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Abstract: The use of information and communication technologies (ICT) in agriculture is far from their
potential. In this article, we consider how to facilitate and systematize the process of transforming
traditional agriculture into digital agriculture; Agriculture 4.0. Among the different technologies,
we focus on the IoT aspects. In the article, we propose a new approach for the design of intelligent
agricultural management and supervision systems. The proposed approach is illustrated as an
example of application in the beekeeping sector. Indeed, this sector is affected by a crisis due to the
disappearance of bees and the different actors need support to make their decisions. As an example
of decisions that can be made, we can cite: treatment planning or policy planning. An architecture
based on sensors and open data is proposed to help them make decisions. An implementation of it is
shown; it is based on a device with sensors, as well as an interface to collect the data on beehives and
show notifications and alerts to beekeepers. The proposed architecture is flexible, and it can be used
in the context of different levels of technology maturity. The final objective is to develop a reusable
architecture for Agriculture 4.0.

Keywords: intelligent system; agriculture 4.0; smart beehives; maturity model

1. Introduction

Recently, the beekeeping industry has been threatened by a decline in the number of
bee populations and a drop in production. Beekeepers grapple with many issues related
to the health of bee colonies. Scientific work is focused on a deep understanding of
the causes of these phenomena in order to help beekeepers make the right decisions [1].
In France, a study on the mortality rate of bee colonies during the winter of 2020–2021
was carried out with more than 13,000 participating beekeepers (Platform ESA. National
survey on winter mortality of bee colonies, 2021. Accessed on 28 September 2022. https:
//siteweb.esa.inrae.fr/en/node/536). In general, the death rate is estimated at 24.8%.

According to a FranceAgremer (FranceAgrimer: The National Establishment of Agri-
cultural and Sea Products) study [2], sales of honey and derivatives (pollen, pure royal
jelly, honey and royal jelly, etc.) in supermarkets are estimated in 2020 at 16,200 tons, an
increase of nearly 11% compared to 2019. The increasing consumer interest is explained by
the positive image of the product (healthy, natural, etc.). For more than 10 years, honey
production in France has been increasing, but despite this, it is not enough to cover an
increasingly strong demand. Consequently, France imports honey to fill the gap between
consumption and production. The volumes of imported honey thus increased by 36%
between 2010 and 2020 (6% in 2020).

It is now evident that environmental pollution and climate change are a great danger to
our planet. Experts have confirmed that they pose a very dangerous threat to many species
of terrestrial and marine fauna. However, the death of the bee population necessary for polli-
nation is considered the most important warning for humans. According to FranceAgrimer

Appl. Sci. 2022, 12, 11179. https://doi.org/10.3390/app122111179 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122111179
https://doi.org/10.3390/app122111179
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0859-4734
https://orcid.org/0000-0002-5322-8231
https://orcid.org/0000-0002-1139-2789
https://orcid.org/0000-0002-9776-3842
https://orcid.org/0000-0002-3310-7651
https://siteweb.esa.inrae.fr/en/node/536
https://siteweb.esa.inrae.fr/en/node/536
https://doi.org/10.3390/app122111179
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122111179?type=check_update&version=2


Appl. Sci. 2022, 12, 11179 2 of 20

(FranceAgrimer. Observatory of the production of honey and royal jelly, July 2022. Accessed
on 28 September 2022. https://www.franceagrimer.fr/fam/content/download/69152/
document/SYN-API-Observatoire_Miel_et_Gel%C3%A9e_Royale_2021.pdf?version=3), the
total number of beekeepers has increased over the past 6 years and for the first year, the
Observatory has highlighted a decline in the number of beekeepers in France. Thus, in
2021, there were 70,847 declared beekeepers, compared to 71,273 in 2020. Nevertheless,
the number of beekeepers with more than 50 hives continues to grow (+288 beekeepers, or
more than a 5% improvement). France has 5708 beekeepers with more than 50 hives.

A solution to tackle these issues is to connect and digitalize the beehives. Our goal is
to help the beekeepers and decision-makers (politician, responsible for cooperative, etc.) to
make their decisions and to supervise one or several beehives. These decisions could be
from a day to a year. More specifically, beekeepers keep a record or journal of their hives.
In this record, the beekeepers note the information about all treatments, handling, feeding,
visits, harvesting of the honey, etc.

In addition, many applications in manufacturing systems require a combination of new
technologies, resulting in the emergence of Industry 4.0. The most well-known technologies
used by Industry 4.0 are IoT, Cloud Computing, Big data, and cyber-physical systems (CPS).
CPS are mechanisms that allow monitoring through communication, data storage, and
computational capabilities directly incorporated into objects [3]. More precisely, CPS has
embedded software that uses sensors and actuators. To allow humans and software to
communicate between them, standard interfaces have been developed. The use of data
coming from sensors or from the network is supported by this software. They have storage
and processing abilities.

Agriculture systems have the same challenges as those encountered by manufactur-
ing systems. Theses challenges are related to their sizing, to the understanding of their
mechanisms, to the improvement of their productivity, and to their performance evalu-
ation. Theses challenges produce difficulties to make decisions for all the actors in the
agriculture systems.

