
ar
X

iv
:2

00
1.

07
10

3v
1

 [
cs

.D
C

]
 2

0
Ja

n
20

20

OpenMP Parallelization of Dynamic

Programming and Greedy Algorithms

Claude Tadonki

Mines ParisTech - PSL Research University

Centre de Recherche en Informatique (CRI)

35, rue Saint-Honoré, 77305, Fontainebleau Cedex (France)

Email: claude.tadonki@mines-paristech.fr

Abstract—Multicore has emerged as a typical ar-
chitecture model since its advent and stands now as
a standard. The trend is to increase the number of
cores and improve the performance of the memory
system. Providing an efficient multicore implemen-
tation for a important algorithmic kernel is a gen-
uine contribution. From a methodology standpoint,
this should be done at the level of the underly-
ing paradigm if any. In this paper, we study the
cases of dynamic programming and greedy algorithms,
which are two major algorithmic paradigms. We
exclusively consider directives-based loop paralleliza-
tion through OpenMP and investigate necessary pre-
transformations to reach a regular parallel form. We
evaluate our methodology with a selection of well-
known combinatorial optimization problems on an
INTEL Broadwell processor. Key points for scalability
are discussed before and after experimental results.
Our immediate perspective is to extend our study to
the manycore case, with a special focus on NUMA
configurations.

I. INTRODUCTION

With the advent and pervasiveness of multi-

core processors, designing shared memory parallel

programs is on the way to routine consideration.

OpenMP[2] currently stands as a standard for mul-

ticore parallelization and genuine efforts are made

to make it as powerful as expected. However,

the case of irregular algorithms is problematic

because of load imbalance at runtime. In addition,

programs that have a sequential profile in their

original form need appropriate code transformation

in order to expose parallelism. This essential pre-

processing might out of the skills of an ordinary

programmer or might be subject to some reluctance

from experts. The main concern is to keep the

advantage of a short time-to-code behind the use of

OpenMP, while trying to get a reasonably efficient

parallel implementation. This is the context of our

work, where we consider two major algorithmic

paradigms[4] namely dynamic programming and

greedy algorithms.

Dynamic programming and greedy algorithms

are widely used to design efficient algorithms for

combinatorial optimization problems. The corre-

sponding algorithms have a structural regularity

that does not always correspond to the expected

regularity neither for the iteration spaces nor for

memory accesses. In addition, appropriate loop

transformations[3] should be applied before the

parallelization. We investigate this parallel design

concern through a selection of well-known prob-

lems: shortest paths[5], graph flooding[1], 0-1

knapsack[6], [7], longest common subsequence[8],

longest increasing subsequence[9], and minimum

spanning tree[10]. For each case study, we explain

and discuss the necessary transformation then pro-

vide the corresponding pseudo-code. We do not

intend to provide a state-of-the-art solution for

each problem, but we rather focus on a generic

methodology, which is the goal behind this work.

The reader should them see it as a step towards

a generic parallelization methodology for the two

considered paradigms.

The rest of the paper is organized as follows.

The next two section explore successively the case

of dynamic programming and then greedy algo-

rithms. Each of both sections shortly describes the

paradigm, then the selected problems and their

OpenMP parallelization, and finished with exper-

imental results. Section 4 concludes the paper.

II. THE CASE OF DYNAMIC PROGRAMMING

A. Definition and selected cases

Dynamic programming (usually referred to as

DP) is a well-known paradigm mostly used for (but

not restricted to) discrete optimization problems.

From a given input S, dynamic programming works

iteratively in a finite number of computing steps of

the form

Sk+1 = f(k, Sk), (1)

where f is the generic iteration function and k

the iterator parameter. It is common to consider

in-place computation, thus the procedure works

by means of iterative updates. Table I provides

a selection of well-known dynamic programming

cases.

