
Normalisation by Completeness with Heyting

Algebras

Gaëtan Gilbert12 and Olivier Hermant34

1 ENS Lyon, France
gaetan.gilbert@ens-lyon.fr

2 Inria Paris, France
3 MINES ParisTech, PSL Research University, France

4 Wesleyan University, Middletown, CT, USA
olivier.hermant@mines-paristech.fr

Abstract. Usual normalization by evaluation techniques have a strong
relationship with completeness with respect to Kripke structures. But
Kripke structures is not the only semantics that �ts intuitionistic logic:
Heyting algebras are a more algebraic alternative.
In this paper, we focus on this less investigated area: how completeness
with respect to Heyting algebras generate a normalization algorithm for
a natural deduction calculus, in the propositional fragment. Our main
contributions is that we prove in a direct way completeness of natural
deduction with respect to Heyting algebras, that the underlying algo-
rithm natively deals with disjunction, that we formalized those proofs in
Coq, and give an extracted algorithm.

1 Introduction

In logic, a restriction to cut-free proofs makes analysis of a theory and
proof-search signi�cantly simpler. Evaluating programs boils down to �nd-
ing e�cient ways to reach a normal form, in order to produce a result.

Through the proof-as-programs paradigms, those two processes can
be reduced to a single one: reduction steps of lambda-terms, such as β
reduction, can be seen as a way to remove cuts from proofs expressed in
natural deduction. Under this correspondence, a proof is cut-free when
the associated proof-term is in normal form.

But there exist other, semantic, ways to eliminate cuts from proofs [15],
through a completeness theorem that produces cut-free proofs, hereafter
strong completeness, in combination with soundness. When those proofs
can be made constructive [17,10,3], a natural question arises: what is the
computational content of such proofs ?

A link has already been exhibited. A line of research in program nor-
malization, dubbed normalisation by evaluation, aims at evaluating a pro-
gram in a type-directed fashion, by reusing the reduction mechanisms at

hand at the meta level5 through a pair of re�ection/rei�cation functions
[2]. Soon after, Coquand noticed a strong similarity with completeness
proofs [4].

This seminal work has been extended to more complex types [5,1], and
also studied from the point of view of the completeness theorem for intu-
itionistic natural deduction with respect to Kripke-like structures [9,6,8].
But when it comes to incorporating disjunction, one must be very careful,
in particular because Kripke structures require worlds to decide between
both members of the conjunction - from a pure normalization by evalua-
tion point of view, dealing with sum types also requires special care.

In this paper, we follow this line, relating constructive completeness
proofs and normalization procedures. But, instead of considering Kripke
semantics, as has been done in the works described above, we consider
Heyting algebras:

� completeness theorems for the cut-free system (strong completeness),
and therefore cut elimination [11,7] can be proved constructively;

� handling disjunction is straightforward, and hence we get cut elimina-
tion for sum types.

An adaptation of existing completeness proofs with respect to Heyting
algebras is required, since all the known proofs, starting from Okada's
contribution to linear logic [12], use sequent calculus.

To support these claims, we have formalized the proofs of this paper
in Coq, and used extraction to get an executable interpreter. To keep the
complexity of the formalization reasonable, we remained in the proposi-
tional fragment. The Coq sources are available at https://github.com/
SkySkimmer/NormalisationByCompleteness.

The organization of this paper is the following: in Sec. 2 we recall
natural deduction, in particular the notion of cut, and show basic lemmas.
In Sec. 3, we develop the strong completeness proof, and discuss its Coq
formalization in the next Sec. 4.1, where we also devise the behavior of
the extracted algorithm on examples. Sec. 5 concludes the paper.

2 Natural Deduction

De�nition 1 (Terms and formulas). Let V be an in�nite set of vari-

ables, S be a set of function symbols along with an arity and P be a set of

predicate symbols along with an arity. The set of terms T is de�ned by:

t ::= x | f(t1, ..., tn)
5 namely, the programming language in which the evaluation function is written

2

https://github.com/SkySkimmer/NormalisationByCompleteness
https://github.com/SkySkimmer/NormalisationByCompleteness

where x ∈ V and f ∈ S has arity n. The set of formulas F is de�ned by:

A,B ::= P (t1, ..., tn) | A ∧B | A ∨B | A⇒ B | > | ⊥ | ∀x.A | ∃x.A

where P ∈ P has arity n.

De�nition 2 (Substitutions). A substitution σ is a partial function

from variables to terms, with �nite domain.

We expand it inductively to a function from terms to terms and formulas

to formulas, letting σ(x) = x for x /∈ dom(σ).

Notably for Q ∈ {∀,∃}, σ(Q x.A) := Qx.σ(A), assuming x fresh w.r.t.
the image of σ by α-conversion. This is always possible since dom(σ) is
�nite, and so the image of σ is also �nite.

