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ABSTRACT

Embodied conversational agents (ECAs) are virtual characters us-
ing verbal and non-verbal communication for Human-machine in-
teraction. The aim of our research is to create an ECA-based user
interface for assistive technologies targeting older adults with cog-
nitive impairment. Our design methodology is a co-design living
lab approach, collecting design guidelines through questionnaires,
focus groups and user trials.

In this paper, we report on the results of the first phase of this
iterative design process. We developed Louise, a semi-automatic
ECA prototype that aims to compensate, through attention moni-
toring, for a user’s attentional disorders by performing autonomous
prompting, i.e., calling the user to regain his or her attention in case
he or she got distracted. We evaluated the performance of Louise
with a group of experts in assistive technologies and collected their
feedback. Louise’s simple attention estimator is more than 80%
accurate. The system got quite positive reviews from users.

Keywords: Embodied conversational agents, assistive technolo-
gies, attention estimation, dementia

Index Terms: I.5.5 [Implementation]: Interactive systems;
K.4.2 [Social Issues]: Assistive technologies for persons with
disabilities—Handicapped persons/special needs

1 INTRODUCTION

Due to the increase in the number of people living with demen-
tia, usually caused by Alzheimer’s disease, and growing caregiver
shortage, assistive technologies will become critical in dementia
care. Effective assistive devices will be key to help people living
with dementia stay at home for as long as possible, and to enable
caregivers to deliver higher quality care to an ever larger target pop-
ulation with highly constrained resources. The World Health Orga-
nization predicted that the number of people living with dementia,
worldwide, will exceed 100 million by 2050 [24], making it a pub-
lic health priority.

Assistive technologies for older adults, in particular those living
with dementia, are often computer-based. But while their func-
tional capabilities are getting better thanks to very fast technologi-
cal improvement, people with dementia and their caregivers still do
not use them very much. Indeed, the two main factors influencing
the real-world effectiveness of these systems are their usability and
acceptance, the later of which is highly related to perceived use-
fulness. The user interface should thus be adapted to the person’s
special needs for the product to be both easy to use and enjoyable.
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The overall goal of our project is to develop a computer user in-
terface for older adults with cognitive impairment based on an em-
bodied conversational agent (ECA), called Louise, in order to make
assistive technology’s use more accessible to them. If dementias are
usually associated with memory impairment, they also cause exec-
utive and attentional disorders [12], which come in addition to the
diminution of attentional capabilities observed in normal aging [9].
These specific constraints call for a user-centric design approach.

To develop Louise, we adopted a co-design methodology, involv-
ing the target users and other stakeholders (mostly care profession-
als and the patients’ helpers), following a living lab methodology
[5, 1]. It is based on five basic principles:

Openness. The conception process is public and anyone consider-
ing himself or herself impacted can get involved.

Influence. All participants should have a balanced influence on the
design. Once people were involved their opinion has to impact
the design based on their importance regarding the product’s
deployment.

Reality. The conception and evaluation of the solution should be
performed as ecologically as possible.

Value creation. The design process should create value for every-
one involved, not only from an economic perspective but also
at the social level.

Sustainability. Once developed, the solution should keep evolving
and being re-evaluated thanks to new data from the field.

In sync with the principles of the co-design methodology, an eval-
uation must be performed at every stage of the life-cycle of the
ECA-based solution.

Based on the experience of our team1 in the evaluation of assis-
tive technologies, we identified that maintaining the user’s attention
during the interaction with any assistive device is critical. By “at-
tention”, we mean the ability one has to focus on a specific stimulus
or task. In prior assistive technology trials conducted with patients
with dementia, we noticed that the experimenters kept redirecting
the participants’ attention towards the task that they had to com-
plete.

In this paper, we thus focus on the first step of the iterative de-
sign process of Louise, in which we address the issue of attention
monitoring. At this point, Louise is able to compensate, through
an attention monitoring algorithm we developed, for a user’s atten-
tional disorders by performing autonomous prompting, i.e., using
its synthetic voice to call the user to regain and redirect his or her

1The Louise project is hosted at the Broca Hospital in Paris, in the
LUSAGE Living Lab [18].



attention in case he or she got distracted. Our prototype is a semi-
automatic ECA that uses (1) a Microsoft Kinect sensor and the as-
sociated software development kit (SDK) for user tracking, (2) the
Unreal Engine game engine for ECA character animation and (3)
the Cerevoice text-to-speech synthesizer. Louise’s simple attention
estimation implementation turns out to be more than 80% accurate,
and the overall system got quite positive reviews from users.