Digitalization processes are currently being increasingly introduced into various
sectors of the national economy, including the agricultural sector [4]. Digital Transformation
(DT) refers to the combination of digital technology and areas of the business to finally
realize the transformation of the management model and business model [5]. Indeed, DT
is often referred to either as evolution, or the creation of entire new business models in
companies or business sectors [6]. Digitalization can be considered as part of DT [7]. It
describes socio-technical processes and their impacts on human activities that result from
the use of interconnected digital technologies [8]. DT is a convergence of hard (technology)
and soft (people and businesses) forces and movements from which additional value
emerges [9]. According to the authors, one of the disruptive technologies adopted in DT
implementations is “IoT connected devices”. In the same way, the following categories were
used for coding the DT [10]: Technologies, Management/Processes, and People. The authors
also list the elements within each category. Among these elements, in this paper, we meanly
use IoT (Technology) in order to create new services and products (Management/Processes) for
workforce, stakeholders, and partners (People). Thus, our process respects the properties
of the DT, with an implementation in beekeeping. As new services, we focus on the
development of decision support systems. This new service allows us to improve the
business models of the different actors and to help save the bees.

In our context, we depict a new approach to apply the DT in the beekeeping sectors
and help the actors of this area to make their decisions. To this end, different proposals
are made:

• A proposal of Maturity Model (MM) Levels for smart beehives;
• A proposal for analysing all the decisions that can be made in the beekeeping sectors

using spatio-temporal matrix;
• A proposal of generic architecture that corresponds to the decisions analysed in

the matrix.

https://www.franceagrimer.fr/fam/content/download/69152/document/SYN-API-Observatoire_Miel_et_Gel%C3%A9e_Royale_2021.pdf?version=3
https://www.franceagrimer.fr/fam/content/download/69152/document/SYN-API-Observatoire_Miel_et_Gel%C3%A9e_Royale_2021.pdf?version=3


Appl. Sci. 2022, 12, 11179 3 of 20

The paper is structured as follows: Section 2 presents a synthetic review of work
about smart agriculture and more specifically on beekeeping with a focus on IoT. Section 3
proposes a Maturity Model to categorize the digital maturity of smart beehive systems and
presents classification of the literature on smart beehives following this Maturity Model.
Section 4 depicts a spatio-temporal matrix to analyse the possible decision-making on smart
beehives. Section 5 explains the global view and the generic architecture for the proposed
smart beehives. An implementation is shown in the Section 6. Finally, Section 7 presents
the conclusions and perspectives.

2. Context and Related Work
2.1. From Industry 4.0 to Agriculture 4.0

One of the main objectives of our approach is to facilitate the use of IT communication
and information tools in agriculture. As an analogy to Industry 4.0, digital agriculture,
smart agriculture, intelligent agriculture, or Agriculture 4.0 can be defined as a set of
modern technologies that today meet the needs of communication, storage, automatism,
computing, and security.

Industries, as well as researchers and decision-makers around the world, have increas-
ingly called for a fourth industrial revolution to enter a new era of digital and connectiv-
ity [11].

According to Danjou et al. [12], 10 technology groups can be considered to implement
Industry 4.0, such as cloud computing, IoT, CPS, and big data. The use of these technologies
allows the transmission of information throughout the entire system and enables better
control and monitoring. Practically, they are adapted to the operations in real time according
to varying requirements and demand [11].

From these concepts, we proposed to reuse them in the domain of Agriculture 4.0
(Figure 1) similar to Ref. [13], who proposed a framework to manage traceability in Agricul-
ture 4.0. Agriculture becomes a very important sector to apply the concept of CPS to [14].
In fact, the agriculture sector follows the industrial revolution and moves from traditional
systems to the implementation of a full range of modern systems. These systems enable
data management of the geographic information, production experiments, climate infor-
mation, and other data. The beekeeping sector is obviously concerned by this revolution.
Figure 1 shows the reuse of 10 technologies from Industry 4.0. The orange circles represent
the technologies used in our project.

In the context of our project and paper, we are only interested in five technologies:

• Internet of Things, because decisions need data collection done through connected
objects like smart hives;

• Cyber-Physical System, a set of primordial principles that allow defining the hierarchy
of decision makers and decision cycle;

• Big Data, because data is the most important thing on which decisions are based;
• Cloud computing, which refers to the delivery of resources and services on demand

over the Internet, i.e., the access to data from different resources and high comput-
ing power via the internet. It is an important computing step that facilitates the
deployment of intelligent systems;

• Artificial Intelligence: in fact, nowadays, artificial intelligence is a powerful tool that
can be used to help users in the process of making decisions.

Among the concepts of the agriculture 4.0 presented in this section, the main concept
used in this paper and our system is IoT. The next section presents this concept.
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Figure 1. Reuse of the 10 technologies of Industry 4.0.

