tuples of heterogeneous items, so these two usage patterns
are prioritized. An extended list is expressed as an array of one
type: [true] is a list of booleans. A tuple is expressed as an
array of two or more types: ["", 0, [0.0]] is thus a tuple
composed of a string, an integer, and a list of numbers. Although
this approach creates a non uniformity as a tuple of one element
cannot be simply expressed, this particular degenerate case does
not seem worth preserving, especially as the homogeneous list use
case is quite frequent and objects are often preferred over tuples.

Objects are the more versatile construct in JSON, possibly with
mandatory, optional, and unknown properties. In JSON Model,
properties are simply properties, each property name mapped to
its type. The first character is used to express whether the property
is mandatory (!, the default) or optional (?). Optional properties
can also be described with references and regular expressions, as
discussed in the next section. Open documents are allowed by using
a special "" catch-all property, which is consistent with its usage
to express any string value. Mandatory and optional constant prop-
erties are directly validated. For other properties, first all optional
references are tried: if the property name matches then the corre-
sponding value must match as well. If properties did not match, all
optional regex are tried. If not match again, the catch-all case is
finally applied.

{
"name": "",
"age": 0,
"?friends": [""]

}

Figure 6: Tight JSON model for Figure 1

Figure 6 shows a tight model for the data in Figure 1. The 3
expected properties are represented as 3 properties. As friends is
optional, the property name is prefixed with a ?. This tight model
is slightly shorter than, and quite similar to, the sample value.

3.3 Model Constants and Types
Constants from different types are often needed in data structures,
for instance for declaring an enumeration.

Non-empty constant strings represent themselves, so "Susie"
means string "Susie". However, all non-alphabetical first charac-
ters are reserved as a generic mechanism for extensions, e.g. ? ! for
property names in Section 3.2 and = $ ˆ which are defined below.
We use character _ (underscore) as an escape prefix, thus "_Susie"
is also string "Susie", "_|" is simple string "|", and "_" is the
empty string, distinct from "" which means any string. Other basic
constants use character = (equal) followed by the expected value:
"=null" is the null value, "=false" the boolean false, "=0" the
integer 0, and "=6.02E23" the Avogadro number.

Character $ (dollar) is a generic entry point to refer to predefined
or locally defined types. As a convention, predefined values are in
upper case. They include $ANY for any possible value, $NONE for
no possible value, $U32, $U64, $I32, $I64, $F32 and $F64 for un-
signed/signed integers and floats in their 32-bit and 64-bit variants,
$REGEX for valid regular expressions, $URI for URIs, $DATE for dates,
and others. . . This mechanism allows to add more formatting or
type constraints. Such references can also be used for constraining
optional property names, provided that the value is a string.

A common use-case is to constrain string patterns with regular
expressions. Character ˆ (caret) introduces regular expressions, e.g.
"^[A-Z][a-z]*$" means any capitalized word in the Latin alpha-
bet. The caret is to be understood both as a sentinel for signaling
a regular expression and the metacharacter marking the starting
position within the string. We recommend that valid regular ex-
pressions should be restricted to safe regular expressions, excluding
inefficient backtracking implementations [13]. These regular ex-
pressions can also be used as optional property names, matching
any property of that name if it was not already matched.

{
"character": "^(Calvin|Susie)$", "forty-two": "=42",
"pi": "=3.1415927410125732421875", "empty-string": "_",
"birth": "$DATE", "$URI": "",
"^(Mon|Tue|Wed|Thu|Fri)$": true, "": 0

}

Figure 7: Constants and Types

Figure 7 presents a model for an object with 5 mandatory prop-
erties: Property character matches a regular expression, forty-two
is the integer 42, pi is the float 𝜋 , empty-string is the empty string,
birth is a date. Optional properties are allowed: URI property names
must have string values, property names matching the week-day
regex must have booleans, other properties must have integers.

3.4 Model Constraints
A great deal of JSON Schema syntax is dedicated to validation
constraints on values or sizes. In our opinion, this feature is not an
important requirement for data structures, thus it is not prioritized.

