Translation of Lyapunov Stability Proofs to Machine Arithmetic

Vivien Maisonneuve

Eighth meeting of the French community of compilation

Nice, July 2014
An embedded system is a computer system with a dedicated function, within a larger mechanical or electrical system.

Constraints:

- Power consumption;
- Performance (RT);
- Safety;
- Cost.

Uses a low-power processor or a microcontroller.

Commonly found in consumer, cooking, industrial, automotive, medical, commercial and military applications.
Example

Quadricopter, DRONE Project, MINES ParisTech & ÉCP
⇒ Parrot AR.Drone.

ATMEGA128: 16 MHz, 4 KB RAM, 128 KB ROM
Control-Command System

while (1) {
 receive(y, yd);
 u = f(y, yd);
 send(u);
}
Levels of Description

Formalization:
- System conception;
- Constraint specification;
- Physical model of the environment;
- Mathematical proof that the system behave properly.

MATLAB, Simulink

Realization: very low-level C program
- Thousands of LOC;
- Computations decomposed into elementary operations;
- Management of sensors and actuators.

GCC, Clang

Gradual transformations
Levels of Description

Formalization:
- System conception;
- Constraint specification;
- Physical model of the environment;
- Mathematical proof that the system behave properly.

MATLAB, Simulink

Realization: very low-level C program
- Thousands of LOC;
- Computations decomposed into elementary operations;
- Management of sensors and actuators.

GCC, Clang

Gradual transformations

How to ensure that the executed program is correct?
Levels of Description

Formalization:
- System conception;
- Constraint specification;
- Physical model of the environment;
- Mathematical proof that the system behaves properly.

MATLAB, Simulink Realization: very low-level C
- Thousands of LOC;
- Computations decomposed into elementary operations;
- Management of sensors and actuators.

GCC, Clang Gradual Transformations

How to ensure that the executed program is correct?
Stability Proof

Show that the system parameters are bounded during its execution.

Essential for system safety.

- Open loop stability: u_c bounded $\implies x_c$ bounded (hence y_c bounded)

- Closed loop stability: y_d bounded $\implies x_c, x_p$ bounded (hence y_c, y_p bounded)
Stability Invariant

Lyapunov theory provides a framework to compute inductive invariants.

Linear invariants not well suited. Quadratic invariants (ellipsoids) are a good fit for linear systems.

Static analysis to show that the invariant holds from source code.
Stability Invariant

Lyapunov theory provides a framework to compute inductive invariants.

Linear invariants not well suited. Quadratic invariants (ellipsoids) are a good fit for linear systems.

Static analysis to show that the invariant holds from source code.
Lyapunov theory applies on a system with real arithmetic.

In machine implementations, numerical values are approximated by binary, limited-precision values.
Lyapunov theory applies on a system with real arithmetic.

In machine implementations, numerical values are approximated by binary, limited-precision values.

- **Floating point (IEEE 754):**

 \((-1)^s \times 2^{e-127} \times m\)

- **Fixed point:**

 \((-1)^s \times e + 2^{-24} \times m\)

- **Rationals** using pairs of integers.
Lyapunov theory applies on a system with real arithmetic.

In machine implementations, numerical values are approximated by binary, limited-precision values.

1. Constant values are altered;
2. Rounding errors during computations.

⇒ Stability proof does not apply, invariant does not fit.

How to adapt the stability proof?
Example System

[Feron ICSM’10]:
mass-spring system.

\[u \]

\[y \quad y_d \]

\[
Ac = \begin{bmatrix}
0.4990 & -0.0500 \\
0.0100 & 1.0000
\end{bmatrix};
\]

\[
Bc = [1; 0];
\]

\[
Cc = [564.48, 0];
\]

\[
Dc = -1280;
\]

\[
xc = zeros(2, 1);
\]

\[
\text{receive(y, 2); receive(yd, 3); while (1)}
\]

\[
yc = \max(\min(y - yd, 1), -1);
u = Cc*xc + Dc*yc;
xc = Ac*xc + Bc*yc;
\]

\[
\text{send(u, 1); receive(y, 2); receive(yd, 3); end}
\]
Example System

[Feron ICSM’10]:
mass-spring system.