The paper is organized as follows. In Section 2, we present simi-
lar attempts and results from the literature that suggest the use of an
ECA is a promising solution for assistive device-user interaction; in
addition, we survey some of the literature on automatic monitoring
of attention. Section 3 contains design and implementation details
regarding the attention monitoring algorithm we developed for our
prototype, Louise. In Section 4, we present an experimental evalu-
ation of our attention management system with a group of experts
in assistive technologies. Section 5 focuses on the design recom-
mendations collected from assistive technology experts. In the last
section, a conclusion and future work perspectives are presented.

2 RELATED WORK

Though the field of social computing devices has grown very fast
in the past decade, a lot of research remains to be done about their
use with cognitively impaired older adults. Attention monitoring,
on the other hand, is linked to the wider field of user engagement in
Human-machine interaction. In this related work section, we first
review the potential applications of ECAs in elderly care and show
why researchers think they are promising. Then, we present the
research related to attention monitoring.

2.1 Embodied Conversational Agents in Elderly Care
Several authors have studied the use of ECAs with cognitively im-
paired older adults. Ortiz et al. [17] have performed an empirical
study involving 3 groups, of 5 people each, with different levels of
cognitive capabilities: normally aging, mild cognitive impairment
(MCI) and moderate Alzheimer’s disease (AD). They compared a
virtual character with text accompanied with speech and text only.
They found that the users in all groups performed significantly bet-
ter when guided by the virtual character instead of other prompting
modalities. They also observed that the virtual character was judged
pleasant by the study participants.

Morandell et al. [14] evaluated the use of photographs on
which the lips are animated with 10 cognitively impaired older
adults. They tested it for likability, task performance, and attention-
catching, comparing with a speech and text prompt. They found
that the interface with the talking face was preferred, that it was
linked to slightly better task performance for the most cognitively
impaired participant, and that the users’ attention was better main-
tained with the talking face than without it. In addition, the authors
observed better understanding of the talking face than the disem-
bodied voice. Similar results were observed in another study by
the same team, involving 12 cognitively healthy older adults and
12 patients with MCI [15]. This later study was more focused on
usability. MCI users performed as well as non-MCI users when in-
teracting with a conversational agent, which shows the promise of
ECAs for cognitively impaired older adults.

Carrasco et al. [6] proposed a system in which a female virtual
character is rendered on a TV set. The interaction with the user
is done by hitting keys on the remote control, a familiar object for
the elderly. They conducted a validation trial with 21 persons with
AD. They showed that all participants understood well the character
and successfully interacted with her. They also found that all par-
ticipants engaged well and that the human-like character led them
to interact naturally (using verbal and non-verbal communication)
even though the conversational agent was unable to process such
inputs. In a study using the same interactive system, Diaz-Orueta et
al. studied the influence of the user’s level of cognitive impairment,

called cognitive status, on user interaction with the device. They
concluded that cognitive assessment tests could guide the assistive
device design, by taking into account the user’s cognitive status [8].
More specifically, the measure of attentional capabilities and pro-
cessing speed through cognitive assessment tests can bring useful
information for a personalization of such a user interface. In [12],
the authors have proposed to adapt the prompting modalities to the
person’s cognitive and perceptive abilities.

Recently, some ECAs using natural verbal and non-verbal inter-
action have been proposed for the assistance of older adults with
cognitive impairment. In [19], Sakai et al. present a listener ECA
that includes speech input processing and non-verbal feedback for
people with dementia. In [10], Huang et al. propose to enrich the
interaction with this ECA by using a life-logging system. This
software was used in [16] for a preliminary study towards auto-
matic monitoring of patients’ with dementia evolution by assess-
ing their conversational responsiveness to the ECA. An ECA for
people living with dementia has also been developed by Yasuda
et al. [25]. Their system differs by the appearance of the virtual
character, which is based on a five-year-old child. An evaluation
was conducted with 8 participants, all having Alzheimer’s disease.
The results show that the participants uttered 74% as many sylla-
bles when conversing with the virtual kid as when conversing with
a human partner (26% less). In [23], Wilkis et al. have tested a
prototype ECA, which includes speech recognition and emotional
state estimation, for smart home applications with a brain-injured
veteran. The test resulted in good communication with the test pa-
tient.