We now briefly describe each of the selected

problems and provide an ordinary shared memory

parallelization.

http://arxiv.org/abs/2001.07103v1

N◦ Problem Algorithm Generic Update

1 Shortest Paths Floyd-Warshall mi,j = min(mi,j ,mi,k +mk,j)
2 Dominated Graph Flooding Berge τi = min(τi,max(vi,j , τj)
3 0-1 Knapsack Problem Standard DP ti,w = max(ti−1,w , vi−1 + ti−1,w−wi

)

4 Longest Common Subsequence Standard DP ci,j =

{

ci−1,j−1 + 1 if (si = ti),
max(ci−1,j , ci,j−1) otherwise

5 Longest Increasing Subsequence Standard DP li = max(li, lj + 1) if (ai > aj)
Table I

SELECTED DYNAMIC PROGRAMMING CASES

B. The 0-1 Knapsack Problem

Given a set of items, each with a mass and a

value, the Knapsack Problem is to determine the

number of each item (0 or 1 for the 0-1 Knapsack)

to include in a collection so that the total weight

is less than or equal to a given limit and the

total value is as large as possible. It derives its

name from the problem faced by someone who

is constrained by a fixed-size knapsack and must

fill it with the most valuable items. An ordinary

dynamic programming procedure to get the solution

is given by the algorithm in figure 1, where n is

the total number of items, v (resp. w) the array

of corresponding values (resp. weight), and W the

weight limit of the selected items. The solution is

constructed inside matrix V , whose first row (resp.

first column) is initialized with 0. The value in

V [i, j] represents the solution of the subproblem

with items {1, 2, · · · , i} and total weight j. The

final solution is thus in V [n,W], which is the total

value of the selected subset.

Knapsack(v, w, n,W){

for(i = 1; i ≤ n; j++)

for(j = 1; j ≤W ; j++)

if(w[i]≤ j)

V [i, j]= max{ V [i− 1, j],v[i]+V [i− 1, j−
w[i]] };

else

V [i, j]=V [i− 1, j];

return V [n,W];

}

Figure 1. Dynamic programming algorithm for the 0-1 Knap-
sack Problem

We see that all dependencies are of the form

(i, j) ← (i − 1, j − λ), which guarantees that for

a fix i, all updates along j-axe can be performed

in parallel (provided all calculations at the level of

i−1 has been completed). In addition, the one-step

lifetime of variables V (i, :) suggest to compress

along i-axe by storing V (i, :) at V (i mod 2, :), thus

using a 2W array instead of n ×W . This yields

the OpenMP version displayed in figure 2.

Knapsack(v, w, n,W){

for(i = 1; i ≤ n; j++)

#pragma omp parallel for

for(j = 1; j ≤W ; j++)

if(w[i]≤ j)

V [i%2, j]= max{ V [(i−1)%2, j],v[i]+V [i−
1, j − w[i]] };

else

V [%2i, j]=V [(i− 1)%2, j];

return V [n,W];

}

Figure 2. OpenMP Loop for the 0-1 Knapsack Problem

C. Dominated Graph Flooding

Given weighted undirected graph G = (X,E, v)
and a ceiling function ω : X → R. A valid flooding

function of G under the ceiling constraint ω is the

maximal function τ : X → R satisfying

∀x, y ∈ X : τ(x) ≤ min(max(v(x, y), τ(y)), ω(x)).
(2)

It can be shown that such a function τ satisfies

equation (3)

∀x, y ∈ X : τ(x) = min(max(v(x, y), τ(y)), ω(x)).
(3)

A dynamic programming algorithm to compute τ

was proposed by C. Berge. For a given graph with n

vertices, valuation v = (vij) and ceiling ω = (ωij),
Berge algorithms computes the flooding τ = (τi)
as follows:

(i) τ (0) ← ω

(ii) repeat update (4) until (τ
(k)
i = τ

(k−1)
i)

τ
(k)
i = min(τ

(k)
i ,max(vi,j , τ

(k−1)
j), i = 1, 2, · · · , n.

(4)

The corresponding code, where τ
(k)
i is stored at

τ(k mod 2, :), is provided in figure 3. The compu-

tations of the components of τ
(k)
i are independent

of each other, thus the corresponding loop can

be freely parallelized as done through OpenMP

directive.

while(doIt==1){

#pragma omp parallel for private(j)

for(i=0;i<n;i++){

h[k%2,i] = h[(k+1)%2,i];

for(j=0;j<n;j++)

h[k%2,i] = min(h[k%2,i],

max(G[i,j],h[(k+1)%2,j]));

}

doIt=0;

for(i=0;i<n;i++)

if(h[1,i] != h[0,i]) {doIt=1; break;}

k++;