Open-loop stability:
x_c bounded.

\[Ac = \begin{bmatrix} 0.4990, & -0.0500 \\ 0.0100, & 1.0000 \end{bmatrix}; \]
\[Bc = \begin{bmatrix} 1 \\ 0 \end{bmatrix}; \]
\[Cc = \begin{bmatrix} 564.48, & 0 \end{bmatrix}; \]
\[Dc = -1280; \]
\[x_c = \text{zeros}(2, 1); \]
\[\text{receive}(y, 2); \text{receive}(yd, 3); \]
\[\text{while } (1) \]
\[yc = \text{max}(\text{min}(y - yd, 1), -1); \]
\[u = Cc*xc + Dc*yc; \]
\[xc = Ac*xc + Bc*yc; \]
\[\text{send}(u, 1); \]
\[\text{receive}(y, 2); \text{receive}(yd, 3); \]
\[\text{end} \]
Example System: Stability Ellipse

Lyapunov theory $\implies x_c = \begin{pmatrix} x_{c1} \\ x_{c2} \end{pmatrix}$ belongs to the ellipse:

$\mathcal{E}_P = \{ x \in \mathbb{R}^2 \mid x^T \cdot P \cdot x \leq 1 \}$ \quad $P = 10^{-3} \begin{pmatrix} 0.6742 & 0.0428 \\ 0.0428 & 2.4651 \end{pmatrix}$

$x_c \in \mathcal{E}_P \iff 0.6742x_{c1}^2 + 0.0856x_{c1}x_{c2} + 2.4651x_{c2}^2 \leq 1000$
Example System

\[A_c = \begin{bmatrix} 0.4990, & -0.0500; \\ 0.0100, & 1.0000 \end{bmatrix}; \]

\[B_c = [1; 0]; \]

\[C_c = [564.48, 0]; \]

\[D_c = -1280; \]

\[x_c = \text{zeros}(2, 1); \]

\text{receive}(y, 2); \text{receive}(yd, 3);

\text{while} \ (1)

\% \ x_c \in E_P

\[y_c = \max(\min(y - yd, 1), -1); \]

\[u = Cc*x_c + Dc*y_c; \]

\[x_c = Ac*x_c + Bc*y_c; \]

\text{send}(u, 1);

\text{receive}(y, 2); \text{receive}(yd, 3);

\% \ x_c \in E_R \subset E_P

\text{end}
Example System: Invariants

\[xc = \text{zeros}(2, 1); \]
\% \(x_c \in \mathcal{E}_P \)

receive(\textit{y}, 2); receive(\textit{yd}, 3);
\% \(x_c \in \mathcal{E}_P \)

while (1)
\% \(x_c \in \mathcal{E}_P \)

\[yc = \max(\min(y - yd, 1), -1); \]
\% \(x_c \in \mathcal{E}_P, \ y_c^2 \leq 1 \)
\% \((x_c^T y_c) \in \mathcal{E}_{Q_{\mu}}, \ Q_{\mu} = \begin{pmatrix} \mu P & 0 \\ 0 & 1 - \mu \end{pmatrix}, \ \mu = 0.9991 \)

\[u = Cc*xc + Dc*yc; \]
\% \((x_c^T y_c) \in \mathcal{E}_{Q_{\mu}} \)

\[xc = Ac*xc + Bc*yc; \]
\% \(x_c \in \mathcal{E}_R, \ R = [(A_c \ B_c)Q_{\mu}^{-1}(A_c \ B_c)^T]^{-1} \)

send(\textit{u}, 1);
\% \(x_c \in \mathcal{E}_R \)

receive(\textit{y}, 2); receive(\textit{yd}, 3);
\% \(x_c \in \mathcal{E}_R \)
\% \(x_c \in \mathcal{E}_P \)

end
Example System: Invariants

\% \quad x_c \in \mathcal{E}_P, \quad y_c^2 \leq 1
\% \quad (x_c \ y_c) \in \mathcal{E}_{Q\mu}, \quad Q_\mu = \begin{pmatrix} \mu P & 0 \\ 0 & 1-\mu \end{pmatrix}, \quad \mu = 0.9991

