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Formal Proving

Computers can help mathematicians and engineers prove theorems.

• Theorem provers.

• Proof checkers.

Examples:

The Kepler Conjecture Operating System of Driverless Subway
(Paris, Line 14)
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Logical Frameworks

There exist many tools for proving/checking

Agda, Beluga, Coq, . . . and Dedukti.

Dedukti: a Logical Framework

A tool to implement logical systems.

• Prototyping of proof systems.

• Independent proof checking.
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A Universal Proof Checker

Dedukti

HOL
Coq

iProver M. FoCaLiZe

Zenon M.

Matita???

Long-Term Goal: allowing these programs to cooperate thanks to
a unique proof format.
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The Curry-Howard Correspondence
[Curry 1958 and Howard 1969]

Observation

Γ ` A =⇒ B Γ ` A
Γ ` B

u Γ ` f :A→ B Γ ` u :A
Γ ` f u :B

(Modus Ponens) (Typing Rule for Application)

Consequence

Proof checking can be reduced to Type checking

Dedukti is at the same time a proof checker and a type checker.
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The λΠ-Calculus Modulo
[Cousineau and Dowek, 2007]

The λΠ-Calculus Modulo is a typed calculus based on two
features:

• Dependent Types.

• Rewrite Rules.
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Dependent Types

The λ-Calculus with Dependent Types is called λΠ-Calculus or LF.

Idea
Types can be parameterized by terms.
Functions can return values whose types depend on their input.

Lists Parameterized by their Size

nil : Vector 0
cons : Πn : Nat.Elt −→ Vector n −→ Vector (S n)

Typing Rules

Γ ` t : Πx : A.B Γ ` u : A (Application)
Γ ` t u : B[x ← u]

Γ ` t : A Γ ` B : Type A ≡β B
(Conversion)

Γ ` t : B
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Rewrite Rules

λΠ-Calculus Modulo

• β-reduction,

• A set R of rewrite rules (f ~l ↪→ r).

Example

plus n 0 ↪→ n
plus n (S m) ↪→ S (plus n m)

Extended Conversion Rule
Γ ` t : A Γ ` B : Type A ≡βR B

Γ ` t : B

Benefits

• Allows the design of small encodings of proof systems.

• Allows encoding more systems.
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Encoding Propositional Logic

In the λΠ-Calculus:

prop : Type.
prf : prop −→ Type.

˙=⇒ : prop −→ prop −→ prop.

elim : ΠA : prop.ΠB : prop. prf (A ˙=⇒ B) −→ prf A −→ prf B.
intro : ΠA : prop.ΠB : prop. (prf A −→ prf B) −→ prf (A ˙=⇒ B).

In the λΠ-Calculus Modulo:
prf (A ˙=⇒ B) ↪→ (prf A −→ prf B).

Meta-Theorem (in both cases)
Σ ` P iff ∃t (Γ; Σ̇ ` t : prf Ṗ).

In the λΠ-Calculus Modulo, proof terms are usually smaller and can be checked
faster.
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General Contribution: More Safety

Previous versions of Dedukti could give incorrect results if the
input problem did not verify the subject reduction property
(preservation of types by reduction). And Dedukti did not check
subject reduction compromising its soundness.

More Safety

• I studied the subject reduction property and showed how it
can be checked.

• I implemented the verification in Dedukti.
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General Contribution: More Expressiveness

From Algebraic Rewrite Rules

• Left-hand sides are algebraic terms (built from constant
applications and variables only).

• Example:
plus n 0 ↪→ n
plus n (S m) ↪→ S (plus n m)

To Higher-Order Rewrite Rules

• Left-hand sides may contain abstractions.

• Example:
• D (λx : R.Exp (f x)) ↪→ (D (λx : R.f x))× (λx : R.Exp (f x)).
• Encoding of Coq’s universes [Assaf, 2014].
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1 A λΠ-Calculus Modulo with Global Contexts

2 Product Compatibility and Higher-Order Rewrite Rules

3 Typing Rewrite Rules

4 Conclusion
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λΠ-Calculus Modulo vs Dedukti

λΠ-Calculus Modulo

• The set of rewrite rules R is fixed.