2.2. IoT for Digital & Green Agriculture

In an era of the Information Technology (IT) revolution, IoT is being utilized in various
forms such as smart pills, personal devices, smart cities, robotics, smart monitoring devices,
and real time monitoring systems. IoT can be explained by the ever growing intercon-
necting that connects hardware, computing devices, sensors, interfacing software, people
of different networks, to exchange data and communication [15]. It facilitates and eases
the process of communication and interaction between the elements connected through
the network. The technology of IoT was derived from Radio Frequency Identification
(RFID) and Wireless Sensor Networks (WSN) [16]. The data collected from RFID and
WSN can be communicated easily to the different nodes of the interconnected sensors.
The technology of IoT is being widely used in various devices such as home appliances,
phones, gadgets, vehicles and other networking objects. Simply put, it means that all
networking devices can be interconnected with each other globally for a real-time data
exchange without the interference of human beings. IoT usage is growing rapidly in the
IT industry, driven by the use of connected device applications. However, the COVID-19
pandemic will have a major impact on global IoT spending in 2022. IDC forecasts that
global IoT spending will grow at a compound annual growth rate (CAGR) of 11.3% over
the 2020–2024 forecast period (Worldwide Spending on the Internet of Things Will Slow
in 2020 Then Return to Double-Digit Growth, According to a New IDC Spending Guide.
https://www.idc.com/getdoc.jsp?containerId=US49578922, August 2022. Accessed on 28
September 2022).

According to IDC, there will be 41.6 billion connected objects generating 79.4 zetta
bytes of data in 2025 (Steve Ranger. What Is the IoT? Everything you need to know about
the internet of things right now. https://www.zdnet.com/article/what-is-the-internet-of-
things-everything-you-need-to-know-about-the-iot-right-now/, February 2020. Accessed
on 28 September 2022). There are many different types of connected sensors that can be
used in IoT applications to make the process simpler and efficient [17]. Appliances such
air conditioning, security cameras, etc., can be controlled and audited from anywhere
through connected devices. Smart cities are also being developed through the help of IoT

https://www.idc.com/getdoc.jsp?containerId=US49578922
https://www.zdnet.com/article/what-is-the-internet-of-things-everything-you-need-to-know-about-the-iot-right-now/
https://www.zdnet.com/article/what-is-the-internet-of-things-everything-you-need-to-know-about-the-iot-right-now/
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by the transportation data analysis. The technology of IoT is used by supply chain systems
also when they use trackers to track deliveries in real time. Similarly, applications such
as ApplePay, PayPal, etc., are also forms of connected devices that are used by banking
systems to enable transactions using smartphones. Smart devices are used to collect data
with the help of sensors and collected data can be transferred to the network layer through
cloud systems. It is used for collecting various types of data that is useful to monitor and
track various activities. The data collected through the different networks is converted into
useful data, which become very important elements in the decision process.

What is the landscape of the sensors and IoT in agriculture? Agriculture benefits from
interconnected objects, as the use of smart devices in the agriculture sector enables the
monitoring of different important values and activities of farmers. The applications of
connected devices are being utilized to track and record different kinds of data such as
temperature, humidity, pollution, etc. Smart and IoT applications entered agriculture with
a delay in relation to other fields such as medicine or industry. However, these solutions
have started to increase over the years for better monitoring. This paves way for better
practices in the form of better quality services and cost reduction. IoT-based approaches in
the agriculture and agro-industry have proved to be very useful and have become necessary
to propose better adapted services. More precisely, most initiatives in the agriculture and
agro-industry focus not only on increasing the production but also on improving services
such as sustainability, biodiversity vigilance, etc.

IoT is another very important paradigm used in the agro-industrial and environmental
field [18]. The authors in Ref. [19] explain that one of the main requirements for devices
used in IoT projects is that they must be energy efficient. The main point is to be able
to evaluate the energy impact of the proposed architecture. The authors also explain
the interest of Edge Computing in the future of agriculture. The IoT driven by AI-based
recommendation model is one of the greatest promises of the development [18].

Several research activities have been carried out to study the use of IoT concept and
agriculture. The authors of Ref. [20] presented an interesting survey of IoT solutions
and demonstrated how IoT can be integrated into the smart agriculture sector. Ref. [21]
presented the design of a smart system based on low-cost IoT sensors and popular data
storage services and data analytics services on the cloud for crop production. The authors
of Ref. [22] presented an overview on the recent trends on sensors and IoT systems for
irrigation in Precision Agriculture. On the same scope, Ref. [23] proposed a data acquisition
platform that is easily reusable. Other authors [24] have focused on the communication
between the sensors and a NoSQL database through the use of an Interoperable Platform.
The goal is to support the actors to help them manage their crops. In Ref. [25], the authors
present a comprehensive review of emerging technologies for IoT-based smart agriculture.
They provide a classification of IoT applications for smart agriculture into several categories.
They propose to list the connected smart agriculture sensors that enable the IoT.

3. Maturity Model Levels and Smart Beehives

Many authors have already dealt with smart beehives with different levels of tech-
nological maturity. We therefore propose to focus on technological maturity for smart
beehives and then analyse the articles that cover this field.