All these studies all show good appreciation of ECAs by AD
or MCI patients. In addition, encouraging results in terms of task
performance were found. This, as well as the fact that the human
appearance of the virtual agents arouses natural communication in
the user, makes us think that ECAs are a good solution for user
interaction with assistive devices and cognitive prosthesis. How-
ever, there still are a lot of open questions regarding the designs
of adapted ECAs for AD or MCI patients. Namely, the behavior
of the character, the input and output modalities, the presentation
of information and the automatic management of user engagement
with the ECA still have to be investigated in depth. On this last sub-
ject, to the best of our knowledge, no work has specifically focused
on attention management or user engagement in the specific case
of people with dementia in interaction with ECAs. In the following
section, we present some of the literature on engagement estimation
in human-machine interaction.

2.2 Engagement in Human-Machine Interaction

Engagement was defined by Sidner et al. as “the process by which
interactors start, maintain and end their perceived connection to
each other during an interaction.” [20]. Thus, engagement includes
the attention and interest that a person pays to the interaction in
which he or she participates. It is important during the communi-
cation to observe and to analyze the behavior of other participants
in order to assess their engagement. By vocal or visual prompting,
it is possible to bring back the attention of an interlocutor in the
conversation [11]. The engagement recognition, in the context of
an interaction with an ECA, allows to show to the user that the sys-
tem analyses and understands his behavior. Sidner et al. showed
in [20] that a robot or an ECA performing engagement behaviors
could more easily mobilize the user’s attention.

The visual focus of attention is an important source of informa-
tion regarding engagement [2]. This information can be measured
by the estimation of someone’s gaze or face orientation. Several
studies show how to determine the face’s orientation to estimate the
focus of attention in several contexts: in front of a computer screen
[3], in interaction with an ECA [11, 7] or a mobile robot [21, 4].
In [13], the user’s attention is estimated using several features: po-



sition and posture, face orientation, proximity from the system and
smile detection. These features are combined to compute his or her
attention level. In [21], the focus of attention is estimated using
the mean face orientation over the t last images. Engagement is
evaluated by analyzing backchannel behaviors, which correspond
to actions realized during an interaction, like head nods or non-
verbal vocal behaviors. In [22], the authors also stress that such
backchannels are an important source of information to estimate
user engagement. In [4], engagement, that the authors define as
the intention to interact, is estimated with the help of a Microsoft
Kinect sensor. They show that only 7 features are sufficient: the
relative orientation of the body and shoulders, distance from the
sensor’s plane, the speed on the axis parallel to the sensor plane,
the size of the head seen by the sensor, the x position of the head in
the color image produced by the sensor, the activated sound beams
and the sound source localization angle.

3 ATTENTION MONITORING USING THE LOUISE ECA
In this section, the implementation of attention monitoring in our
ECA is presented. The current prototype of Louise is a semi-
automatic system that allows to animate a female cartoon-like char-
acter called Louise, represented on Figure 1, and synthesize voice
from text. The character only moves in an idle pose and moves its
lips when speaking. The system includes attention monitoring and
interaction management based on a pre-defined script and keyboard
inputs of a (presumably hidden) operator. Such a semi-automatic
approach is well suited for rapid design prototyping and scenario
screening, before embarking on the development of an automatic
full-fledged system.

Figure 1: Louise, our virtual character

3.1 System Description
The current Louise prototype is built from three software modules:

Attention estimator. A Microsoft Kinect sensor (version 1) and
the Kinect for Windows software development kit (SDK) ver-
sion 1.8 are used to track a user, compute an attention es-
timation value from the tracking data, and decide the user’s
attentional state, as detailed in Section 3.2.

Interaction manager. An interaction management module has
been developed. It takes a dialog script as an input and
uses the attention estimation states as well as keyboard in-
puts to determine the next utterance to be produced in a semi-
automatic way. The scenario is composed mostly of yes/no
questions and an operator presses the corresponding key de-
pending on the user’s answer to trigger the next utterance.
When the person interacting with the ECA is considered dis-
tracted by the attention estimator, a prompt to regain his or her
attention is triggered. The character stays in prompting mode
until the attention of the user is detected again.