• Rewrite rules are typed outside the system.

Dedukti

• Rewrite rules can be added at any time.

• Rewrite rules are typed iteratively.

• More rules can be checked.
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λΠ-Calculus Modulo with Global Contexts

Global Contexts and Local Contexts

Γ ::= () | Γ(c : A) | Γ(f ~l ↪→ r)
∆ ::= () | ∆(x : A)

Conversion Rule

Γ; ∆ ` t : A Γ; ∆ ` B : s A ≡βΓ B

Γ; ∆ ` t : B

Improvements

• Allows typing more rewrite rules.

• Eases the reasoning about Dedukti
(soundness/completeness proofs).

Publication: Towards Explicit Rewrite Rules in the λΠ-Calculus Modulo,
R. Saillard in IWIL, 2013.
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A Fundamental Property

Subject Reduction

Γ; ∆ ` t1 : T ∧ t1 →βΓ t2 =⇒ Γ; ∆ ` t2 : T

Subject Reduction is necessary

for proving any non-trivial property about the type system and in
particular

• the soundness/completeness of proof embeddings.

• the soundness/completeness of typechecking algorithms.

• termination.

Subject reduction may not hold!
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Product Compatibility and Well-Typedness
of Rewrite Rules

The proof of subject reduction can be reduced to the proof of two
simpler properties.

Product Compatibility [Geuvers, 1992]

If Πx : A1.B1 ≡βΓ Πx : A2.B2, then A1 ≡βΓ A2 and B1 ≡βΓ B2.

Well-Typed Rewrite Rules [Blanqui, 2005]

For all (l ↪→ r) ∈ Γ and substitution σ, if Γ; ∆ ` σ(l) : T , then
Γ; ∆ ` σ(r) : T .

Remark
These properties are undecidable. To check them in Dedukti, we
need to find decidable criteria.
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Product Compatibility

Product Compatibility (PC)

If Πx : A1.B1 ≡βΓ Πx : A2.B2, then A1 ≡βΓ A2 and B1 ≡βΓ B2.

Theorem: PC for Object-Level Systems [Barbanera et al,1994]

Product Compatibility holds when there are no type-level rewrite
rules.

Theorem: PC by Confluence

Product Compatibility follows from the confluence of →βΓ.
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Higher-Order Rewrite Rules

Derivation Operation (e f )′ = f ′ × e f

D (λx : R.Exp (f x)) ↪→ (D (λx : R.f x))× (λx : R.Exp (f x)).

Critical Pair
D (λx : R.Exp ((λy : R.y) x))

(D (λx : R.(λy : R.y) x)) × (λx : R.(Exp ((λy : R.y) x)))

D (λx : R.Exp x)D

β

The critical peak cannot be joined; confluence is lost.

Remark
In the λΠ-Calculus Modulo, matching is syntactic.
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Two Problems

• How to prove product compatibility?

• How to decide the congruence ≡βΓ?
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Rewriting Modulo beta
D (λx : R.Exp ((λy : R.y) x))

. . . × (λx : R.(Exp ((λy : R.y) x))) D (λx : R.Exp x)

(D (λx : R.x)) × (λx : R.(Exp x))

D β

β ?

Technical Choice
Use Higher-Order Rewrite Systems [Nipkow, 1991] to define
rewriting modulo beta in the λΠ-Calculus Modulo.

Advantages

• Confluence results of HRSs [van Oostrom, 1995].

• Automatic confluence checkers (CSIˆho [Nagele, 2015], ACPH
[Onowawa et al, 2015])
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Higher-Order Rewrite Systems
[Nipkow, 1991]

Terms
Simply typed λ-terms in βη-normal form over some signature.