}

Figure 3. OpenMP Loop for the Graph Flooding Problem

D. Shortest Paths

This a well-know classical graph problem. The

problem is to find shortest distances between every

pair of vertices in a given edge-weighted directed

Graph, which does not contain any cycles of neg-

ative length. For a given graph of order n, repre-

sented by a n × n distances matrix M = (mij),
where mii = 0 and mij = +∞ if there is no

connection between i and j, the Floyd-Warshall al-

gorithm iteratively computes the matrices M (k) of

the shortest paths that only consider the vertices in

{1, 2, · · · , k}, k = 1, 2, · · · , n. The corresponding

code considering in-place computation is provided

in figure 4, where the computation of each step k

is executed in parallel (row-wise).

for(k=0;k<n;k++)

#pragma omp parallel for private(j)

for(i=0;i<n;i++)

for(j=0;j<n;j++)

M[i,j] = min(M[i,j],M[i,k]+M[k,j]);

Figure 4. OpenMP Loop for the Floyd-Warshall procedure

Since row k and column k (the pivots) remain

unchanged after step k, the corresponding loop can

be executed in parallel.

E. Longest Common Subsequence

Given two finite sequences of numbers, the

Longest Common Subsequence (LCS) problem is to

find the (length of the) longest common contiguous

subsequence. The problem is commonly related to

strings. A basic dynamic programming algorithm

for this problem proceeds as follows. Given two

sequences (ui)i=1,··· ,n and (vi)i=1,··· ,m, we define

cij as the length of the LCS in (u1, · · · , ui) and

(v1, · · · , vj). We have

cij =

{

ci−1,j−1 + 1 if ui = vj
max(ci−1,j , ci,j−1) otherwise

(5)

This yields the code of figure 5.

for(i=1;i<n;i++)

for(j=1;j<n;j++)

if(S[i] == T[j]) c[i,j] = c[i-1,j-1]+1;

else c[i,j] = max(c[i,j-1],c[i-1,j]);

Figure 5. Loop for the LCS procedure

As it is, the loop cannot be parallelized. Indeed,

the dependence (i, j) ← (i − 1, j − 1) constraints

both i and j axes. One way to overcome this is

to consider the loop skewing transformation, were

the computation are done following the hyperplanes

i+j = k, k = 2, · · · , 2(n−1), each of which being

parallel. This yields the OpenMP code of figure 6.

for(k=2;k<=n;k++)

#pragma omp parallel for

for(i=1;i<k;i++){

if(S[i] == T[(k-i)])

c[w(i,k-i)] = c[w(i-1,(k-i)-1)]+1;

else

c[w(i,(k-i))] = max(c[w(i,(k-i)-1)],

c[w(i-1,(k-i))]);

}

for(k=n+1;k<=2*(n-1);k++)

#pragma omp parallel for

for(i=(k-n)+1;i<n;i++){

if(S[i] == T[k-i])

c[i,k-i] = c[i-1,(k-i)-1]+1;

else

c[i,(k-i)] = max(c[i,(k-i)-1],

c[i-1,(k-i)]);

}

Figure 6. OpenMP Loop for the LCS procedure

F. Longest Increasing Subsequence

Given a finite sequence of numbers, the Longest

Increasing Subsequence (LIS) problem is to find

the (length of the) longest of its subsequences.

The basic idea of a dynamic programming for

this case is that, given an increasing subsequence

and a new element out of it, we can form a new

increasing subsequence (with one more element)

if that element is greater that the last element (the

greatest) of the subsequence. Thus, with a sequence

of n numbers a1, a2, · · · , an, if we define li as

length of the LIS restricted to a1, a2, · · · , ai and

ending with ai, then we have

li = max
{1≤j≤i−1:ai>aj}

(lj + 1). (6)

This yields the dynamic programming procedure

described in figure 7, where LS[] is initialized

with 1. Note that the global solution is the maxi-

mum of LS[].

for(i=0;i<n;i++)

for(j=0;j<i;j++)

if(a[i] > a[j])

LS[i] = max(LS[i], LS[j]+1);