Behavior realizer. A behavior realizer has also been implemented,
using the Unreal Engine game engine, coupled with the
Cerevoice text-to-speech voice synthesizer. This module an-
imates the virtual female character and produces vocal mes-
sages with synchronized lips animations.

The modules communicate as illustrated on Figure 2. The ar-
rows stand for data exchanges. Note that the interaction manager
requires feedback from the behavior realizer, mostly to know when
the previous utterance is over.

Behavior
realizer

Attention
estimator

Dialog
script

Kinect
data

Interaction
manager

Output
devices

Keyboard
input

Game
engine

Voice
synthesizer

Figure 2: Functional diagram of the Louise ECA prototype

The system is, for the time being, semi-automatic. It takes, as
input, a restrictive interaction scenario, composed of an introduc-
tion, several yes/no questions, backchannel utterances, prompting
sentences, a transition question and a conclusion. The interaction
starts by the introduction. Then, for each question, a key has to
be pressed (Y for yes, N for no) to trigger a backchannel behavior
and go on to the next question. The backchannel and prompting
utterances are randomly selected from the corresponding lists. If
the attentional state changes from focused to distracted, the ongo-
ing behavior is automatically interrupted and a prompt behavior is
produced. Once the user is considered by the attention estimator
as attentive again, the transition question is asked. If the person
wishes to continue the interaction, the last unanswered question is
asked (again). If not, it jumps directly to the conclusion. When
the character has gone through all the questions, the conclusion is
triggered and the interaction ends. Lastly, if no user is tracked, the
interaction cannot start and, if the user leaves, the character stops
talking.

3.2 Attention Monitoring Algorithm

Older adults with cognitive impairment can be easily distracted by
an external stimulus. Thus, the interaction between them and the
ECA could be interrupted. We want to determine automatically if a
person wants to communicate, and also if he or she remains atten-
tive during the interaction. We implemented a method to estimate
a person’s attention, which is an important source of information
in engagement (see Section 2.2). During an interaction, a person
naturally faces his or her interlocutor to communicate with him or
her. This is why we extract the posture of the user, and his or her
face orientation, to estimate the level of attention he or she pays
to the ECA. Our method is inspired by the works of Stricker et al.
[21], Benkaouar et al. [4] and Li et al. [13]. We use the Microsoft’s
Kinect sensor and Kinect for Windows SDK to extract tracking data
of the user’s posture and position.

With the Kinect, a 20-point skeleton tracking is obtained, which
allows to identify the user’s upper-body pose. We extract the 3D
position of the right and left shoulders to estimate if the person
faces the ECA (see Figure 3 for notation). This method assumes
that the sensor is placed in alignment with the ECA’s display.

The azimuth of the user is defined as θ = arctan(Nx/Nz) and the
angle of the upper-body α as
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Figure 3: Estimation of the angle ϕ between the shoulder line and the
Kinect sensor. θ is the angular position of the user, SR the position
of the right shoulder, SL the position of the left shoulder, and N the
position of the neck (calculated as the center of the vector [SR, SL]).

α = arcos(
Nz −SLz√

(SLx −Nx)2 +(SLz −Nz)2
)−90. (1)

The posture feature f1 is thus, at each time t:

f1 = ϕ = α −θ . (2)

In addition to the posture, we use the face tracking data of the
Kinect for Windows SDK to obtain the face orientation of the user.
The Kinect outputs, in real time t, the three rotations of the head:
pitch γpitch(t), yaw γyaw(t) and roll. Only the two first parame-
ters are used in our system. In order to improve reliability of the
face orientation estimation from the sensor, we compute the mean
of each measure over the last T =30 frames, which correspond to
about one second, given the sensor’s sample frequency (see Equa-
tions 3 and 4); such a value is relevant in the context of natural
interaction. This approach produces stable input values f2 and f3
for the attention monitoring algorithm at each time t, even if the
face tracker fails for a few frames:

f2 = yawMean =
1
T

t

∑
k=t−T+1

γyaw(k), (3)

f3 = pitchMean =
1
T

t

∑
k=t−T+1

γpitch(k). (4)

The three features f j ( j = 1,2,3) are normalized as f j in the
same way:

f j =
cos( f j)− cos(Max j)

1− cos(Max j)
, (5)

where Max j represents the maximum value for each feature f j.
They correspond to the Kinect’s tracking limitations (30◦ for yaw,
20◦ for pitch and 60◦ for upper-body pose).