Higher-Order Patterns and Rewrite Rules

• A rewrite rule is a pair of terms (l ↪→ r) where l is a
higher-order pattern [Miller, 1991].

• A term is a higher-order pattern if the arguments of its free
variables are lists of terms η-equivalent to distinct bound
variables.

• Rewriting is performed modulo βη.

Example: λ-calculus
Σ = { Lam, App } (β) App(Lam(λx .F (x)),A) ↪→ F (A)
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Defining Rewriting Modulo beta

Encoding Terms

• We encode untyped λΠ-terms as typed HRS-terms.

• Example:
‖D (λx : Nat.f x)‖ = App(D, Lam(Nat, λx .App(f , x)))

Encoding Rewrite Rules

• (l ↪→ r) 7→ ‖(l ↪→ r)‖ 6= (‖l‖ ↪→ ‖r‖).

• Example:
‖D (λx : Nat.f x) ↪→ f 0‖ = App(D, Lam(Nat, λx .f (x))) ↪→ f (0)

• Restricted to be higher-order patterns.

Rewriting Modulo beta

t1 →Γbeta t2 =def ‖t1‖ →‖Γ‖βη ‖t2‖
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Confluence Modulo beta

Theorem
Product Compatibility follows from the confluence of →βΓbeta .

Theorem
If →βΓbeta terminates, then ≡βΓ is decidable.

Key Lemma

The congruences ≡βΓ and ≡βΓbeta are equal.
Proof:

• →βΓ ⊂ →βΓbeta .

• →Γbeta ⊂ ←∗β .→Γ.

Remark
Adding rewriting modulo beta to the λΠ-Calculus Modulo does
not modify the type system.
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Summary

Product Compatibility

A new criterion for proving product compatibility that

• is strictly more general than the previous one based on (usual)
confluence.

• can be used in presence of higher-order rewrite rules.

Implementation

• Dedukti now implements higher-order rewrite rules.
It has been used to encode Coq’s Universes [Assaf, 2014].

• Dedukti now checks confluence (modulo beta) using an
external checker.
This allowed us to find bugs in existing Dedukti developments.

Publication: Rewriting Modulo β in the λΠ-Calculus Modulo, R. Saillard in
LFMTP, 2015.
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Colored λΠ-Calculus Modulo

Problem

• Proving product compatibility in presence of type-level rules
and a non-confluent rewrite system (for instance due to
non-left-linear rules).

• Difficulty: conversions may contain ill-typed terms; we
cannot assume subject reduction.

Colored λΠ-Calculus Modulo

• Approximate typing by a weak notion of typing for which
subject reduction is easy to prove.

• Constrain the conversion to be weakly well-typed.

• Use weak typing to show that more rewrite systems verify
product compatibility.
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Typing Rewrite Rules

Well-Typed Rewrite Rules

A rule (l ↪→ r) is well-typed for Γ if, ∀σ∀∆∀T
Γ; ∆ ` σ(l) : T =⇒ Γ; ∆ ` σ(r) : T .

Criterion used by Dedukti < 2.3

• l is algebraic

• Γ; ∆ ` l : T

• Γ; ∆ ` r : T

• Γ `ctx ∆ and dom(∆) = FV (l).

Theorem
Let Γ be a global context such that →βΓ is confluent. If the
hypotheses above are verified, then the rewrite rule is well-typed.
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What about Higher-order Rewrite Rules?

First Limitation
Cannot type higher-order rewrite rules.

Analysis

The hypothesis that l is algebraic is used to show that, if
Γ; ∆ ` l : T and Γ; ∆2 ` σ(l) : T2, then σ is well-typed, that is

∀x .Γ; ∆2 ` σ(x) : σ(∆(x)).

What is really needed

• the types of the variables should be uniquely determined by
the shape of l .