De�nition 3 (Updated Substitution). Let σ be a substitution, x ∈ V
and t ∈ T , σ[x 7→ t] is the substitution with domain dom(σ) ∪ {x} such

that for all y 6= x, σ[x 7→ t](y) = σ(y) and σ[x 7→ t](x) = t.

The substitution with the empty set as domain is denoted ∅. For t
a term (resp. A a formula), x a variable and u a term, we abbreviate
∅[x 7→ u](t) (resp. ∅[x 7→ u](A)) as t[u/x] (resp. A[t/x]).

De�nition 4 (Contexts). A context Γ is a list of formulas [A1, ..., An].
We let Γ,A be the concatenation of A and Γ . Membership is denoted

B ∈ Γ . Inclusion, denoted Γ ⊆ Σ, holds when any B ∈ Γ is also in Σ.

Remark 1. The relation ⊆ is a preorder, but not an order. Indeed, it
strictly subsumes contraction (Γ,A,A ⊆ Γ,A) as well as reordering of
premises.

De�nition 5 (Cut-Free Proofs). Figure 1 de�nes the relations `ne
(neutral proof) and `∗ (cut-free proof) by mutual induction.

In Fig. 1, rules on the left are introduction rules and produce cut-free
proofs, while rules on the right are elimination rules and produce neutral
proofs. FV denotes the set of free variables. The usual natural deduction
calculus NJ is a merge of both relations. For two contexts Γ,Σ and any
relation `′, Σ `′ Γ denotes Σ `′ A for all A ∈ Γ .

De�nition 6 (Natural Deduction). The judgment Γ ` A has the same

rules as both Γ `∗ A and Γ `ne A.

Therefore, if Γ `∗ A or Γ `ne A, then Γ ` A.

3

Γ `ne A coerce
Γ `∗ A

A ∈ Γ
ax

Γ `ne A

Γ `∗ A Γ `∗ B ∧I
Γ `∗ A ∧B

Γ `ne A ∧B ∧El
Γ `ne A

Γ `ne A ∧B ∧Er
Γ `ne B

Γ `∗ A ∨Il
Γ `∗ A ∨B

Γ `∗ B ∨Ir
Γ `∗ A ∨B

Γ `ne A ∨B A,Γ `∗ C B,Γ `∗ C ∨E
Γ `ne C

Γ,A `∗ B ⇒I
Γ `∗ A⇒ B

Γ `ne A⇒ B Γ `∗ A ⇒E
Γ `ne B

>I
Γ `∗ >

Γ `ne ⊥ ⊥E
Γ `ne A

Γ `∗ A x /∈ FV (Γ)
∀I

Γ `∗ ∀x.A
Γ `ne ∀x.A ∀E
Γ `ne A[t/x]

Γ `∗ A[t/x]
∃I

Γ `∗ ∃x.A
Γ `ne ∃x.A A, Γ `∗ C x /∈ FV (C, Γ)

∃E
Γ `ne C

Fig. 1. Rules of Natural Deduction

Lemma 1 (Weakening). Let Γ,Σ be contexts such that Γ ⊆ Σ. Let A
be a formula. The three following rules are admissible:

Γ `∗ A
Σ `∗ A

Γ `ne A
Σ `ne A

Γ ` A
Σ ` A

Proof. By mutual induction on Γ `∗ A and Γ `ne A, and by induction
on Γ ` A. �

Corollary 1 (Contraction). For any context Γ and any formula B, if
Γ,A,A ` B then Γ,A ` B.

Neutral proofs are such that they can replace axioms in cut-free proofs
without introducing any cut.

Lemma 2 (Axiom Replacement). Let Γ,Σ be contexts and A be a

formula. The three following rules are admissible:

Σ `ne Γ Γ `∗ A
Σ `∗ A

Σ `ne Γ Γ `ne A
Σ `ne A

Σ ` Γ Γ ` A
Σ ` A

Proof. By mutual induction on Γ `∗ A and Γ `ne A, and by induction
on Γ ` A. Note that we need the weakening lemma (Lem. 1) when the
context is modi�ed in a premise of a rule.

Consider for instance the ⇒I case of Fig. 1. Γ,A `∗ B is derivable.
Σ,A `ne Γ,A holds, by weakening for Γ and by ax for A. By induction
hypothesis, Σ,A `∗ B and by ⇒I we conclude Σ `∗ A⇒ B. �

4

Lemma 3 (Kleene's Inversion Lemma). Let Γ be a context, A and

B be formulas.

If Γ `ne A⇒ B (resp. Γ `∗ A⇒ B) then Γ,A `ne B (resp. Γ,A `∗ B).