Constraints are represented as an object with the specific Prop-
erty @ (at sign) to denote the target type, and a limited number of
additional properties to describe constraints. The keyword prop-
erties ge gt le lt eq ne express length or order constraints,
their interpretation depends on the values and types: If the target
type is an array, an object or string and the value is an integer, the
constraint is on the array size, number of properties or string length
respectively; If both target type and value are strings, the constraint
is a string lexicographic comparison. Optional constraints can be
declared with additional keywords, e.g. distinct tells whether
values are to be distinct in an array, or characters are distinct in a
string. Unknown or unapplicable properties must be rejected.

In Figure 8, Model (a) is an array of 42 unique strings, Model (b)
is a lower-case word of length between 8 and 10, and Model (c) is a
date in May’23.

Fabien Coelho and Claire Yannou-Medrala

{
"@": [""],
"eq": 42,
"distinct": true
}

(a) Array

{
"@": "^[a-z]*$",
"ge": 8,
"le": 10
}

(b) String

{
"@": "$DATE",
"ge": "2023-05-01",
"le": "2023-05-31"
}

(c) Date

Figure 8: Constraints with @

3.5 Model Composition
With these building blocks, data structures can be constructed
from the basic types and by combining objects and arrays. More
detailed operators can be useful to factor out common elements, as
exemplified by JSON Schema: and (allOf), or (anyOf) and exclusive-
or (oneOf). JSON Model uses objects with specific properties (one
at a time) applied to a list of models for these operations. The one-
at-a-time constraint simplifies the semantics and intelligibility of
composed objects.

The most fundamental construct is or to express a union or
tagged-union, or to list the values of an enumeration. We use Prop-
erty | (pipe) to express this. The generalized exclusive-or (xor) is a
particular case of or where only one case must match, which may
required implementations to check all alternatives. We use Prop-
erty ˆ (caret) for this. Finally, it may be useful in some (corner) cases
to check that a value matches several constraints simultaneously.
We use Property & (ampersand) for this.

{
"season": { "|": ["Spring", "Summer", "Fall", "Winter"] },
"movie": {
"^": [

{ "lang": "français", "titre": "" },
{ "lang": "english", "title": "" },
{ "lang": "Deutsch", "Titel": "" }

]
} }

Figure 9: JSON Model with Combinations

Figure 9 illustrates or and xor combinations with an object with
twomandatory properties. Property season is one of the four strings.
Property movie is a tagged union, with Property lang as a discrimi-
nator, to provide the title of a movie in some language.

In practice, the and operation is not very useful with tight models
because each submodel cannot be extended by the very definition
of tightness. The typical use case is to build an object with different
sets of already defined properties, much like multiple inheritance
in an object-oriented programming language. To address this com-
mon use case, we introduce the plus operator with Property + (plus)
which must be understood as a pre-processing macro to combine
properties from different objects, which are then interpreted as a
standard object. This operator is distributive over |. Precise rules
define how properties are merged when they have the same name: If
one is mandatory and another is optional, then the result is manda-
tory, and the values must be compatible. Then optional reference
and regex properties are merged, then the catch-all property.

Figure 10 Model (a) illustrates the merge of two objects defini-
tions. In the resulting merged Model (b), each object contributes to

{
"+": [

{ "!name": "",
"?cel": "", "^[a-z]+$": "" },

{ "!cel": "", "?tel": "", "": 0 }
]

}

(a) Merging. . .

{
"!name": "",
"!cel": "",
"?tel": "",
"^[a-z]+$": "",
"": 0

}

(b) Merged

Figure 10: JSON Model Merge Composition

one mandatory property (name and cel). First object optional Prop-
erty cel becomes mandatory because of the merge rule with cel in
the second object. The tel property remains optional. Properties
matching the regular expression must be strings (1st object). Other
properties are also allowed if they are integers (2nd object).

{
"name": "Calvin",
"cel": "060708",
"desk": "R.02",
"Age": 6

}

(a) Calvin

{
"name": "Susie",
"cel": "061234",
"tel": "012345",
"AGE": 7

}

(b) Susie

{
"name": "Hobbes",
"tel": "010101",
"CEL": "06",
"age": 6

}

(c) Hobbes

Figure 11: Three Sample Values

In Figure 11, the two first values conform to the merged model,
the last does not because mandatory cel is missing and age is lower
case so should be a string instead of an integer.