• the types of the variables should be inferable.
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Typing Left-Hand Sides

Bidirectional Typing [Pierce, 1997] of Patterns

• (Synthesis) Γ; ∆1; Σ s t ⇒ A,∆2

• (Checking) Γ; ∆1; Σ c t ⇐ A | ∆2

Rules

Γ; ∆1; Σ s u ⇒ T ,∆2

T →∗βΓ Πx : A.B

Γ; ∆2; Σ c v ⇐ A | ∆3
(Application)

Γ; ∆1; Σ s uv ⇒ B[x/u],∆3

Γ; ∆1; Σ s u ⇒ A2,∆2 A1 ≡βΓ A2
(Inversion)

Γ; ∆1; Σ c u ⇐ A1 | ∆2

x /∈ dom(Σ ∪∆1)
(Free Variable)

Γ; ∆1; Σ c x ⇐ B | ∆1(x : B)
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A First Generalization

Theorem
If

• Γ; ∅; ∅ s l ⇒ T ,∆

• and Γ; ∆ ` r : T ,

then (l ↪→ r) is well-typed in Γ.

Remark
If t is a well-typed higher-order pattern, then
Γ; ∅, ∅ s t ⇒ T ,∆ for some T and ∆.
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Rewrite Rules and Dependent Typing

Example

head : Πn : Nat.Vector (S n) −→ Elt.
head n (cons n e v) ↪→ e.
tail : Πn : Nat.Vector (S n) −→ Vector n.
tail n (cons n e v) ↪→ v .

Problem
These rewrite rules are not left-linear.

Implementing head and tail differently:

head n1 (cons n2 e v) ↪→ e.
tail n1 (cons n2 e v) ↪→ v .

These rewrite rules are well-typed [Blanqui, 2005].

We know that, if the redex σ(head . . .) is well-typed, then
σ(n1) ≡βΓ σ(n2)
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Weakening Bidirectional Checking (1)

Inversion

Γ; ∆1; Σ s u ⇒ A2,∆2 A1 ≡βΓ A2

Γ; ∆1; Σ c u ⇐ A1 | ∆2
−→

Γ; ∆1; Σ s u ⇒ A2,∆2

Γ; ∆1; Σ c u ⇐ A1 | ∆2

Head

• Γ; ∅; ∅ s head n1 (cons n2 e v)⇒ Elt,∆
for ∆ = (n1 : Nat)(n2 : Nat)(e : Elt)(v : Vector n2)

• Γ; ∆ ` e : Elt

Thus, (head n1 (cons n2 e v) ↪→ e) is well-typed.
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Weakening Bidirectional Checking (2)

Tail

• Γ; ∅; ∅ s tail n1 (cons n2 e v)⇒ Vector n1,∆
for ∆ = (n1 : Nat)(n2 : Nat)(e : Elt)(v : Vector n2)

• Γ; ∆ ` v : Vector n2

The criterion still does not apply.

However
We know, by typing, that if σ(tail n1 (cons n2 e v)) is
well-typed, then σ(n1) ≡βΓ σ(n2).
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Recording Conversion Tests

Solution

• Record conversion tests.

Γ; ∆1; Σ s u ⇒ A2,∆2, C
Γ; ∆1; Σ c u ⇐ A1 | ∆2, C ∪ {(A1,A2)}

• Use this information when typing the right-hand side of the
rule.

Example

• Γ; ∅; ∅ s tail n1 (cons n2 e v)⇒ Vector n1,∆, C
and (Vector (S n1), Vector (S n2)) ∈ C

• Any solution σ of C verifies σ(n1) ≡βΓ σ(n2)

• Γ; ∆[n2 ← n1] ` v : Vector n1

Thus, (tail n1 (cons n2 e v) ↪→ v) is well-typed.
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Summary

A general criterion for typing rewrite rules

• Compatible with higher-order rewrite rules.

• Allows typing linearized versions of rewrite rules when non-left
linearity is due to typing constraints.

Implementation in Dedukti

• It replaces the unsafe way of linearizing rewrite rules
implemented in the previous versions of Dedukti.

• Users do not need to give the typing context ∆ anymore.
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Perspectives

Termination:
Termination is necessary for deciding typing.