3.1. Maturity Model Levels for Smart Beehives

Beekeepers, depending on their financial means, will have different levels of techno-
logical maturity. The more connected beekeepers are, the more precise and relevant the
notifications they receive will be.

To design our maturity levels, we were inspired by the literature about Maturity Model
(MM) in Industry 4.0. We have therefore redefined MM so that it is compatible with a
system similar to ours. Indeed, the literature proposes different Maturity Model levels to
evaluate the digitalization of manufacturing systems [26–28].
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Among the different existing maturity levels, we were interested in those correspond-
ing to IoT and CPS. Westermann et al. [29] offered a maturity model for all CPS systems.
We then adapted this model to our system. Table 1 proposes to summarize this adaptation.

The system is partially interlinked with other systems in horizontal and vertical
dimensions [29]. Horizontal means communication with systems along the value chain,
e.g., up- or down-stream systems such as other machines or other smart beehives in the
studied domain. Vertical means interlinking with superordinate systems such as central
decision centres or ERP in industry.

The system at the hive level will be between levels 1 and 5. Depending on the CPS set
up by the beekeeper, the level of alerts and notifications will be different (Table 1).

Table 1. Maturity model levels adapted for smart beehives.

Maturity Model
Levels 1 2 3 4 5

Data Input

Manual or vocal
input

(semi-automatic)
and global

connection to envi-
ronmental data

Automatic input
by sensors and

global connection
to environmen-

tal data

Automatic input
by sensors and

global connection
to environmen-

tal data

Automatic input
by sensors and

local/global
connection to envi-

ronmental data

Automatic input
by sensors and

local/global
connection to envi-

ronmental data

Intelligence Centralized Centralized Centralized and
locally limited

Centralized +
Local (including

history of decisions
made) + Local

analysis of the data
and automatic
alerts sending

Centralized +
Local cooperation
and negotiation

between beehives

Communication

Vertical with
synchronization
for several days

or weeks

Vertical with
synchronization
for several days

or weeks

Vertical with
Real Time

Synchronization

Vertical with
Real Time

Synchronization

Horizontal and
Vertical with

Real Time
Synchronization

Regarding the agriculture, Büyük et al. [30] dealt with the Digital Maturity Assessment
Model for Smart Agriculture. It consists of a model for companies that evaluates their
competencies in Smart Agriculture. It is possible to calculate the digital maturity levels by
using the proposed evaluation model. Actors in the agricultural sector can also analyse
their degree of success in relation to the requirements of Industry 4.0. With the proposed
criteria, the human and technological aspects are taken into account. The whole cycle (from
the farm to the industry) could be analysed. Only the technological and farm aspects of
this evaluation model correspond to our project.

3.2. Smart Beehives Literature Classified by Maturity Model Levels

Even though using technology in the beekeeping domain is still in its infancy, some
works attempt to exploit certain technology aspects in order to improve the beekeeper
practices and performance. Table 2 presents some of these works, each of them correspond-
ing to a system that has input data and output data, and is based on special hardware,
software, and algorithms. The last column of the table indicates the maturity of the system,
as described in Section 3.
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Table 2. Literature about smart beehives analysed with the Maturity Model presented in the Table 1.

Authors Date Input Data Output Data Hardware Software MM

Aksoy et al. [31] 2018

company age,
company province,
level of education,

status of membership
of an association, other

activities, hives
number, race of bees,
frequency of queen

change

honey production
Data Mining

algorithms: CART,
CHAID, MARS

1

Dineva and
Atanasova [32] 2018

beehive internal data
(temperature, humidity,
weight, noise), external

data (temperature,
humidity, CO2,
polluting air)

relation between data,
prediction of future

events
sensors OSEMN 2

Braga et al. [33] 2020

temperature, weight,
weather data, dew

point, wind direction,
wind speed, rainfall,

luminosity

colony health status:
good health, bad

health, or collapse of
colony health

sensors

K nearest neighbors
method, Random
decision forests,

Neural Networks

2

beeinformed.org [34] 2021 weight, number of
varroas, virus, nosema statistics sensors web application, open

data, diagrams 2

Edwards-Murphy
et al. [35] 2016

CO2, O2, polluting
gases, temperature,

humidity, acceleration

colony health state,
beehive internal

weather data and
external weather data

sensors (temperature,
humidity, acceleration,
air), network devices

(3G, ZigBee)

Machine learning:
decision tree 3

Markovic et al. [36] 2016 temperature critical events temperature sensors Complex event
processing (CEP) 3

Balta et al. [37] 2017

hive data (temperature,
humidity, weight, bees
traffic), external data

(weather, location
information)

bees counting,
management of

devices, resources and
sensors, management

of beekeeping data
(beehive, apiary and

region), detecting
dangerous situation
(robbing, swarming
and colony losses)