Proof. If Γ `ne A ⇒ B, then by weakening Γ,A `ne A ⇒ B. By ax and
coerce we have Γ,A `∗ A. Then by ⇒E , Γ,A `ne B.

If Γ `∗ A⇒ B, we analyze the last rule of the derivation:

� it is coerce: the premiss is Γ `ne A ⇒ B, then Γ,A `ne B and by
coerce, Γ,A `∗ B.

� otherwise it is ⇒I : the premiss is Γ,A `∗ B. �

3 Strong completeness by Heyting Algebras

3.1 Heyting Algebras

De�nition 7 (Complete Lattice). A complete lattice is a tuple

A = (A,≤,
∧
,
∨

)

such that (A,≤) is a partial order with arbitrary meet
∧

and join
∨
.

In the sequel, we distinguish the binary meet ∧, join ∨ and the global
maximum > (empty meet) and minimum ⊥ (empty join).

De�nition 8 (Complete Heyting Algebra). A Heyting algebra is a

structure H = (H,≤,∧,∨,⇒,>,⊥,
∧
,
∨
) such that (H,≤,

∧
,
∨
) is a com-

plete lattice and veri�es the implication property

∀a b c, a ≤ b⇒ c if and only if a ∧ b ≤ c

Lemma 4. In a Heyting algebra, binary meet and join distribute over

each other.

Proof. Let a, b, c ∈ H

� a ∧ (b ∨ c) ≤ (a ∧ b) ∨ (a ∧ c): we have a ∧ b ≤ (a ∧ b) ∨ (a ∧ c) and
a ∧ c ≤ (a ∧ b) ∨ (a ∧ c). By the implication property,

b ≤ a⇒ ((a ∧ b) ∨ (a ∧ c)) and c ≤ a⇒ ((a ∧ b) ∨ (a ∧ c))

Then b∨c ≤ a⇒ ((a∧b)∨ (a∧c)) and we conclude by the implication
property.

� (a ∧ b) ∨ (a ∧ c) ≤ a ∧ (b ∨ c): holds in all lattices

5

� a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c): holds in all lattices
� (a ∨ b) ∧ (a ∨ c) ≤ a ∨ (b ∧ c): By the implication property, this is

equivalent to a ∨ b ≤ (a ∨ c)⇒ (a ∨ (b ∧ c))
⇐⇒ a ≤ (a ∨ c)⇒ (a ∨ (b ∧ c)) and b ≤ (a ∨ c)⇒ (a ∨ (b ∧ c))
⇐⇒ a ∧ (a ∨ c) ≤ a ∨ (b ∧ c) (trivial) and b ∧ (a ∨ c) ≤ a ∨ (b ∧ c)
⇐⇒ a ∨ c ≤ b⇒ (a ∨ (b ∧ c))
⇐⇒ a ≤ b⇒ (a ∨ (b ∧ c)) and c ≤ b⇒ (a ∨ (b ∧ c))
⇐⇒ a ∧ b ≤ a ∨ (b ∧ c) (trivial) and c ∧ b ≤ a ∨ (b ∧ c) (trivial) �

De�nition 9 (Interpretation). A valuation on a set D, called the do-

main, is a partial function ϕ : V → D with �nite support. The syntax for

updating valuations is the same as in Def. 3.

A model on a Heyting algebra H is given by a domain D, and for

each function symbol f ∈ S (resp. predicate symbol P ∈ P) of arity n a

function JfK : Dn → D (resp. a function JP K : Dn → H).

Let ϕ be a valuation, t a term and A a formula, such that FV (t) ∪
FV (A) ⊆ dom(ϕ). The interpretations JtKϕ ∈ D and JAKϕ ∈ H are de�ned

in the usual inductive way.

We de�ne interpretation for contexts to be JΓ Kϕ :=
∧
C∈Γ JCKϕ.

Notably:
JP (t1, ..., tk)Kϕ := JP K(Jt1Kϕ, ..., JtkKϕ)

J∀x.AKϕ :=
∧
v∈D{JAKϕ[x 7→v]}

J∃x.AKϕ :=
∨
v∈D{JAKϕ[x 7→v]}

Theorem 1 (Soundness). Let Γ be a context and A be a formula. If

Γ ` A is derivable, then for any Heyting algebra H, for any model on H
and valuation ϕ, JΓ Kϕ ≤ JAKϕ

Proof. Standard induction [14]. �

3.2 Completeness

We now proceed to the construction of a universal Heyting algebra, that is
suitable for cut-free, or strong, completeness, that is to say, that produces
cut-free proofs [13]. This contrasts with more usual Lindenbaum algebras
[14], formed with (provability-)equivalence classes of formulas.

