
Verification of Faust Signal Processing Programs in COQ

Emilio Jesús Gallego Arias Olivier Hermant Pierre Jouvelot
MINES ParisTech, PSL Research University, France

Abstract
We report on our ongoing work to formalize and prove properties of
FAUST programs using COQ.

FAUST (Functional Audio Stream) is a functional programming
language specifically designed for real-time digital signal processing
(DSP) and synthesis. This Domain-Specific Language targets high-
performance audio DSP applications and plug-ins for a variety of
platforms and standards.

Faust programs are highly declarative and provide a reasonable
set of static guarantees, but far from full correctness. In FAUST’s
domain, when errors occur, one will typically experience problems
by hearing audio glitches or, even worse, by suffering imperceptible
distortion, which can accumulate and become audible when more
components are connected. To detect such cases a priori, manual
reasoning is far from trivial: arithmetic errors, feedback loops, and
the large size of the DSP circuits involved make it tedious and
error-prone. Thus, automated verification is highly desirable in the
growing ecosystem of FAUST users and libraries.

We intend to use COQ as the basis for a specification and
automated verification platform for FAUST programs. We plan
to use the resulting tool to certify library components, as well
as to experiment with new language features or to enhance the
FaustWorks IDE with proof automation features. Our choice of
COQ instead of a custom-purpose tool is both pragmatic and
philosophical: we believe that we can greatly profit from the existing
tools and libraries, and that others may do so too from our effort.

The anticipated two main challenges: useful and modular au-
tomation, and integration of a quite diverse set of existing libraries.

Keywords DSP; audio; program verification; theorem proving

1. FAUST
FAUST (Functional Audio Stream) [faust-web ] is a functional
programming language specifically designed for real-time audio
signal processing and synthesis. A quick summary of FAUST main
characteristics follows.

• FAUST is a specification language aiming to provide an adequate
notation to describe signal processors from a mathematical point
of view [orlarey:04a ].

• A FAUST program describes a signal processor, transforming a
group of (possibly empty) input signals to a group of (possibly
empty) output signals. Most audio equipments can be modeled
as signal processors.

• It works at the signal sample level. It is therefore suited to
implement low-level DSP functions like recursive filters.

• FAUST programs are compiled to C++ programs with an special
emphasis on performance; thanks to the notion of architecture,
FAUST programs can be easily deployed on a large variety of
audio platforms and plugin formats.

• FAUST combines two approaches: functional programming and
algebraic block-diagrams, viewing block-diagram construction
as function composition. FAUST defines a block-diagram algebra
of five composition operations (:,∼<::>).

FAUST has been used with success in the domain of specification
of highly-performant audio processors. However, it is not uncom-
mon that programs suffer from artifacts derived from the distance
between the mathematical semantics and the actual implementation
of the processors.

Given the domains involved, informal reasoning by the user
is often difficult. There is very little support for formal reasoning
over programs. Proposed extensions to FAUST such as multi-rate
support [JO-multirate ] will make informal reasoning even more
difficult for the programmer.

On the other hand, verification of interesting properties like
robustness [DBLP:journals/cacm/ChaudhuriGL12 ] or BIBO
(Bounded-Input Bounded-Output) stability will allow the compiler
to generate better code by taking the appropriate assumptions while
providing users with stronger claims regarding program correctness.

2. Verification of FAUST programs
We have chosen to build our automatic verification efforts on
top of COQ. Recent work [DBLP:conf/pldi/RickettsRJTL14,
web-tcp-verif ] has further pushed the barrier of automatic ver-
ification inside it. The tradeoffs of using COQ vs developing a
custom-purpose tool are much in favor of the former. In our view,
some of the strong points of COQ are:

• ease of play with different approaches;
• interest in doing a verified compiler;
• strong support for automation;
• ability to catch unsoundness/mistakes in techniques/tools;
• growing user community.

2.1 Goals
Our main goal is to build a FAUST-specific COQ environment
allowing the user to prove particular programs correct with a high-
degree of automation.