Figure 7. Dynamic programming loop for the LIS problem

We can see that the process is strongly sequential

like the prefix computation[?] and none of the loop

levels in figure 7 can be parallelized. To fix this,

we consider:

li: length of the longest increasing subsequence

going to (ending with) ai
si: length of the longest increasing subsequence

coming from (starting with) ai
di: length of the longest increasing subsequence

passing through (containing) ai
We have

si = max
{i−1≤j≤n:ai<aj}

(lj + 1), (7)

and

di = max
{1≤j≤i−1:ai>aj}

(lj + si). (8)

For a given k, 1 < k < n, for i ∈ {k + 1, · · · , n},
we define:

d
(k)
i : length of the LIS passing through ai excluding

items in {ak+1, · · · , ai−1}. We have

d
(k)
i = max

{1≤j≤k:ai>aj}
(lj + si). (9)

Proposition 1. For any k, 1 < k < n, we have

max
{k<i≤n}

{di} = max
{k<i≤n}

{d
(k)
i }

.

Proof. It is obvious that di ≥ d
(k)
i since d

(k)
i

considers a subset of the values related to di. Thus

max
{k<i≤n}

{di} ≥ max
{k<i≤n}

{d
(k)
i }. (10)

For any i, k < i ≤ n, let show that there is j, k <

j ≤ n, such that d
(k)
j ≥ di. Let i ∈ {k+1, · · · , n}:

• If the longest increasing subsequence passing

through ai does not contains any element in

{ak+1, · · · , ai−1} then d
(k)
i = di (i.e j = i).

• Otherwise, let j be the smallest index

in {k, · · · , i− 1} such that aj belongs to

he longest increasing subsequence passing

through ai. Thus, this subsequence does not

contains any elements in {ak+1, · · · , aj−1},

we have d
(k)
j = di.

Thus, for any i, there is j such that d
(k)
j ≥ di,

which leads

max
{k<i≤n}

{di} ≤ max
{k<i≤n}

{d
(k)
i }. (11)

Note that d
(k)
i , k fixed and i = k+1, k+2, · · · , n,

are independent to each other, thus can be com-

puted in parallel. Since the length of the LIS is

given by

max(max
{1≤i≤k}

{li}, max
{k<i≤n}

{d
(k)
i }), (12)

the steps of algorithm to compute the LIS is

• compute li, i = 1, 2, · · · , k

• compute si, i = k + 1, k + 2, · · · , n

• compute d
(k)
i , i = k + 1, k + 2, · · · , n

• compute max(max{1≤i≤k}{li},max{k<i≤n}{d
(k)
i })

The first two steps can be perform independently,

and the last step is fully parallel. This yields the

OpenMP code provided in figure 8.

#pragma omp sections private(i,j)

{

#pragma omp section

for(i=0;i<n/2;i++)

for(j=0;j<i;j++)

if(a[i] > a[j])

LS[i] = max(LS[i], LS[j]+1);

#pragma omp section

for(i=n-1;i>=n/2;i--)

for(j=n-1;j>i;j--)

if(a[i] < a[j])

LS[i] = max(LS[i], LS[j]+1);

}

#pragma omp parallel for private(v,j)

for(i=n/2;i<n;i++){

v = LS[i];

for(j=0;j<n/2;j++)

if(a[i] > a[j])

LS[i] = max(LS[i], LS[j]+v);

}

Figure 8. OpenMP parallelization the LIS problem

G. Performance evaluation and related observa-

tions

We evaluate our methodology for dynamic pro-

gramming on our selected case studies using height

2.20 GHz-cores of an INTEL Broadwell E/P. The

graphs are randomly generated with various sizes

and different levels of density. Table II displays our

experimental results. We can see that speedups are

quite good for all cases except the LIS, which is

bounded by its strongly sequential part despite our

transformation for a better parallelization. The max-

imum speedup for the LIS following the analysis

of our parallelization seems to be 2 and we can see

that we are moving to that limit. We emphasize on

the fact that we are in a context of directives-based

parallelization, which is more simpler from the

programming standpoint but has a natural limitation

exacerbated with irregular or strongly sequential

applications.

III. THE CASE OF GREEDY ALGORITHM

A. Definition and selected cases

Greedy algorithm is an algorithmic paradigm

mainly used for discrete optimization problems.