De�nition 10 (Extraction). Let A be a formula. We de�ne bAc (the
extraction of A) to be {Γ, Γ `∗ A}.

bAc is the set of contexts that prove A without cut, and will represent
an upper bound for the interpretation of A, and as well the basis of our
Heyting algebra below.

6

De�nition 11 (Universal Heyting Algebra). The underlying set of

the universal Heyting algebra (aka the context algebra) is:

Ω := {
⋂
bAic, (Ai)i∈I family of formulas}

That is to say, the closure by arbitrary intersections of formula extrac-

tions. The partial order is inclusion and the operations are:

a ≤ b := a ⊆ b
a ∧ b := a ∩ b∧

A :=
⋂
A

a ∨ b :=
⋂
{ω ∈ Ω, a ∪ b ≤ ω}∨

A :=
⋂
{ω ∈ Ω,

⋃
A ≤ ω}

a⇒ b :=
∨
{c ∈ Ω, a ∧ c ≤ b}

> := {Γ, Γ context} = b>c
⊥ := {Γ,∀A,Γ ` A} = b⊥c

By abuse of notation, we also denote this algebra as Ω.
∧

and
∨

are
clearly greatest lower and lowest upper bounds, respectively. We can also
simplify a bit lowest upper bounds, thanks to the following lemma:

Lemma 5. The following identities are veri�ed:

a ∨ b =
⋂
{bDc, a ∪ b ≤ bDc, D ∈ F}∨

A =
⋂
{bDc,

⋃
A ≤ bDc, D ∈ F}

a⇒ b =
⋂
{bDc,

⋃
{c ∈ Ω, a ∧ c ≤ b} ≤ bDc, D ∈ F}

Proof. We focus on the �rst identity. The two other have a similar proof,
as a ∨ b,

∨
A and a⇒ b are all de�ned as lowest upper bound.

By de�nition of ∨, a ∨ b ≤
⋂
{bDc, a ∪ b ≤ bDc, D ∈ F}. Conversely,

let ω such that a ∪ b ≤ ω. Since ω ∈ Ω, ω =
⋂
i∈IbCic for some (Ci)i∈I .

For all i ∈ I, a ∨ b ≤ bCic, and therefore ω ≤
⋂
{bDc, a ∪ b ≤ bDc}.

Lemma 6. Let ω ∈ Ω, and Γ ∈ ω. Then, for any context ∆, ∆,Γ ∈ ω.

Proof. By applying Lem. 1 to Def. 10 and Def. 11. �

Lemma 7. Ω forms a Heyting algebra.

Proof. Ω is closed by arbitrary intersection and for all A, bAc ∈ Ω, so the
operations produce values in Ω. As already said, ≤ is an order for which ∧
and

∧
are greatest lower bounds, and ∨ and

∨
are lowest upper bounds.

> and ⊥ are trivially is the greatest and least element, respectively. It
remains to check the implication property:

7

� Assume a ≤ b⇒ c, with c =
⋂
k∈KbCkc. Let Γ ∈ a∧ b and k ∈ K, we

want to show Γ ∈ bCkc, that is to say Γ `∗ Ck.
Γ ∈ a so Γ ∈ b⇒ c and we have for any D, if

⋃
{e ∈ Ω, b ∧ e ≤ c} ≤

bDc then Γ ∈ bDc.
Let us show that D := Γ ⇒ Ck veri�es this hypothesis, where Γ ⇒
B := A1 ⇒ ...⇒ An ⇒ B (with Γ = A1, ..., An and B formula).
Let e ∈ Ω with b ∧ e ≤ c. Let ∆ ∈ e, {∆,Γ} ∈ b ∧ e by Lem. 1, then
∆,Γ ∈ c, and ∆,Γ `∗ Ck.
By ⇒I , ∆ `∗ Γ ⇒ Ck, that is to say ∆ `∗ D. This holds for any such
∆, so e ≤ bDc, and D veri�es the desired hypothesis.
Therefore Γ `∗ Γ ⇒ Ck and by repeated application of Lem. 3 and
Lem. 1 Γ `∗ Ck.
Finally, Γ ∈ c.

� Conversely, assume a ∧ b ≤ c, then a ≤
∨
{e, e ∧ b ≤ c} = b⇒ c. �

De�nition 12 (Interpretation in the Context Algebra). The do-

main D of the model on Ω is de�ned as the set of terms. If f is a function

symbol of arity n, P is a predicate symbol of arity n, we let:

JfK := (t1, ..., tn) 7→ f(t1, ..., tn)
JP K := (t1, ..., tn) 7→ bP (t1, ..., tn)c

A consequence of this lemma is the following, where we implicitly
coerce valuations with their underlying substitution.

Lemma 8. For any t and valuation ϕ, JtKϕ = ϕ(t).