A sum of the n = 3 normalized features f j , weighted by coeffi-
cients ω j (see Equation 6), is computed to assess the AttentionLevel
at each time. The face’s horizontal rotation has the most important
weight to account for the importance of the face orientation in the
attention estimation. This corresponds to using this information as
a proxy to the user’s gaze direction. For normalization purposes,
the sum of the weights is equal to 10:

AttentionLevel =
n

∑
j=0

ω j f j. (6)

The obtained attention level values range from 0 to 10, 10 being
the maximum level, when the user’s body and face are directly ori-
ented towards the sensor. These values are then used to decide the
user’s attentional state.

There are four attentional states: NoUser, when no user is de-
tected; UserDetected, when a user is detected for the first time and
not considered attentive; AttentionAcquired, when the user is fo-
cused on the screen; AttentionLost, when the user is not focused
anymore. Only some transitions between states are allowed:

• from NoUser to UserDetected;

• from UserDetected to AttentionAcquired;

• between AttentionAcquired and AttentionLost;

• from any other state to NoUser.

The transition rule uses two thresholds, a high and a low threshold,
like a hysteresis system. The AttentionLevel value has to reach the
high threshold for current state to change from UserDetected or At-
tentionLost to AttentionAcquired. The transition from AttentionAc-
quired to AttentionLost occurs when the low threshold is reached.
This choice avoids the occurrence of some fluctuations between two
states, which could possibly occur if a single threshold was used.
Moreover, it allows considering as engaged a person who pays real
attention to the ECA and considering the user disengaged in case of
an important decrease of his or her measured AttentionLevel. Dur-
ing our experiments we set the high threshold to 8 and the low one
to 6.

4 ATTENTION MONITORING ALGORITHM VALIDATION

To validate our attention estimation algorithm before its integra-
tion in an automatic system and according to co-design principles,
we conducted a semi-automatic “Wizard-of-Oz” experiment at the
Broca hospital in Paris with members of our research team and out-
side experts. The sample was composed of 14 participants (4 men
and 10 women), naive to the goal of the experiment, specialists in
assistive technologies for older adults or care professionals (med-
ical doctors and neuropsychologists, mostly). In this section, we
first describe the test protocol and then present the evaluation re-
sults. We discuss experts’ recommendations in Section 5.

4.1 Experimental Protocol
In this first experiment, the participants were seated about two me-
ters from a 46-inch screen on which Louise, our virtual character,
presented on Figure 1, was displayed in full screen, standing in the
middle of the display. The Kinect sensor was placed, centered, on
top of the screen. An experimenter was in the room with the par-
ticipant, outside of the field of view of the Kinect sensor, behind
a control screen, to discreetly press the keys corresponding to the
answers given by the participant (Y key for yes, N key for no). All
experiment sessions were recorded by logging the tracking data, the
computed features, the attentional states, and the color image pro-
duced by the sensor. In addition, a camera was placed behind the
participant, filming the screen and recording the sound. A sample
was recorded every second.

The interaction consisted of 3 utterances for the introduction, 7
questions, 4 backchannel utterances, 3 prompting utterances and 2
utterances for the conclusion. During the interaction, two distrac-
tions were voluntarily introduced at fixed moments. The first one
was introduced by the experimenter in the room at the beginning
of the third introduction utterance: he asked the participant if the
sound was loud enough. The second distraction was introduced by
another experimenter, opening the room’s door and asking the par-
ticipant if everything was fine, during the fifth question.

All recorded data was, later on, manually annotated by two spe-
cialists, using the videos taken from the Kinect and the camera. The



annotations consisted of the observed attentional states of the par-
ticipants. They were then used as ground truths to compare with the
decisions taken by the system. When the two annotations did not
match, a third annotator decided which was right.

After the interaction with the ECA, a satisfaction questionnaire
was administered to collect the participants’ expert opinions about
Louise’s design. Their feedbacks are discussed in Section 5. The
following subsection presents a performance evaluation of the at-
tention estimator.