• Design termination criteria for →βΓ and →βΓbeta

• Implement them in Dedukti.

Dedukti as a Proof Assistant

• Refiner (Already done by G. Gilbert).

• Tactics.

• Standard Library.

• Theorem Prover.
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Contributions
Making Dedukti Safer
Dedukti now checks the subject reduction property.

• Product compatibility is ensured by confluence of rewriting
modulo beta.

• Well-typedness of rewrite rules.

Making Dedukti More Expressive
Adding higher-order rewrite rules to Dedukti.
Used to import proofs from Coq and Matita.

New Concepts
• The λΠ-Calculus Modulo with Global Contexts.

• A notion of rewriting modulo beta.

• The Colored λΠ-Calculus Modulo.

And a new implementation of Dedukti in OCaml.
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Permanently Well-Typed Rewrite Rules

Example (continued)

Vector (S n) ↪→ NonEmptyVector.

For ∆ = (n1 : Nat)(n2 : Nat)(e : Elt)(l : Vector n2), we have
Γ′; ∆ ` tail n1 (cons n2 e l) : Vector n1.
(because
Vector (S n1) ≡βΓ′ NonEmptyVector ≡βΓ′ Vector (S n2))

But we have
tail k1 (cons k2 e l)→Γ′ l .
Γ2; ∆ ` l : Vector n2 and Γ2; ∆ 0 l : Vector n1.

The rewrite rule is no more well-typed.

Explanation

τ = {n2 7→ n1} is a prefix for C in Γ but not in Γ2.

Morality

Rewrite Rules may become ill-typed a posteriori.
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Permanently Well-Typed Rewrite Rules

Definition
A rewrite rule is permanently well-typed in Γ if it is well-typed in
any (well-formed) extension of Γ.

Except for the last one, all the previous criteria provide permanent
well-typedness.

Static Symbols

Static symbols are constants for which we (implicitly) assume that
they will never be associated to rewrite rules.

Tail
If Vector and S are declared as static symbols, then
τ = {n2 7→ n1} will remain a prefix in any extension of the context.
In this case, the rule on tail is permanently well-typed.
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Typing Rules for Global Contexts

(Empty)
∅ wf

Γ wf Γ; ∅ ` T : Type c /∈ dom(Γ)
(Declaration)

Γ(c : T ) wf

Γ wf →β(ΓΞ)beta is confluent

(∀i)Γ ` ui ↪→ vi

Ξ = (u1 ↪→ v1) . . . (un ↪→ vn)

ΓΞ wf

Theorem
If Γ wf, then Γ verifies subject reduction.
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(Sort) Γ; ∆ ` Type : Kind

(Variable)
(x : A) ∈ ∆

Γ; ∆ ` x : A

(Constant)
(c : A) ∈ Γ

Γ; ∆ ` c : A

(Application)
Γ; ∆ ` t : Πx : A.B Γ; ∆ ` u : A

Γ; ∆ ` tu : B[x/u]

(Abstraction)
Γ; ∆(x : A) ` t : B Γ; ∆ ` Πx : A.B : s

Γ; ∆ ` λx : A.t : Πx : A.B

(Product)
Γ; ∆ ` A : Type Γ; ∆(x : A) ` B : s

Γ; ∆ ` Πx : A.B : s

(Conversion)
Γ; ∆ ` t : A Γ; ∆ ` B : s A ≡βΓ B

Γ; ∆ ` t : B
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Typing Rules for Local Contexts

(Empty) Γ `ctx ∅

(Var)
Γ `ctx ∆ Γ; ∆ ` U : Type x /∈ dom(∆)

Γ `ctx ∆(x : U)
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Nipkow’s Higher-Order Rewrite Systems

Terms of HRS
Simply typed λ-terms in βη-normal form over some signature Σ.
( u, v ::= c ∈ Σ | x | λx .t | u(v), variables have a type )

Patterns and Rewrite Rules

• A rewrite rule is a pair of terms (l ↪→ r) where l is a pattern.