Proof. By induction. �

De�nition 13 (Closure). Let A be a formula. We de�ne the closure of

A to be

cl(A) :=
⋂
{d ∈ Ω, [A] ∈ d}

Remind that [A] is the one-formula context, containing only A (Def. 4).

Lemma 9. For any A, cl(A) ∈ Ω.

Proof. Ω is stable by arbitrary intersection. �

Lemma 10. [A] ∈ cl(A)

Proof. cl(A) is the greatest lower bound of all d containing [A]. �

Lemma 11. For any A, cl(A) =
⋂
{bDc, [A] ∈ bDc}.

8

Proof. Similar to the proof of Lem. 5. �

Then Γ ∈ cl(A) means for all formulas D, if [A] `∗ D then Γ `∗ D.
In a sense, the members of cl(A) verify the axiom replacement lemma,
except that this new operation does not necessarily preserve the structure
of the derivation. Γ ∈ cl(A) is a weaker statement than Γ `ne A:

Lemma 12. For Γ context and A formula, if Γ `ne A then Γ ∈ cl(A).

Proof. By Lem. 2, considering the previous Lem. 11. �

Theorem 2 (Key theorem). For any formula A and valuation σ into

Ω, σ is also a substitution and

cl(σ(A)) ≤ JAKσ ≤ bσ(A)c

Proof. For clarity, we omit the valuation/substitution σ when it plays no
role. The proof is done by induction on A:

� A is atomic: JAK = bAc, so we only need to check cl(A) ≤ bAc. Let
Γ ∈ cl(A). as we have A `∗ A, by de�nition of cl(A), we have Γ `∗ A
and therefore Γ ∈ bAc.

� cl(A ∧ B) ≤ JA ∧ BK: by induction hypothesis we only need to show
cl(A ∧B) ≤ cl(A) ∩ cl(B).
Let Γ ∈ cl(A ∧ B) and D such that A `∗ D (resp. B `∗ D). Since
A ∧ B `ne A (resp. A ∧ B `ne B), by Lem. 2 we have Γ `∗ D and
Γ ∈ cl(A) (resp. Γ ∈ cl(B)).

JA ∧ BK ≤ bA ∧ Bc: by the induction hypothesis we have JA ∧ BK ≤
bAc ∩ bBc. The ∧I rule concludes the proof.

� cl(A∨B) ≤ JA∨BK: consider C such that JAK∪ JBK ≤ bCc. We have
to show [A ∨B] ∈ bCc.
Since, by Lem. 10 and induction hypothesis, [A] ∈ cl(A) ≤ bCc (resp.
[B] ∈ cl(B) ≤ bCc), we have A `∗ C (resp. B `∗ C). Then by ∨E and
coerce we have A ∨B `∗ C.

JA ∨BK ≤ bA ∨Bc: by de�nition of JAK ∨ JBK, we need to show that
JAK ∪ JBK ≤ bA ∨Bc.
By induction hypothesis, JAK ∪ JBK ≤ bAc ∪ bBc, then the ∨I rule
concludes.

� cl(A ⇒ B) ≤ JA ⇒ BK: by the implication rule we need cl(A ⇒
B) ∧ JAK ≤ JBK, and by induction hypothesis, it is su�cient to show

9

cl(A⇒ B) ∧ bAc ≤ cl(B).
Let Γ ∈ cl(A⇒ B) ∧ bAc, that is to say:

Γ `∗ A and for any C, if A⇒ B `∗ C then Γ `∗ C

Let D such that B `∗ D. To show Γ `∗ D, we �rst show that Γ `∗
Γ ⇒ D. We have, by hypothesis and Lem. 1, the following proof:

A⇒ B,Γ `ne A⇒ B A⇒ B,Γ `∗ A
A⇒ B,Γ `ne B

So, by Lem. 2, A⇒ B,Γ `∗ D, and by repeated ⇒I , A⇒ B `∗ Γ ⇒
D. By hypothesis on Γ , Γ `∗ Γ ⇒ D. By a repeated application of
Lem. 3 and Lem. 1, we get Γ `∗ D.

JA⇒ BK ≤ bA⇒ Bc: by induction hypothesis, JBK ≤ bBc, so JAK⇒
JBK ≤ JAK ⇒ bBc by the intersection (with JAK) and the implication
properties. By induction hypothesis also, cl(A) ≤ JAK, and therefore
cl(A) ∧ (JAK ⇒ bBc) ≤ JAK ∧ (JAK ⇒ bBc) ≤ bBc, that is to say
JAK⇒ bBc ≤ cl(A)⇒ bBc.
All in all, JA ⇒ BK ≤ cl(A) ⇒ bBc, and showing cl(A) ⇒ bBc ≤
bA⇒ Bc su�ces.
Let c such that cl(A) ∧ c ≤ bBc, we show that bA ⇒ Bc is an upper
bound for c, so let Γ ∈ c. By Lem. 1 A,Γ ∈ cl(A)∧ c, and A,Γ `∗ B,
so by⇒I , Γ `∗ A⇒ B. This holds for any c, so cl(A)⇒ bBc ≤ bA⇒
Bc.