The basic idea is to iteratively populate the so-

lution space by adding the best known candidate

at each step. From the algorithmic viewpoint, the

key is the selection process, which should definitely

lead to the expected solution. From the complexity

viewpoint, the key is the efficiency of the selection,

which should be implemented at the best (memory

Number of cores (speedup)

Problem N Seq T(s) 2 3 4 5 6 7 8

KNAPSACK 10000 1.422 1.97 2.93 3.86 4.76 5.60 6.44 7.19

WARSHALL 1000 0.942 1.99 2.98 3.96 4.94 5.90 6.86 7.81

LIS 10000 0.205 1.35 1.52 1.63 1.70 1.75 1.79 1.82

LCS 10000 0.575 2.00 3.15 4.28 5.19 5.77 6.26 6.62

BERGE 1000 0.022 1.99 2.96 3.94 4.89 5.84 6.66 7.49
Table II

EXPERIMENTAL RESULTS OUR DYNAMIC PROGRAMMING PARALLELIZATION

and/or processing time). From a given input set E,

the generic step of a greedy algorithm is of the

form

Sk+1 = Sk ∪ f(E − Sk), (13)

where f is the generic selection function. Table

III provides a selection of well-known greedy al-

gorithms. Typically, each selection is followed by

a generic update of the pivot information (Prim’s

algorithm does not have one). We now examine

each of the selected cases.

B. Shortest Paths

The problem here is to compute the shortest

paths from a given fixed node. The greedy algo-

rithm from Dijkstra select the closest node from

the remaining ones regardless of the valuations of

their arcs. Thus, the distances (from the source

node) are updated through the inspection of the

potential changes induced by the selected node.

Figure 9 illustrates the main phase of the algo-

rithm. We assume that the source node is 0 and

distances vector d has been initialized with 0. In

addition, as we want to have the range [1..p-1]

(resp. [p..n-1]) for the set of selected (resp.

remaining) nodes, we use an array nd such that

nd[k] is the id of the node at position k, thus

the corresponding indirections. The ultimate inner

loop is the update of the distances after the new

selection.

for(p=1;p<n;p++){

k = p;

for(i=p;i<n;i++)

if(d[nd[i]] < d[nd[k]]) k = i;

swap(nd[k],nd[p]);

k = nd[p];

for(j=0;j<deg[k];j++){

i = g[k][j];

if(d[i] > d[k]+m[i,k]) d[i] = d[k]+m[i,k];

}

}

Figure 9. Dijkstra greedy algorithm for the shortest paths

A close look at this algorithm allows to realize

that only the update loop (the last inner loop)

can be parallelized directly. This might be typical

with greedy algorithm, where the update phase

is usually individual. For a better efficiency, the

selection loop can be made (directly) parallelizable

through explicit blocking as follows. The whole

search space is divided into equal size blocks. Then,

the selection is made within each block and stored

in a (global) array at a position that corresponds to

the id of that block. Afterwards, a final reduction

is made through the global array of local selections

in order to get the global one. The corresponding

transformation is expressed in figure 10.

for(j=0;j<b;j++){

m = p + j*((n-p)/b);

k = m;

for(i=m;i<m+((n-p)/b);i++)

if(d[nd[i]] < d[nd[k]]) k=i;

ind[j] = k;

val[j] = d[k];

}

k = 0;

for(j=0;j<b;i++)

if(val[j] < d[k]) k=j;

k = ind[k]

Figure 10. Parallelizable version of the selection process

We think that this transformation can be general-

ized in the context of greedy algorithms as the se-

lection process is typically based on an associative

operation. The loop transformation described above

is essentially based on the associativity of the

underlying operation. We finally the OpenMP code

provided in figure 11.

N◦ Problem Algorithm Generic Selection

1 Shortest Paths (from a source node s) Dijkstra ik+1 = min
i∈E−Sk

dist(s, i)

2 Minimum Spanning Tree Prim ak+1 = min
i∈Sk,j∈E−Sk

mi,j

3 Dominated Graph Flooding Moore-Dijkstra ik+1 = min
i∈E−Sk

τi

Table III
SELECTED GREEDY ALGORITHM CASES

for(p=1;p<n;p++){

#pragma omp parallel for private(s,k,i)

for(j=0;j<b;j++){

s = p + j*((n-p)/b);

k = s;

for(i=s;i<s+((n-p)/b);i++)

if(d[nd[i]] < d[nd[k]]) k=i;

ind[j] = k;

val[j] = d[k];