• A term is a (Miller) pattern if the arguments of its free variables are lists
of terms η-equivalent to distinct bound variables.

• Higher-order unification (and matching) of patterns is decidable and most
general substitutions exist.

Higher-Order Rewriting
Let R be a set of rewrite rules.

• if (l ↪→ r) ∈ R, then lηβ (θ(l))→R lηβ (θ(r)).

• if ~t1 →R ~t2, then t0(t1)→R t0(t2), t1(t0)→R t2(t0) and λx .t1 →R λx .t2;
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Example of HRS: the λ-calculus

Signature

Σ = { Lam : (Term −→ Term) −→ Term,
App : Term −→ Term −→ Term }

Rewrite Rule
(β) App(Lam(λx .F (x)),A) ↪→ F (A)

Example

App(Lam(λx .x), c) = lηβ (App(Lam(λx .(λy .y)(x)), c))

↪→ lηβ ((λy .y)(c))

= c
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Encoding λΠ-Terms
Σ = { c : Term | c ∈ C } ∪ { Type : Term, Kind : Term,

Lam : Term −→ (Term −→ Term) −→ Term,

App : Term −→ Term −→ Term,

Pi : Term −→ (Term −→ Term) −→ Term }

The Encoding
‖Kind‖ := Kind ‖Type‖ := Type

‖x‖ := x (of type Term) ‖c‖ := c

‖λx : A.t‖ := Lam(‖A‖, λx .‖t‖) ‖uv‖ := App(‖u‖, ‖v‖)
‖Πx : A.B‖ := Pi(‖A‖, λx .‖B‖)

Isomorphism

This encoding is an isomorphism between (untyped) λΠ-terms
and HRS-terms (which are βη-normal) of type Term.

t1 →β t2 ⇐⇒ ‖t1‖ →β ‖t2‖.
If we take ‖(l ↪→ r)‖ = ‖l‖ ↪→ ‖r‖, then

t1 →Γ t2 ⇐⇒ ‖t1‖ →‖Γ‖ ‖t2‖.
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Encoding Rewrite Rules

Second Encoding of Terms
‖Kind‖2 := Kind

. . . := . . .
‖uv‖2 := App(‖u‖2,‖v‖2) if uv 6= x ~w for x free
‖x~v‖2 := x(‖~v‖2) if x free (x of type Term −→ . . . −→ Term).

Second Encoding of Rewrite Rules

‖(l ↪→ r)‖2 = ‖l‖2 ↪→ ‖r‖2

Conditions

• ‖l‖2 must be a pattern;

• all occurrences of a free variable in l and r must be applied to
the same number of arguments.
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Example

Rewrite Rule
‖D (λx : R.Exp (f x)) ↪→ (D (λx : R.f x)) × (λx : R.Exp (f x))‖2

= App(D, Lam(R, λx .App(Exp, f (x)))) ↪→ App(App(×, . . . f (x) . . . f (x))))

Reduction
‖D (λx : R.Exp x)‖ = App(D, Lam(R, λx .App(Exp, x)))

= lηβApp(D, Lam(R, λx .App(Exp, (λy .y)(x))))

→ lηβApp(App(×, . . . (λy .y)(x) . . . (λy .y)(x))))

= App(App(×, . . . x . . . x)))
= ‖(D (λx : R.x)) × (λx : R.Exp x)‖

D (λx : R.Exp ((λy : R.y) x))

. . . × (λx : R.(Exp ((λy : R.y) x))) D (λx : R.Exp x)

(D (λx : R.x)) × (λx : R.(Exp x))

D β

β
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(Sort) Γ; ∆; Σ; C �s Type⇒ (∆,Kind, C)

(Constant)
(f : A) ∈ Γ

Γ; ∆; Σ; C �s f ⇒ (∆,A, C)

(Σ∆-Variable)
(x : A) ∈ Σ ∪∆

Γ; ∆; Σ; C �s x ⇒ (∆,A, C)