� > and ⊥ are trivial cases.
� cl(σ(∀x.A)) ≤ J∀x.AKσ:

Without loss of generality, we assume σ(∀x.A) = ∀x.σ(A) (see Def. 2).
Let Γ ∈ cl(σ(∀x.A)).
We need to prove that for any term d, Γ ∈ JAKσ[x 7→d]. Let d a term,
showing Γ ∈ cl(σ[x 7→ d](A)) su�ces by induction hypothesis.
Let D such that σ[x 7→ d](A) `∗ D. As x does not appear in the image
of σ, σ[x 7→ d](A) = (σ(A))[d/x], and we have:

ax
[∀x.σ(A)] `ne ∀x.σ(A) ∀E

[∀x.σ(A)] `ne σ[x 7→ d](A)

Then by Lem. 2, [∀x.σ(A)] `∗ D. As we assumed Γ ∈ cl(∀x.σ(A)),
the claim follows.

J∀x.AKσ ≤ bσ(∀x.A)c:
Let Γ ∈ J∀x.AKσ, where by α-conversion we assume x fresh.

10

By Def. 9, Γ ∈ JAKσ[x 7→x]. By induction hypothesis we conclude Γ ∈
bσ[x 7→ x](A)c.
Finally, by the ∀I rule Γ `∗ ∀x.σ[x 7→ x](A), and by freshness of x,
Γ `∗ σ(∀x.A).

� cl(σ(∃x.A)) ≤ J∃x.AKσ:
Let Γ ∈ cl(σ(∃x.A)), assuming x fresh. By Lem. 5, Γ ∈ J∃x.AKσ if and
only if for any D, such that for each term d JAKσ[x 7→d] ≤ bDc, then
Γ `∗ D. Let such a D, we give a derivation of [∃x.σ(A)] `∗ D, which
allows to conclude by assumption on Γ .
By induction hypothesis, [σ(A)] ∈ cl(σ(A)) ≤ JAKσ , and by hypoth-
esis on D, [σ(A)] ∈ bDc. With Lem. 1, we get a derivation of the
sequent ∃x.σ(A), σ(A) `∗ D. As ∃x.σ(A) `ne ∃x.σ(A) has a neutral
proof, we can build the desired derivation:

∃x.σ(A), σ(A) `∗ D ∃x.σ(A) `ne ∃x.σ′(A) ∃E∃x.σ(A) `ne D
J∃x.AKσ ≤ bσ(∃x.A)c, assuming x fresh in the image of σ:
We show that bσ(∃x.A)c is an upper bound for all JAKσ[x 7→d], where d
is any term. This allows to conclude.
Let d, Γ , such that Γ ∈ JAKσ[x7→d]. By induction hypothesis Γ ∈
bσ[x 7→ d](A)c.
σ[x 7→ d](A) = (σ(A))[d/x], so Γ `∗ (σ(A))[d/x] and by the ⇒I rule,
Γ `∗ ∃x.σ(A), i.e. Γ `∗ σ(∃x.A). �

Theorem 3 (Strong Completeness). Let Γ be a context and A a

formula. If for any Heyting algebra, any model and any valuation ϕ,
JΓ Kϕ ≤ JAKϕ, then Γ `∗ A.

Proof. We apply the hypothesis on the universal algebra of Def. 11, the
interpretation of Def. 12 and the empty valuation/substitution.

Consider C ∈ Γ . C ∈ cl(C) by Lem. 10. By Lem. 6 and Thm. 2,
Γ ∈ cl(C) ≤ JCK. So Γ ∈ JΓ K ≤ JAK. By Thm. 2, JAK ≤ bAc. Finally
Γ `∗ A.

Theorem 4 (Cut Elimination). Let Γ be a context and A a formula.

If Γ ` A, then Γ `∗ A.

Proof. By soundness (Thm. 1) and strong completeness (Thm. 3).

4 The algorithm in Practice

This work has been formalized in Coq for the propositional fragment, so
as to focus on the core of the algorithm, without dealing with binders.

11

4.1 Formalization: the Algorithm

Ω contains arbitrary intersections of extractions. To de�ne it, we need to
range over index predicates for the formulas Ai, that have type form →
Prop and let Ω be {{Γ : context, ∀A,P(A) → Γ `∗ A} | P : form →
Prop}. We cannot range over predicates of type form → Type, because
of the need for impredicativity.