Raspberry Pi, camera,
sensors

sqlite, mongoDB,
Node.js, Express.js,
Angular.js, java on

android, MQTT
protocol, RESTful
protocol, Cloud

computing (Microsoft’s
Azure and IBM’s

Bluemix), Rule-based
algorithm, XML, JSON,

CSV

3

Zogović et al. [38] 2017

weight, temperature,
O2, CO2, vibration,

sound, humidity,
foragers traffic, thermal

images of colonies,
atmospheric pressure

decision making aid,
automatic actions

performed by robots

scale, sensors, robot,
actor, camera

OODA cycle: observe,
orient, decide, act 3

Cazier
(beeculture.com) [39] 2018

weight, temperature,
humidity, sound,

images, knowledge of
good beekeeping

practices

alerts, suggestions of
actions, management

practices, optimisation
(colony health,

production, pollination
performance)

use of the beeXML
standard, continuous

learning and
integration of good

practices

3

Mrozek et al. [40] 2021 stream video of bees at
hive entrance bee infestation status RaspberryPi, Camera,

GSM modem

Neural Networks,
Google Cloud, AWS

Cloud, AWS Lambda,
AWS DynamoDB

3

Debauche et al. [41] 2018

external data:
temperature, humidity,
atmospheric pressure,
luminosity. Beehive

internal data: humidity,
temperature,

acceleration, air
contaminants

monitoring of bees
behaviour, information
for comprehension and

analysis of the
extinction of bees,
colony health state

Network protocols
(LPWAN, 3GPP),
sensors, PyCom
microcontroller

Lambda Architecture,
REDIS, PostgreSQL,

Apache kafka, Apache
Samza, HDFS, Docker

3

beeinformed.org
beeculture.com
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Table 2. Cont.

Authors Date Input Data Output Data Hardware Software MM

Zetterman [42] 2018

temperature, weight,
sound, humidity,
number of bees,

acceleration, CO2

data collection,
monitoring, graphics sensors web application 3

Latioui et al. [43] 2019

expert rules, social
network data (images,

texts), beekeeper
voice, GPS

alerts,
recommendations,

voice detection
sensors Chatbot, deep learning,

text mining 3

None of the articles presented in Table 1 provide a description of the digital maturity
level. Most of those articles have proposed architectures to manage the data exchange
between components. However, these architectures are very technical and have a lack of
global view and genericity. Thus, they are hardly reusable. We propose in this paper, using
the digital maturity level and the analysis made in the next section, to approach the subject
in a more global and generic way.

4. Analysis with a Spatio-Temporal Matrix

To design an architecture for a decision-making system, a relevant methodology must
be used. Among methodologies that can be used in the case of beekeeping, there is the
spatio-temporal “3 × 3 matrix”. It consists of filling a matrix composed of two axes: the
temporal horizon and the modelling level. There are several works that try to use a two-
dimensional grid to design a decision-making system, for instance, Chabrol et al. [44]
proposed to couple the modelling approaches to the time horizons to design decision aid-
tools for the hospital domain. Comelli et al. [45] propose a methodology based on studying
horizon levels and system flows to evaluate the supply chain. The suggested framework
in Ref. [46] has the advantages of handling decisions on two dimensions. It allows the
designer to have a global view and to achieve a more complete architecture, taking into
account different temporal and spatial levels. As explained in that paper, Figure 2 shows
the matrix axis and its matching levels for the case of beekeeping.

Figure 2. Spatio-temporal matrix.
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The authors of Ref. [46] define the spatio-temporal matrix, show its matching levels
for the case of beekeeping, and illustrate its application by an example of web application
for managing apiary data. This tool allows its user to take decisions at the beehive or
microscopic level. These decisions are either tactic, such as planning activities for the
next week or month, or operational, such as evaluating results and adapting the activities.
Figure 3 shows the application of the 3 × 3 matrix for that use case.

Figure 3. Application of the spatio-temporal matrix to the beekeeping case.

Our suggested architecture implements some levels of the matrix.

5. Decision Support Systems for Smart Beehives

According to Ref. [47], a Decision Support System (DSS) is a computer-based system
intended for use by a particular manager or usually a group of managers at any organi-
zational level in making a decision in the process of solving a semi structured decision.
The DSS produces an output in the form of periodic or special report or the results of
mathematical simulations. For the famous Cambridge Dictionary (Cambridge Dictionary.
https://dictionary.cambridge.org/fr/dictionnaire/anglais/decision-support-system. Ac-
cessed on 13 October 2022), DSS is “a computer program that can arrange and sort large
amounts of data, and that is used to help people in companies and organizations make
important decisions based on the data: A successful decision support system is one that
assists rather than replaces the human decision-maker”.

By following these definitions, Figure 4 shows our global view of how to implement
DSS to help beekeepers manage their beehives. The three levels of decision-making,
described in Figure 4, correspond to the spacial dimension of the matrix depicted in
Section 4. The data used to make the decision come from two sources:

• Sensors in the embedded system of the beehive;
• Open data about the weather (temperature, humidity, etc.) and pollen. The pollen is

to know the state of the flora in a sectioned area.

https://dictionary.cambridge.org/fr/dictionnaire/anglais/decision-support-system
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SENSORS
Beehive 1
database

Apiary
database

Land
databases

Humidity Sensors

Temperature Sensors
Beehive i
databaseWeight Sensors SENSORS

Decision 
Support System

Decision 
Support System

Decision 
Support System

Local Intelligence Global Intelligence

Beehive 
Master

SENSORS

 Others Sensors

.....