3.6 Model Complements
This section addresses additional features useful when describing a
data structure, such as meta-data, defining and reusing elements
and importing external definitions.

A common use case is to add comments in a data structure
description to help understanding and maintenance. As JSON does
not have a syntax for comments, we use Property # (sharp) which
will be ignored by model validators. Its value may be a simple
string or an arbitrary object, allowing model designers to add any
information they see fit.

When developing a large model, it is useful to factor out parts
that can be reused consistently, avoiding repetitions. As we already
have a mechanism for referencing a model with a string ($), we
only need to add new definitions inside a model. We use Property %
(percent) to introduce an object with keys as identifiers and values
as the expected corresponding model. The name space is global
by default, i.e. multiple definitions of a given name override one
another, but can be extended as discussed in Section 4. As a conven-
tion, predefined names are in uppercase, and user-defined names
are expected to use lower case or be capitalized. To allow simple
recursive structures, naming an element can also be done directly
in its definition with Property $ (dollar) and the name as a value.

Figure 12 is a recursive data model. Definition section uses itself
as an array item in the sections property type. The recursion is
well-founded because Property sections is optional, or the list can
be empty. Figure 13 shows a conforming value.

JSON Model: a Lightweight Featureful Description Language for JSON Data Structures

{
"#": "A Book",
"%": {

"section": {
"title": "^.",
"?text": "",
"?sections": ["$section"]

}
},
"+": [

{ "authors": ["^."], "publisher": "^." },
"$section"

]
}

Figure 12: JSON Model for a Book

{
"title": "JSON Model: A Description Language for JSON",
"authors": ["Calvin", "Susie"],
"publisher": "Hobbes",
"sections": [

{"title": "Introduction", "text": "The JSON ..."},
{"title": "Related Work", "text": "As data ..."}

]
}

Figure 13: Example Book Data

For large data structures, and to reuse already defined models,
it is interesting to be able to reference a model which is stored
outside of the model definition. This can be achieved by allowing
URLs in $-references, including a possible fragment, similarly to
JSON Schema, e.g. $https://json-model.org/geom#polygon ref-
erences the polygon element type defined with % in the referenced
model. It is also possible to specify a path to a submodel.

{
"#": "Definitions at https://json-model.org/geom",
"%": {

"coord": { "x": 0.0, "y": 0.0 },
"segment": ["$coord", "$coord"],
"polygon": ["$coord"]

} }

Figure 14: Geometric Definitions

{
"%": { "geo": "$https://json-model.org/geom" },
"pol": "$geo#polygon",
"seg": "$geo#/%/segment"

}

Figure 15: Geometric Use

A definition can be used indirectly, as illustrated in Figures 14
and 15. Geometric types are defined in the geom model, and then
imported and used in another model.

Figure 16 is a self-validating tight meta-model for JSONModel. It
does not use any predefs, but redefines any and none special values.
The definition of Obj excludes special properties from appearing
directly in objects. This meta model only uses disjunctions and

{
"#": "Self-Validating JSON Model",
"$": "Model",
"%": {

"val": { "|": [null, true, 0, 0.0, ""] },
"any": { "|": ["$val", ["$any"], { "": "$any" }] },
"none": { "|": [] },
"meta": { "|": ["", { "": "$any" }] },
"Array": ["$Model"],
"Constraint": {

"_@": "$Model",
"^(le|ge|lt|gt)$": { "|": [0, 0.0, ""] },
"^(eq|ne)$": "$val",
"?distinct": true

},
"Or": { "_|": ["$Model"] },
"And": { "_&": ["$Model"] },
"Xor": { "_^": ["$Model"] },
"Add": { "_+": ["$Model"] },
"Obj": { "": "$Model", "^[|@&^+]$": "$none" },
"Elem": {

"+": [
{ "?$": "", "?#": "$meta", "?%": { "": "$Model" } },
{ "|": ["$Constraint", "$Or", "$And",

"$Xor", "$Add", "$Obj"] }
]

}
},
"|": ["$val", "$Array", "$Elem"]

}

Figure 16: JSON Model Self-Validating Tight Meta-Model

one merge, and is recursive on Model and any. It could be made
tighter, e.g. by using regular expressions to restricts constants, local
definition identifiers or list predefs.