}

k = 0;

for(j=0;j<b;j++)

if(val[j] < d[k]) k=j;

k = ind[k]

swap(nd[k],nd[p]);

k = nd[p]

#pragma omp parallel for

for(j=0;j<deg[k];j++){

i = g[k][j];

if(d[i] > d[k]+m[i,k]) d[i] = d[k]+m[i,k];

}

}

Figure 11. Dijkstra greedy algorithm for the shortest paths

C. Minimum Spanning Tree

A spanning tree of given a weighted undirected

graph G is a subgraph H such that

• H is a subgraph of G (every edge of H

belongs to G)

• H spans G (they have the same set of vertices)

• H is a tree (connected and acyclic)

A minimum spanning tree (MST) is a spanning tree

with the minimum cost (sum of the weights of all

the edges) among all possible spanning trees. Prim

greedy algorithm to build an MST starts with a

single node and iteratively select an external node

with the minimum distance to the current MST.

The algorithm can be written as displayed in figure

12. Node 0 is assume to be the first one to be

selected, hence its distance is initially set to 0 and

the others to infinity (array d). As with the shortest

paths, as we want to have the range [0..p-1]

(resp. [p..n-1]) for the set of selected (resp.

remaining) nodes, we use an array nd such that

nd[k] is the id of the node at position k.

d[0] = 0

for(i=1;i<n;i++) d[i] = INFINITY

for(p=0;p<n;p++){

k = p

for(i=p;i<n;i++)

if(d[nd[i]] < d[nd[k]]) k = i;

swap(nd[k],nd[p]);

k = nd[p]

for(j=0;j<deg[k];j++){

i = g[k][j];

if(d[i] > m[k,i]) d[i] = m[i,k];

}

}

Figure 12. Prim greedy algorithm for the MST

We realize that Prim and Dijkstra algorithms

have exactly the same structure, thus the same par-

allelization remarks and techniques applied. This

holds also for Moore-Dijkstra algorithm for domi-

nated graph flooding.

D. Technical observations about the update proce-

dure

Note that in all of our selected greedy algorithms,

the update procedure is relevant only for the neigh-

borhood of the currently selected node. Thus, we

can use:

• a binary array sel to indicate whether a node

has yet been selected or not

• an array deg for the degrees of the vertices

• a array g[] for the neighborhood of the ver-

tices (g[i][j] is the jth neighbor of node

i)

• a array m[] for the weighted of the neighbor-

hood of the vertices (m[i][j] is the weight

of the edge with the jth neighbor of node i)

The update procedure is now as in figure 13.

for(j=0;j<deg[k];j++){

i = g[k][j];

if((sel[i]==0)&&(d[i]>m[k][j])) d[i] = m[k][j];

}

Figure 13. Optimal form of the update process

The loop is still fully parallel, but its paral-

lelization should be managed dynamically. Indeed,

the parallelization is worth considering only if

deg[k] is large enough. The solution here is

to estimate a convenient number of threads to be

used for the loop parallelization directive. We can

consider the sequence in figure 14, where c is an

arbitrary chunk size (to be evaluated empirically).

np = min(ceil(deg[k]/c), nthreads

#pragma omp parallel for num_threads(np)

for(j=0;j<deg[k];j++){

i = g[k][j];

if((sel[i]==0)&&(d[i]>m[k][j]))

d[i] = m[k][j];

}

Figure 14. Optimal parallel update procedure

E. Performance evaluation and related observa-

tions

We evaluate our methodology for the greedy

algorithms paradigm on the MST case using height

2.20 GHz-cores of an INTEL Broadwell E/P. The

graph is randomly generated with various sizes and

different levels of density. Table IV displays our

experimental results

Number of cores (speedup)

N◦ N Degrees Seq T(s) 2 3 4 5 6 7 8

1 105 [20:100] 4.152 1.90 2.72 3.46 4.13 4.53 5.00 5.46

2 105 [10:20] 4.107 1.93 2.79 3.56 4.24 4.79 5.29 5.53

3 2× 105 [10:20] 16.283 1.96 2.88 3.77 4.58 5.35 6.02 6.63

4 4× 105 [10:20] 64.689 1.97 2.93 3.85 4.74 5.59 6.39 7.21
Table IV

EXPERIMENTAL RESULTS OF OUR MST PARALLELIZATION

We can see that speedups are quite good and do

no really depend on the density of the graph. In-

deed, the processing time for the update procedure

is negligible compare to that of the selection. We

even realize that using several threads for this step

is likely to degrade the speedup, certainly because

we only paid for threads creation and management.