SENSORS
Beehive i+1

database

Apiary
database

Beehive n
database

SENSORS

Beehive 
Master

SENSORS

Pollen open Data

Temperature open Data

Humidity open Data

API
Application

Programming
Interface

Figure 4. Global view of the decision support systems for smart beehives.

5.1. Generic Architecture for Smart Beehives

Our solution is inspired by a standard API (Application Programming Interface) for
managing contextual information (NGSI-LD API) [48]. This standard enables near real-time
access to information from many different sources (not only IoT data source). NGSI-LD
open specification released by ETSI defines the context information model and the API
to produce, consume, and subscribe to context information. In our solution, different
sensors are used to measure and quantify the indicators of the beehives. The most used
are weight and temperature. The weight can be used to see the increase or decrease in the
weight of the hives. It makes it possible to monitor the production of honey and to trigger
alerts if the variation in weight is significant. Weight can also indicate the best feeding and
processing strategy applied to a hive, particularly comparing weight over time and between
different hives/apiary. Outdoor weather conditions change over time, and the temperature,
humidity, and wind speed must be taken into consideration. All these different types of
data are used to optimize beekeeping decisions. One of the major problems in beekeeping is
the varroa destructor mite. It is the most destructive enemy of the Western honeybee (Apis
mellifera). The varroa is a serious threat to bee health. A bee colony infested with mites
will typically die off in these regions within three years. Until now, it has been difficult to
deal with this problem. Indeed, counting varroa mites is interesting when quantifying how
many bees are infected per hive. However this task remains very complicated because it is
often carried out manually. Our platform offers an automatic counting service based on
photos of frame bees. This service is based on deep learning methods to process images and
detect objects. In fact, two neural networks for object detection and image segmentation are
used. Faster RCNN is used for detecting bee locations; for each bee in the image it predicts
a bounding box surrounding the object. Figure 5 illustrates the network outputs. To locate
varroas, the U-NET takes as input an image containing one bee and segments it into two
regions: varroa and background. Figure 6 illustrates the U-NET outputs. Estimating the
infestation level is performed by combining these two detections; first the frame image is
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given to the system, then the bees are identified, and after that the presence of varroa is
predicted for each bee. The infestation percentage is calculated by dividing the number
of infected bees by the number of bees. This system needs data for learning; in fact, bee
images were retrieved from project partners, from camera photos, and from the Internet.
Thanks to annotation tools, the images were annotated by bounding boxes for bees and
ellipses for varroas.

Figure 5. Detected bees by Faster RCNN. Coloured bounding boxes are predicted objects and white
bounding boxes are ground-truth objects.

Figure 6. Varroa segmentation by U-NET. The yellow region represents varroa. True Mask is ground-
truth segmentation and Predicted Mask is the predicted segmentation.

5.2. Databases

Our system is able to send valuable information to subscribed beekeepers thanks
to the collection and extraction of data from different data sources such as sensors. The
collected data will help train machine learning models capable of generating advice or
alerts to users.

A survey was carried out by our partner (ITSAP—Bee Institute). The survey is based
on multiple questionnaires on the several activities and needs of beekeepers (Survey “Bee-
keepers and digital technology”. https://itsap.asso.fr/pages_thematiques/numerique/
enquete-apiculteurs-numerique/, 31 January 2020. accessed on 28 September 2022).

The number of beekeepers participating in the survey is 415 (43% have more than
70 hives).The most important productions are honey and breeding. According to the survey,
data collection appears to be a relatively common practice among beekeepers. While certain
information must necessarily be collected to meet administrative requirements (especially
for the breeding register), others show a desire to collect objective information on the
colonies. However, a handwritten input remains the majority in most cases, despite the
advantage of having a computer version concerning the ease of consultation of the data and
their use. Only 60% of beekeepers who responded to the survey monitor varroa infestation.

The most expected features consist of fairly simple data processing, namely graphic
productions and indicator tables. In addition to data visualization, beekeepers are looking
for an intelligent alert service capable of reporting relevant information (Table 3).

https://itsap.asso.fr/pages_thematiques/numerique/enquete-apiculteurs-numerique/
https://itsap.asso.fr/pages_thematiques/numerique/enquete-apiculteurs-numerique/
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Table 3. Expectations of beekeepers regarding the functionalities to be integrated into a manage-
ment platform.

Functionality Interested Beekeepers (%)

Data visualization 81

Alert service 78

Voice input 77

Data storage 72

Data sharing between beekeepers 71

The proposed data model is based on the results of this survey concerning the useful
and necessary information that should be managed on an apiary.

The implementation of this architecture is done in collaboration with beekeepers.
This will lead to the development of a comprehensive and flexible system that would
allow the beekeeping community to share relevant information and knowledge, and make
appropriate decisions. All information is modelled from data models that allow the
unification of data structures using standards and also ensure further extensibility, if
necessary.