As a consequence, the predicate Γ `∗ A lives in Prop, which pre-
vents us to extract a program due to proof irrelevance. Nevertheless, we
can apply the theorem to a derivation and use Eval compute to observe
the behavior of the algorithm. However, since formulas are processed by
Thm. 2 which performs case analysis, computation stalls if the derivation
involves formula variables.

To have both impredicativity and extraction, we considered using an
impredicative Set type, but we were not able to extract a program due to
internal limitations. As a last resort, we relaxed the universe constraint,
deliberately making the system inconsistent, but gaining an impredicative
Type type and a (possibly unsound) algorithm.

Three di�culties obfuscate the investigation of the algorithm (see the
proofs of Thm. 3 and Thm. 4):

� the Γ ∈ cl(Γ) step involves a conjunction of formula closures, and
calls technical lemmas. This step can be avoided by considering empty
contexts, i.e. Γ = [] and JΓ K = >.

� the JAK ⊆ bAc and cl(Γ) ⊆ JΓ K steps, i.e. calling Thm. 2, the key
theorem, that in many cases makes a very indirect use of the NJ rules,
potentially appealing to inversion results (Lem. 3).

� the JΓ K ⊆ JAK step, i.e. soundness of NJ with respect to Ω. It involves
in particular the proof that Ω is a Heyting algebra, which is non-trivial
especially for the ⇒ operator, and then composes these properties
somehow.

Simplifying those steps is necessary for a further analysis. For the time
being, we are only able to investigate the behavior of the algorithm by
observational means, applying it to speci�c derivations, as shown below.

4.2 Examples

Implication cut When applied to a simple implication cut, the algorithm
does what expected.

12

Initial proof Reduct

ax
A,A ` A ⇒I
A ` A⇒ A

ax
A ` A ⇒E

A ` A

ax
A ` A

Disjunction cut A disjunction cut is also properly reduced:

Initial proof Reduct

ax
A ` A ∨IlA ` A ∨A

ax
A,A ` A ∨IrA,A ` A ∨A

ax
A,A ` A ∨IlA,A ` A ∨A ∨E

A ` A ∨A

ax
A ` A ∨IrA ` A ∨A

Eta expansion As the algorithm is type-directed, it is not neutral on
elementary proofs, when formulas are not atomic:

Initial proof Reduct

ax
A⇒ B ` A⇒ B

ax
A⇒ B,A ` A⇒ B

ax
A⇒ B,A ` A ⇒E

A⇒ B,A ` B ⇒I
A⇒ B ` A⇒ B

ax
A ∧B ` A ∧B

ax
A ∧B ` A ∧B ∧El
A ∧B ` A

ax
A ∧B ` A ∧B ∧Er
A ∧B ` B ∧I

A ∧B ` A ∧B

ax
A ∨B ` A ∨B

ax
A ∨B ` A ∨B

ax
A ∨B,A ` A ∨Il

A ∨B,A ` A ∨B

ax
A ∨B,B ` B ∨Ir

A ∨B,B ` A ∨B ∨E
A ∨B ` A ∨B

When applying iteratively the theorem once again to those proofs,
one can notice that we already have reached a �xed point in the ⇒ and
∧ cases, while we continue reducing in the disjunction case, where we can
notice that the context is abstracted via a ⇒I rule, that introduces a
commutative cut:

ax
A ∨ B ` A ∨ B

ax
A ∨ B,A,A ∨ B ` A ∨Il

A ∨ B,A,A ∨ B ` A ∨ B ⇒I
A ∨ B,A ` (A ∨ B)⇒ (A ∨ B)

ax
A ∨ B,B,A ∨ B ` B ∨Ir

A ∨ B,B,A ∨ B ` A ∨ B ⇒I
A ∨ B,B ` (A ∨ B)⇒ (A ∨ B)

∨E
A ∨ B ` (A ∨ B)⇒ (A ∨ B)

ax
A ∨ B ` A ∨ B

⇒E
A ∨ B ` A ∨ B

13

5 Conclusion

Strong completeness with respect to Heyting algebras has a constructive
proof. In this paper, we have applied this result to natural deduction, and
formalized it in Coq, so as to produce an algorithm for proof normaliza-
tion. This argument can also be lifted to classical logic, using Boolean
algebras instead, although we would have to carefully choose a classical
natural deduction calculus. Obviously, this also applies to sequent calcu-
lus, in an even more straightforward way.

Our algorithm can be studied by evaluating it on speci�c derivations
and by Printing the Coq function to review the generated code. However,
simplifying Coq proofs, via more general inversion (Kleene) or weakening
lemmas for instance, is still necessary for a more in-depth understanding.
Moreover, we still have to show that the normal proof obtained is really a
reduct of the original proof. This could be done by carrying the original
proof along soundness and completeness, as a for of proof-relevant version
of those theorems.