{
"#": "A JSON Model Extension",
"%": {

"model": "$https://json-model.org/model",
"ExtendedConstraint": {

"+": [
"$model#Constraint",
{ "?mo": "$model#val", "?in": "$model" }

]
} },
"|": ["$model", "$ExtendedConstraint"]

}

Figure 17: JSON Model Extension

External references offer a simple mechanism to extend a model,
as shown in Figure 17. The new model re-uses JSON Model meta-
model to add two new properties to constrained elements.

4 DISCUSSION
This section discusses various aspects of JSON Model, including
possible extensions, alternatives and open questions.

JSON Model relies on 15 special keywords on top of JSON syn-
tax, which is much lower than JSON Schema (60) and smaller than

Fabien Coelho and Claire Yannou-Medrala

JSound (19). It uses symbols with well-known semantics from pro-
gramming languages, such as # for comments, | & + ˆ for combi-
nations, $ for references. Ambiguities are avoided because keyword
operators (@ | & + ˆ) are exclusive inside elements. Keywords are
short to avoid mistyping: they are either one-character symbols
(# @ |. . .) or very short mnemonics (eq ne le. . .). These latter key-
words could instead rely on symbols unlikely to be used as property
names in typical data structures, e.g. >= for ge or ! for distinct.
However, the resulting readability is debatable.

Operator + semantics could be enhanced to address more use
cases: The value compatibility when merging could cover simple
type inclusions. Though it would seem to be interesting, this opera-
tor cannot be distributive over & ˆ as it would lead to contradictions.

JSON Model meta data are not standardized in any way. It may
help tools to constrain some keywords inside a # property. For
instance, a model version identification may be useful. Another
special usage for meta data would be to deal with validation options,
e.g. whether 1.0 should be considered an integer or not.

JSON Model definitions (%) are set in a global name space. It
should be decided whether collisions override identifiers or are
prohibited. Another choice would be to scope definitions inside the
element in which they are declared. A simple alternative approach
could be to restrict % usage to the model root.

Although constraints on integer values are not often used, in
most cases they are about positivity (≥ 0 or > 0). This could be
embedded directly in the type value, with 0 for positive, 1 for strictly
positive and -1 for any integer.

Sentinel Character $ semantics is overloaded for predefined
types, local and external references. Although this overloading
seems harmless, it could help readability to use a different sentinel
character depending on the function, e.g. : for predefined types,
$ for local references and $$ for external references.

JSON Path is a standard query path for JSON to access an element
within a JSON structure. JSON Schema uses a URL path instead
when dealing with references, which is consistent because schemas
are identified by URLs. JSON Model does the same to follow suit,
but it may make sense to consider a JSON path alternative syntax.
Also, it is unclear whether references should be URL-encoded.

Regular expressions are introduced with the ˆ character sentinel.
Another option would be to surround them between /, similarly
to Sed, Awk or Perl. There would be two benefits: The regular
expression loses the constraint that it starts at the beginning of the
string, and it would allow to add options after the second slash.

Compared to JSON Schema, JSON Model left out a few features.
Some constraints about types contained in arrays, or about values
(multiple-of, mime-type), are removed because field studies show
that they are seldom used [3, 15]. They could be added easily with
more constraint keywords (e.g. in mo fmt), or special definitions
(e.g. $MIME:text/xml). Type declaration logic keywords if then
else not are also removed: Not only is this feature seldom used,
but it creates very hard to understand schemas and can often be
removed. Variadic tuples are not currently covered, but could be
with minimal conventions in constrained elements.

It is interesting to investigate what happens if a random JSON
object value is loaded in place of a model. This value is likely to be
a valid model, because models use type inference to define types,
and model-specific symbolic keywords are unlikely to be found

in a typical value. However, a value considered as a model is very
tight and will probably be only able to validate itself, as most string
values will be considered as constants to be checked. Validating
any other value would raise an error.