Figure 7 presents an excerpt from our data model. We have developed a new model
that would meet the needs of our beekeepers. Conceptually, the model presented is based
on two levels:

• Spatial dimensions: sensors/hive/apiary/zone;
• Temporal dimensions: real-time /operational(day /week)/tactic (week/month) /strate-

gic (year).

Figure 7. Excerpt from the data model.
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Figure 8 presents an excerpt from our central data mode. The figure shows an example
of a service offered, collecting data by integrating the time dimension.

As an example, for an apiary:

• Real-time: quantity of honey;
• Operational: varroa counting;
• Tactic: varroa treatment;
• Strategic: define the type and the amount of treatment and write a health risk manage-

ment.

Figure 8. Excerpt from the central data model.

The selection of materials used to build the embedded system is a compromise between
the cost and the accuracy of the sensors. Indeed, our goal is to encourage the beekeepers to
make their digitalization and the cost of the system is a very important criterion.

6. Case Study

The case study developed in this project corresponds to level 3 of the MM presented
in Section 3 and in Table 1. Table 4 presents our case study with the MM.

Table 4. Maturity Model levels of the case study.

Maturity Model Levels 1 2 3 4 5
Beehive connected - - yes - -

We have chosen the agile approach because it is flexible based on principles of col-
laboration, adaptability, and continuous improvement. This approach is ideal for our
project, which is service-oriented and allows for the rapid adaptation based on stakeholder
feedback.

The information is transferred by using smartphone or web applications to the data
model for later decisions, as shown in Figure 9. Along with the best practices and modern
design techniques, REST architectural style allows building an API that is both extendable
and flexible. Indeed, the use of API HTTP REST provides various possible interactions
with third-party platforms in both directions. REST APIs should accept the JSON format
for the request payload and send responses to JSON. JSON is a standard for transferring
data. Almost every networked technology can use it.
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Figure 9. An example of the proposed architecture.

The criteria for this project are:

• Low-power board computer, because the system has to be embedded on the apiary
during several weeks;

• The materials have to be low-cost because we need to convince the beekeepers to use
it. It means we have to make a compromise between accuracy and price.

From these constraints, we selected the materials below:

• Arduino: the best embedded low-power single board computer;
• Sensors for the humidity and temperature: AZDelivery DHT11;
• Sensors for the Weight: HX711 Module;
• Sensors for communication: Z-Delivery ESP8266 ESP-01 Serial Wireless WLAN

WiFi Transceiver Module Transceiver.

We made our weight sensor by combining four single strain gauges (load sensor). We
made boxes to encapsulate the sensors using a 3D printer. Figure 10 shows: single strain
gauge (a) arranged in a Wheatstone bridge configuration (c). A load sensor combinator from
sparkfun (b), which is a module that directly integrates a Wheatstone bridge configuration
to which we only have to connect the four sensors according to the diagram (c). The
combinatory board is hooked up to an amplifier (HX711 module). Load cell measurements
can be off due to a range of things (temperature, vibration). In our tests, we obtained
calculation variations between +2% and −3.5%.

At the top of Figure 11, we can see the day’s indicators (specified at the top left), such
as the maximum and minimum temperatures of the hive, its maximum and minimum
humidity levels, as well as its weight. These indicators turn red if they are too high, and
blue if they are too low. Each indicator is represented as a curve below, showing the
evolution of the data over a chosen period (which year, month, or number of days can
be changed in the filters at the top right). We also see on each of the curves the forecast
of the potential evolution of the data for the remainder of the month. Finally, the dotted
lines represent the warning threshold that a curve must not exceed. In Figures 11–13, the
measurements were made until 19 February. After this date, it is a question of prediction.
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(a) (b)

(c)

Figure 10. Weight sensor: (a) single strain gauge, (b) a load sensor combinator from sparkfun,
(c) Wheatstone bridge configuration c https://learn.sparkfun.com/tutorials/load-cell-amplifier-
hx711-breakout-hookup-guide/all. Accessed on 28 September 2022.

Figure 11. Dashboard: data.

https://learn.sparkfun.com/tutorials/load-cell-amplifier-hx711-breakout-hookup-guide/all
https://learn.sparkfun.com/tutorials/load-cell-amplifier-hx711-breakout-hookup-guide/all
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The figures also show a prediction of the weight as well as the weather. We use the
linear regression algorithm.

Very similar to Figure 11, Figure 12 shows the indicators for the external data. The
ambient temperature as well as the outdoor humidity levels have been taken into account.
Unlike the previous part, the indication of the wind force as well as the weather forecast
for the day are shown.

Figure 12. Dashboard: environmental data.

In Figure 13, on the left, the total pollination rate by region (selectable in the filter
below for a global view in France, or for a focus on a particular region) over a chosen period
is shown. For more details, on the right, we can see the most common types of pollen
(according to their pollination rate in number of grains/m3 of air) in France, in a particular
region. It is possible via the filters below to choose a region, or a particular type of pollen.