It would also be interesting to compare the algorithm that we obtain
with the ones that come from completeness with respect to Kripke struc-
ture [9,6,8], and in particular the produced normal proofs. One of the
interests of our methodology is that we deal with disjunction (sum types)
without requiring any modi�cation of the semantics.

Semantic transformations could help in the study of the relationship
between both algorithms. In particular, turning a Heyting algebra into a
Kripke structure is not purely constructive [16]. Applied to the particular
universal Heyting algebra/Kripke structure, translations may also be more
informative and constructive [8].

As for disjunction, we did not focus on commutative cuts, and more
work is required in this direction. It theoretically possible, as we can always
eliminate those cuts by translating back and forth natural deduction into
sequent calculus, semantically normalizing there. But a direct study is
much more preferable.

Strong completeness for higher-order logic is also within reach, which,
besides giving a normalization algorithm for a powerful logic, would give
another way of studying disjunction, through their higher-order encoding.

6 Acknowledgments

The authors would like to thanks the reviewers for their insightful and
constructive comments and pointers. Unfortunately we lacked time to in-
clude them all.

14

References

1. Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Phil Scott. Normaliza-
tion by evaluation for typed lambda calculus with coproducts. In 16th Annual

IEEE Symposium on Logic in Computer Science, pages 303�310, 2001.
2. Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional

for typed λ�calculus. In R. Vemuri, editor, Proceedings of the Sixth Annual IEEE

Symposium on Logic in Computer Science, pages 203�211. IEEE Computer Society
Press, Los Alamitos, 1991.

3. Richard Bonichon and Olivier Hermant. On constructive cut admissibility in de-
duction modulo. In Thorsten Altenkirch and Conor McBride, editors, TYPES for

proofs and programs, volume 4502 of LNCS, pages 33�47. Springer, 2006.
4. Catarina Coquand. From semantics to rules: A machine assisted analysis. In CSL,

pages 91�105, 1993.
5. Olivier Danvy. Type-directed partial evaluation. In John Hatcli�, Torben Æ.

Mogensen, and Peter Thiemann, editors, Partial Evaluation - Practice and Theory,

DIKU 1998 International Summer School, Copenhagen, Denmark, June 29 - July

10, 1998, volume 1706 of LNCS, pages 367�411. Springer, 1998.
6. Hugo Herbelin and Gyesik Lee. Formalizing logical metatheory: Semantical cut-

elimination using kripke models for �rst-order predicate logic. http: // formal.

hknu. ac. kr/ Kripke/ , 2014. [Online, accessed 2014-06-11].
7. Olivier Hermant and James Lipton. A constructive semantic approach to cut

elimination in type theories with axioms. In Michael Kaminski and Simone Martini,
editors, CSL, volume 5213 of LNCS, pages 169�183. Springer, 2008.

8. Danko Ilik. Continuation-passing Style Models Complete for Intuitionistic Logic.
Annals of Pure and Applied Logic, May 2012.

9. Danko Ilik, Gyesik Lee, and Hugo Herbelin. Kripke Models for Classical Logic.
Annals of Pure and Applied Logic, 161(11):1367�1378, August 2010.

10. Jean-Louis Krivine. Une preuve formelle et intuitionniste du théorème de complé-
tude de la logique classique. The Bulletin of Symbolic Logic, 2:405�421, 1996.

11. Shoji Maehara. Lattice-valued representation of the cut-elimination theorem.
Tsukuba journal of mathematics, 15(2):509�521, 1991.

12. Mitsuhiro Okada. An Introduction to Linear Logic: Expressiveness and Phase

Semantics, volume Volume 2 of MSJ Memoirs, pages 255�295. The Mathematical
Society of Japan, Tokyo, Japan, 1998.

13. Mitsuhiro Okada. Phase semantic cut-elimination and normalization proofs of �rst-
and higher-order linear logic. Theoretical Computer Science, 227:333�396, 1999.

14. Helena Rasiowa and Roman Sikorski. The mathematics of metamathematics.
PWN, Polish Scienti�c Publishers, Warszawa, 1963.

15. William W. Tait. A non constructive proof of gentzen's hauptsatz for second order
logic. Bulletin of the AMS, 72:980�983, 1966.

16. Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics, An

Introduction. North-Holland, 1988.
17. Wim Veldman. An intuitionistic completeness theorem for intuitionistic predicate

logic. Journal of Symbolic Logic, 41:159�166, 1976.

15

http://formal.hknu.ac.kr/Kripke/
http://formal.hknu.ac.kr/Kripke/

	Normalisation by Completeness with Heyting Algebras