However, we still recommend to keep in mind our

initial analysis as some other problems might raise

different complexity profiles.

IV. CONCLUSION

Our aim in this work was to study the par-

allelization of dynamic programming and greedy

algorithms using directives-based paradigm. The

motivation is that most of shared memory par-

allelizations are made through OpenMP and our

two algorithmic paradigms cover a wide range

of important combinatorial optimization kernels. It

looks clear that applying some loop transforma-

tions is necessary in order to create or improve

the parallelization potential of the original code.

Depending on the specificities of the considered

paradigm and the input scenario, it might useful

to control the number of working threads in order

to avoid speedup degradation due to the overhead

of the parallelization. This discussion is important,

especially in the perspective of manycore imple-

mentation with a larger number of threads. This is

exactly what we are now investigating next to the

current work, taking into account the challenging

aspect of NUMA configurations.

REFERENCES

[1] C. Tadonki, F. Meyer, and F. Irigoin, Dendrogram Based

Algorithm for Dominated Graph Flooding, Procedia
Computer Science, vol(29), pp. 586-598, 2014.

[2] https://www.openmp.org/

[3] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J.
Ramanujam, P. Sadayappan, N. Vasilache, Loop Trans-

formations: Convexity, Pruning and Optimization, Pro-
ceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL 11), pp. 549–562, New York, NY, USA, 2011.

[4] Anne Benoit, Yves Robert, Frédéric Vivien, A Guide to
Algorithm Design: Paradigms, Methods, and Complexity

Analysis, CRC Press, A CHAPMAN & HALL BOOK,
2013.

[5] S. Rajopadhye, T. Risset, et C. Tadonki, The algebraic
path problem revisited, European Conference on Paral-
lel Computing Europar99, Toulouse (France), LLNCS
Sringer-Verlag, 1685, p. 698-707, August 1999.

[6] Xiaoge Zhanga,1, Shiyan Huanga, Yong Hub, Ya-
juan Zhanga, Sankaran Mahadevanc,Yong Deng, Solv-

ing 0-1 knapsack problems based on amoeboid organ-

ismalgorithm, Applied Mathematics and Computation
219(19):9959–9970 DOI: 10.1016/j.amc.2013.04.023,
June 2013.

[7] Maya Hristakeva and Dipti Shrestha, Dif-

ferent Approaches to Solve the 0/1 Knap-
sack Problem, white paper available at
http://www.micsymposium.org/mics_2005/papers/paper102.pdf.

[8] L. Bergroth, H. Hakonen, T. Raita, A survey of
longest common subsequence algorithms, DOI:
10.1109/SPIRE.2000.878178, Proceedings Seventh
International Symposium on String Processing and
Information Retrieval, SPIRE 2000, A Curuna, Spain,
27-29 Sept. 2000.

[9] C. Schensted, Longest Increasing and Decreasing Subse-

quences, In: Gessel I., Rota GC. (eds) Classic Papers in
Combinatorics. Modern Birkhäuser Classics. Birkhauser
Boston, DOI: 10.1007/978-0-8176-4842-8_21, 2009.

[10] Jason Eisner, State-of-the-Art Algo-

rithms for Minimum Spanning Trees,
https://www.cs.jhu.edu/ jason/papers/eisner.mst-
tutorial.pdf, 1997.

This figure "knapsack.png" is available in "png"
 format from:

http://arxiv.org/ps/2001.07103v1

http://arxiv.org/ps/2001.07103v1

	I Introduction
	II The case of dynamic programming
	II-A Definition and selected cases
	II-B The 0-1 Knapsack Problem
	II-C Dominated Graph Flooding
	II-D Shortest Paths
	II-E Longest Common Subsequence
	II-F Longest Increasing Subsequence
	II-G Performance evaluation and related observations

	III The case of greedy algorithm
	III-A Definition and selected cases
	III-B Shortest Paths
	III-C Minimum Spanning Tree
	III-D Technical observations about the update procedure
	III-E Performance evaluation and related observations

	IV Conclusion
	References