Figure 13. Dashboard: pollination data.

The Alert Manager is a component of our system. Its mission is to address beekeepers
with possible alerts or valuable information based on data provided by all other parts of
the system (e.g., sensors and predictions).

Figure 14 shows the nature of the data to be managed and collected by the system, as
well as the information output from the system. In the context of our case study, a system of
alerts and notifications has been developed. A screenshot with an example of use is shown
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in Figure 15. The Today column presents the alerts or notifications from the current day
data. The Forecast column shows the alerts and notifications for future days from forecast
analysis. The severity rate is represented by different colours (orange for warnings and red
for the alerts). The parameter settings for each hive are changed.

Figure 14. System data and information.

Figure 15. Example of alerts and notifications from environmental data.

7. Conclusions

This paper presents a new approach for modelling, monitoring, and deploying Agri-
culture 4.0 systems. As for Industry 4.0, agriculture is going through its digital revolution.
In fact, Agriculture 4.0 is based on solutions and technologies developed for Industry
4.0. In this context, smart beehives need some technological solutions to build smart hive
motoring systems. The goal is to help different stakeholders to make the best decisions.
We studied through a spatio-temporal matrix with the time and the geographical horizons
all kinds of decisions that can be made. Indeed, beekeeping is affected by a crisis due
to the disappearance of bees, and the different stakeholders need support to make their
decisions. Our approach used a part of these technologies: Big Data, the Internet of Things,
Cyber-Physical Systems, Cloud Computing, and Artificial Intelligence. We have imple-
mented a Digital Transformation (DT) process to help the actors of the beekeeping sector.
The idea was to develop new services for beekeepers and more generally for the actors of
the apiary using these technologies. Among the elements of the DT, the “people” become
essential, and even more important than anything else [10]. It is why beekeepers and their
cooperatives were fully involved. We used their vocabulary and we worked together to
understand their culture. Concretely, a reusable and flexible architecture based on sensors,
data from beekeepers, and Open Data has been introduced. To illustrate our new approach,
a specialized software application has been developed. This application notifies and alerts
beekeepers to help them to take care of their hives. We also proposed a Maturity Model
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(MM) to diagnose the level of digitalization in the area of agriculture. We analysed the
literature on smart beehives regarding this MM.

A long term perspective is to move toward the development of a methodology to
address issues related to Agriculture 4.0 and support agriculture in their DT in general.
Another important perspective is to use this approach to build a global architecture. It
allows to register all the data at different hierarchical levels (land, apiary, and beehive
databases). Such an architecture would be based on Industry 4.0 and Fog computing (Edge
Computing). We will analyse architectures proposed by these concepts [49]. Moreover, our
use case will evolve toward more local decisions, and will correspond to level 4 of our MM
(Table 1). It means that the decisions will be faster, more relevant, efficient, and accurate.
Concretely, this evolution will be achieved thanks to the development of a data analysis
module inside the beehives. This will allow us to cross-check and analyse the history of the
data acquired. Another future line of research is the development of cooperation between
the embedded systems of smart beehives of the same apiary. It will generate better accuracy
for the notification and alert system. To achieve all these evolutions, we need to implement
machine and deep learning algorithms.
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31. Aksoy, A.; Ertürk, Y.E.; Erdoğan, S.; Eyduran, E.; Tariq, M.M. Estimation of Honey Production in Beekeeping Enterprises from
Eastern Part of Turkey through Some Data Mining Algorithms. Pak. J. Zool. 2018, 50, 2207. [CrossRef]

32. Dineva, K.; Atanasova, T. OSEMN process for working over data acquired by IoT devices mounted in beehives. Curr. Trends Nat.
Sci. 2018, 7, 47–53.

33. Rafael Braga, A.; Gomes, D.G.; Rogers, R.; Hassler, E.E.; Freitas, M.B.; Cazier, J.A. A method for mining combined data from
in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies. Comput. Electron. Agric. 2020,
169, 105161. [CrossRef]

34. Bee Informed Partnership—Using Beekeepers’ Real World Experience to Solve Beekeepers’ Real World Problems. Available
online: https://beeinformed.org/ (accessed on 28 September 2022).

35. Edwards-Murphy, F.; Magno, M.; Whelan, P.M.; O’Halloran, J.; Popovici, E.M. b+WSN: Smart beehive with preliminary decision
tree analysis for agriculture and honey bee health monitoring. Comput. Electron. Agric. 2016, 124, 211–219. [CrossRef]

36. Markovic, D.; Pesovic, U.; Djurasevic, S.; Randjic, S. Decision support system for temperature monitoring in beehives. Acta Agric.
Serbica 2016, 21, 135–144. [CrossRef]

37. Balta, A.; Dogan, S.; Ozmen Koca, G.; Akbal, E. Software Modeling of Remote Controlled Beehive Design. In Proceedings of the
International Conference on Advances and Innovations in Engineering ICAIE, Elazig, Turkey, 10–12 May 2017; pp. 1133–1138.
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