We have developed a proof-of-concept implementation of JSON
Model in Python, available online [7]. It offers both a model val-
idator (interpreter) and a compiler which generates more efficient
check functions for validating values. The compilation of a valida-
tion function from a model provides optimization opportunities, e.g.
tagged-unions can be recognized to generate a direct test on the
tag property instead of checking each case in sequence. This tool
has been used extensively to validate schemas against all versions
of JSON Schema [15]. The implementation also includes proof-of-
concept model-to-schema and schema-to-model converters.

5 CONCLUSION
JSON Model satisfies the 10 criteria set for its design: It is self-
hosted, compact, convenient, frugal, tight, expressive, composable,
efficient and extensible as defined in Section 3.1. As for intelligibility,
it is judgemental in nature: We think that model illustrations in
Section 3 can be broadly understood by a developer even without
knowing in advance the formal syntax.

Future work includes completing JSON Model design hopefully
with feedbacks from this introduction, writing a formal specifica-
tion, developing Python and JavaScript reference implementations
with extensive positive and negative tests as well as convenient
tools such as converters, distributing these productions widely with
an illustrated tutorial and example use cases, and investigating the
integration of JSON Model into standards such as OpenAPI.

Thanks to O. Hermant for his help in proofreading this paper.

REFERENCES
[1] Cesar Andrei, Daniela Florescu, Ghislain Fourny, Jonathan Robie, and Pavel

Velikhov. 2018. JSound 2.0 – The Complete Reference. https://jsound-spec.org
[2] Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo

Sartiani, and Stefanie Scherzinger. 2023. Validation of Modern JSON Schema:
Formalization and Complexity. (March 2023). working paper or preprint.

[3] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and
Stefanie Scherzinger. 2021. An Empirical Study on the ”Usage of Not” in Real-
World JSON Schema Documents. In 40th Int. Conf. on Conceptual Modeling ER
2021 (Lecture Notes in Computer Science, Vol. 13011). Springer, 102–112.

[4] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and
Stefanie Scherzinger. 2022. Negation-Closure for JSON Schema. Preprint. https:
//arxiv.org/abs/2202.13434v1

[5] Gavin Bierman, Martín Abadi, and Mads Torgersen. 2014. Understanding Type-
Script. In European Conf. on Object-Oriented Programming. Springer, 257–281.

[6] Juergen Boldt. 1995. The Common Object Request Broker: Architecture and Specifi-
cation. Specification Formal/97-02-25. Object Management Group.

[7] Fabien Coelho and Claire Yannou-Medrala. 2023. JSON Model. https://github.
com/clairey-zx81/json-model

[8] Douglas Crockford. 2006. The application/json Media Type for JavaScript Object
Notation (JSON). RFC 4627. IETF.

[9] Luis Damas and Robin Milner. 1982. Principal type-schemes for functional
programs. In PoPL. 207–212.

[10] ECMA International. 2011. Standard ECMA-262 – ECMAScript Language Specifi-
cation (5.1 ed.). 846 pages. First edition in 1999.

[11] Pierre Jouvelot and Rémi Triolet. 1989. NewGen: A Language-Independent Program
Generator. EMP-CRI 191. CRI, Mines Paris – PSL.

[12] Laurent Mignet, Denilson Barbosa, and Pierangelo Veltri. 2003. The XML Web: a
First Study. In The Web Conference.

[13] Mitre. 2021. Inefficient Regular Expression Complexity. CWE 1333.
[14] Austin Wright, Henry Andrews, Ben Hutton, and Greg Dennis. 2022. JSON

Schema: A Media Type for Describing JSON Documents. Draft 2020-12. IETF.
[15] Claire Yannou-Medrala and Fabien Coelho. 2023. An Analysis of Defects in Public

JSON Schemas. Tech. Report A/794/CRI. CRI, Mines Paris – PSL.

https://jsound-spec.org
https://arxiv.org/abs/2202.13434v1
https://arxiv.org/abs/2202.13434v1
https://github.com/clairey-zx81/json-model
https://github.com/clairey-zx81/json-model

	Abstract
	1 Introduction
	2 Related Work
	3 JSON Model
	3.1 Design Criteria
	3.2 Model Basics
	3.3 Model Constants and Types
	3.4 Model Constraints
	3.5 Model Composition
	3.6 Model Complements

	4 Discussion
	5 Conclusion
	References