4.2 Results

All participants interacted naturally with the ECA. Most displayed
high levels of attention. For some users the experimenter introduc-
ing the second distraction had to insist to distract the participant.
This shows that the ECA is significantly engaging. The interaction
lasted between 2 minutes 18 seconds and 5 minutes 16 seconds.

To evaluate the performance of the attention estimator, a re-
ceiver operating characteristic (ROC) curve was computed for sev-
eral threshold values, ranging from 0 to 10 with a step of 0.5. The
obtained curve is presented on Figure 4. The area under the ROC
curve is about 0.8, which indicates that our algorithm is a quite
good classifier. With the two attention level thresholds set to 8 for
the high value and 6 for the low one, we obtained an accuracy of
82.78%. This could be slightly improved by setting the high thresh-
old to 8.5. As already mentioned, using two decision thresholds is
good to limit the amount of false positives when the user is not at-
tentive to the ECA and reduces the number of false negatives when
the user is considered engaged in the interaction, which could pro-
duce undesirable interruptions.
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Figure 4: ROC curve of the attention estimator.

Overall, whenever people disengaged from the interaction, the
avatar stopped talking with little latency. The system failed inter-
mittently with only one participant. In this particular instance, the
Kinect’s face tracker was unable to recognize her face properly and
tracked instead her hair, which was curly and tied on top of her head
in a big bun. The Kinect’s face tracker is one of the main limitations
of our system as it fails when the user turns his or her head more
than 60◦ from the normal to the sensor.

5 DISCUSSION

During the experiment described in Section 4, we asked our par-
ticipants, who were assistive technology experts, for feedback. Af-
ter they had interacted with the virtual agent, we gave them a 5-
questions questionnaire with lots of freedom for observations dur-
ing an open interview. The questions were about how clear the
questions asked by the character during the interaction were, how
much (on a 1-to-4 scale) they liked the character’s behavior, how
they felt during the interaction, if they think the character reacted
well to their behavior and whether the length of the interaction was
appropriate.

For the first question about understandability, 10 out of 14 par-
ticipants thought it was clear enough, 2 did not answer and 2 said
no. One of them commented that it would turn out to be probably
too complicated for cognitively impaired older adults.

Regarding likability, 5 participants appreciated the character a
lot, 6 thought it was alright and 2 said it was not good enough.
Most of the ones who said it was alright or not good enough com-
mented that the lack of facial expression and blinking made them
feel uneasy. In addition, one participant advised us to add directed
gaze to show engagement on the character’s side. Finally, several
participants thought that Louise should smile.

As far as the third question about mood is concerned, all partic-
ipants felt the interaction interesting (6) or very interesting (7). No
additional comments were given.

Question 4, regarding how the character adapted her behavior to
their’s, got more divergent opinions. 6 of them judged it reacted
very well, while 3 said it was fine and 4 considered it a bit poor.

Lastly, 7 participants thought the duration of the interaction was
adapted, 4 said it was too short and the last 2 didn’t have an opinion.

Globally, as can be seen, the feedbacks were positive. The main
improvement points that were raised were about the animation of
the character’s face and reactivity to their behaviors.

6 CONCLUSION AND FUTURE WORK

In this article, we presented a first prototype of Louise, an ECA
targeting older adults with dementia. The proposed system is cur-
rently centered on the key issue of attention management. A new
attention estimator was developed, tested with assistive technology
experts and validated; we found good accuracy in attention estima-
tion. In addition, we gathered feedbacks from experts that turned
out to be rather positive. The main limitations we could identify are
linked to the system tracking capabilities, to improve the attention
estimator, and the character’s animation, linked to user experience.

As future work, we are currently in the planning phase for run-
ning the same experiment with dementia patients to further validate
the attention estimation method and obtain useful data on how they
interact with the ECA. So far, we have performed an informal trial
with one patient from the Broca hospital; she seemed to engage
well with the character, but we could not record the data. Thus,
experimentations with the target user group are clearly required.

With the gathered data, we will be able to work on the two axes
of improvement we identified: character animation and robustness
of attention estimation to tracking failures. A new prototype with a
better animation system is already under development. Lastly, we
have to collect information about older adults’ preferences regard-
ing the appearance and animation of the ECA, what applications
they would like it to be included into and under what conditions
they would accept such a system in their homes.
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