(S-Application)

Γ; ∆1; Σ; C1 �s u ⇒ (∆2,T2, C2)

Γ; ∆2; Σ; C2 �c v ⇐ A | (∆3, C3) T2 →∗βΓ Πx : A.B

Γ; ∆1; Σ; C1 �s u v ⇒ (∆3,B[x/v ], C3)
(S-Abstraction)

Γ; ∆1; Σ; C1 �c A⇐ Type | (∆2, C2)

Γ; ∆2; Σ(x : A); C2 �s u ⇒ (∆3,B, C3)

Γ; ∆1; Σ; C1 �s λx : A.u ⇒ (∆3,Πx : A.B, C3)
(Product)

Γ; ∆1; Σ; C1 �c A⇐ Type | (∆2, C2)

Γ; ∆2; Σ(x : A); C2 �c B ⇐ s | (∆3, C3)

Γ; ∆1; Σ; C1 �s Πx : A.B ⇒ (∆3, s, C3)
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(Free Variable)
FV (A) ∩ dom(Σ) = ∅ x /∈ dom(∆1) ∪ dom(Σ)

Γ; ∆1; Σ; C1 �c x ⇐ A | (∆1(x : A), C1)

(C-Abstraction)
T →∗βΓ Πx : A2.B

Γ; ∆1; Σ; C1 �c A1 ⇐ Type | (∆2, C2)

Γ; ∆2; Σ(x : A1); C2 �c u ⇐ B | (∆3, C3)

Γ; ∆1; Σ; C1 �c λx : A1.u ⇐ T | (∆3, C3 ∪ {(A1,A2)})
(C-Application)

(x : A) ∈ Σ Γ; ∆1; Σ; C1 �c u ⇐ Πx : A.B | (∆2, C2)

Γ; ∆1; Σ; C1 �c u x ⇐ B | (∆2, C2)

(Inversion)

Γ; ∆1; Σ; C1 �s u ⇒ (∆2,A2, C2)

Γ; ∆1; Σ; C1 �c u ⇐ A1 | (∆2, C2 ∪ {(A1,A2)})
(App-No-Check)

Γ; ∆1; Σ; C1 �s v ⇒ (∆2,A, C2)

Γ; ∆1; Σ; C1 �c u v ⇐ B | (∆2, C2)

(No-Check)

Γ; ∆1; Σ; C1 �c u ⇐ T | (∆1, C1)
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Colors

The stripping function ‖.‖, from types and kinds to weak types, is
defined as follows:

‖Kind‖ = Kind
‖Type‖ = Type
‖C‖ = Color(C )
‖At‖ = ‖A‖
‖λx : A.B‖ = ‖B‖
‖Πx : A.B‖ = ‖A‖ → ‖B‖
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(Sort) Γ; ∆ `w Type : Kind

(Variable)
(x : A) ∈ ∆

Γ; ∆ `w x : ‖A‖

(Constant)
(c : A) ∈ Γ

Γ; ∆ `w c : ‖A‖
(Application)

Γ; ∆ `w t : A→ B Γ; ∆ `w u : A

Γ; ∆ `w tu : B
(Abstraction)

Γ; ∆ `w A : Type Γ; ∆(x : A) `w t : B B 6= Kind

Γ; ∆ `w λx : A.t : ‖A‖ → B
(Product)

Γ; ∆ `w A : Type Γ; ∆(x : A) `w B : s

Γ; ∆ `w Πx : A.B : s
(Conversion)

Γ; ∆ `w t : A Γ; ∆ `w B : s A ≡w
Γ ‖B‖

Γ; ∆ `w t : ‖B‖
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Non-left-linear Rewrite Rules

minus n n ↪→ 0.
minus (S n) n ↪→ S 0.

Let Y be Turing’s fixpoint combinator.
minus (Y S) (Y S)→Γ 0.
minus (Y S) (Y S)→∗β minus (S (Y S)) (Y S)→Γ S 0.
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