Examples of some properties we are interested in include:

• bounds in space, buffer, error, execution time...;
• normalization, i.e. absence of distortion in the output;
• BIBO stability;
• relational properties, relating two execution of the processors;
• temporal properties;
• equivalence properties, like memoization.

We are working on defining more properties in collaboration with
FAUST users — musicians and sound designers.



Ultimately, we aim for our tool to be made accessible to regular
users, to the point they can use it to express and prove application-
specific properties in an automatic manner without (a lot) of our
help.

Automation is of key importance when targeting a DSL such
as FAUST, since its users will have little background in theorem
proving. Obviously, we won’t be able to achieve full automation,
but we see our efforts as a way to introduce the ideas of formal
verification into that particular programming community. Even if
users are just able to formally specify some properties — without
doing any proof —, that will be a huge gain from the current
status quo, where correctness of FAUST programs is determined
by heuristic methods [smith2010audio ].

Particular emphasis will be placed in the usability of the
library, with techniques like [DBLP:conf/tphol/BertotGBP08,
DBLP:conf/tphol/GarillotGMR09 ] serving as inspiration, try-
ing to produce small, reusable components, which to the best of our
knowledge is still quite hard to do.

As a side effect, we would like to reuse our infrastructure for the
development of a certified compiler and type-checker. Technologies
like WebAudio [webaudio-spec ] suppose a paradigm shift for the
FAUST domain, where efficient execution of arbitrary programs is
shifted to the browser. Even a partly-certified compiler would greatly
help in that scenario, and it would be easy for us to profit from
extraction and js of ocaml [DBLP:journals/spe/VouillonB14 ]
to deliver the compiler to the browser.

2.2 Design Philosophy and Challenges
The main challenges for FAUST program verification comes from
feedback loops — pervasive in synchronous systems —, static inter-
val reasoning, multiple data rates [DBLP:conf/lpar/BoulmeH01 ],
and machine-level integers and floats. We plan to leverage as much
as possible existing tools and techniques inside our framework; a
few examples are listed below.
Reflection: Feedback-free circuits have a good set of decidable

properties [DBLP:conf/types/Paulin-Mohring95 ]. We thus
will make extensive use of reflection [gonthier:inria-00258384
] and decision procedures.

Outside COQ: For complex properties, we may follow [DBLP:journals/cacm/Leroy09,
claret2013itp ] and use some external decision procedures, ver-
ifying in COQ that their output is correct. Interval analysis,
abstract interpretation, invariant generation and floating-point
reasoning are likely candidates.

External tools and libraries: Some interesting external libraries
for us — apart from SSREFLECT— are [coquelicot ], for
real analysis, Gappa [DBLP:journals/tc/DinechinLM11 ] and
Flocq [flocq ], for floating-point arithmetic, and YNot [DBLP:conf/icfp/NanevskiMSGB08
].

Tactics: Our plan is to make use of tactics as a connecting tool
between the several internal and external components, not as a ba-
sic proving tool. While recent advances like MTac [DBLP:conf/icfp/ZilianiDKNV13
] or MirrorShard [DBLP:conf/itp/MalechaCB14 ] promise bet-
ter composition of tactics, we still fear maintenance problems
due the experimental nature of our language.

We believe our development may serve as a good stress test for how
well several different components can interact, and provide some
insight on the use of COQ as an automated verification tool.

How successful the automatic approach will be in this particular
setting and how much we can reuse from other efforts are open
questions. Our methodological results will hopefully help pave the
way for introducing more proof-assistant-based tools within existing
DSL environments or, conversely, help make future DSLs more
amenable to proof handling.

3. Current Status and Goals for the Workshop
We have a prototype specification of FAUST semantics in COQ/-
SSREFLECT, as well as some proof of concepts of automation.
Current work is focused on defining and proving properties.

For the workshop timeline, we expect to showcase a quite
complete tool, to report on our experience working with COQ and
associated libraries, and to assess how many bugs we found in
FAUST programs.