\% \quad (x_c \ y_c) \in \mathcal{E}_{Q\mu}
\quad x_c = A_c x_c + B_c y_c;
\% \quad x_c \in \mathcal{E}_R, \quad R = [(A_c \ B_c)Q_\mu^{-1}(A_c \ B_c)^T]^{-1}
Example System

\[
\begin{align*}
A_c &= \begin{bmatrix} 0.4990 & -0.0500 \\ 0.0100 & 1.0000 \end{bmatrix}; \\
B_c &= \begin{bmatrix} 1 \\ 0 \end{bmatrix}; \\
C_c &= \begin{bmatrix} 564.48 \\ 0 \end{bmatrix}; \\
D_c &= -1280; \\
x_c &= \text{zeros}(2, 1);
\end{align*}
\]

receive(y, 2); receive(yd, 3);

while (1)
 \% \(x_c \in E_P \)
 y_c = \max(\min(y - yd, 1), -1); \\
 u = C_c x_c + D_c y_c; \\
 x_c = A_c x_c + B_c y_c; \\
 send(u, 1); \\
 receive(y, 2); receive(yd, 3); \\
 \% \(x_c \in E_P \)
end

Using limited-precision arithmetic:

1. Constant values are altered \(\Rightarrow E_P \) no longer valid;
2. Rounding errors during computations. Adapt invariants.
Example System

\[
\begin{align*}
A_c &= [0.4990, -0.0500; \\
&\quad 0.0100, 1.0000]; \\
B_c &= [1; 0]; \\
C_c &= [564.48, 0]; \\
D_c &= -1280; \\
x_c &= \text{zeros}(2, 1); \\
\end{align*}
\]

receive(\(y\), 2); receive(\(yd\), 3);
while (1)
\[
\begin{align*}
% \quad & x_c \in \mathcal{E}_P \\
yc &= \max(\min(y - yd, 1), -1); \\
u &= C_c x_c + D_c yc; \\
x_c &= A_c x_c + B_c yc; \\
send(u, 1); \\
\end{align*}
\]
receive(\(y\), 2); receive(\(yd\), 3);
\[
\begin{align*}
% \quad & x_c \in \mathcal{E}_P \\
\end{align*}
\]
end

Using limited-precision arithmetic:

1. Constant values are altered
Example System

\[
Ac = \begin{bmatrix} 0.4990 & -0.0500 \\ 0.0100 & 1.0000 \end{bmatrix}; \\
Bc = \begin{bmatrix} 1 \\ 0 \end{bmatrix}; \\
Cc = \begin{bmatrix} 564.48 & 0 \end{bmatrix}; \\
Dc = -1280;
\]

\[
xc = \text{zeros}(2, 1);
\]

\[
\text{receive}(y, 2); \text{receive}(yd, 3);
\]

\[
\text{while } (1)
\]

\[
\% \text{ } x_c \in \mathcal{E}_P
\]

\[
yc = \max(\min(y - yd, 1), -1);
\]

\[
u = Cc*xc + Dc*yc;
\]

\[
xc = Ac*xc + Bc*yc;
\]

\[
\text{send}(u, 1);
\]

\[
\text{receive}(y, 2); \text{receive}(yd, 3);
\]

\[
\% \text{ } x_c \in \mathcal{E}_P
\]

\[
\text{end}
\]

Using limited-precision arithmetic:

1. Constant values are altered
 \[\Rightarrow \mathcal{E}_P \text{ no longer valid}; \]
Example System

\[
A_c = \begin{bmatrix} 0.4990 & -0.0500 \\ 0.0100 & 1.0000 \end{bmatrix};
B_c = \begin{bmatrix} 1 \\ 0 \end{bmatrix};
C_c = [564.48, 0];
D_c = -1280;
xc = \text{zeros}(2, 1);
\]

\[
\text{receive}(y, 2); \text{receive}(yd, 3);
\]

\[
\text{while } (1)
\]

\[
\% x_c \in \mathcal{E}_P
\]

\[
y_c = \max(\min(y - yd, 1), -1);
\]

\[
u = C_c*xc + D_c*y_c;
\]

\[
xc = Ac*xc + Bc*y_c;
\]

\[
\text{send}(u, 1);
\]

\[
\text{receive}(y, 2); \text{receive}(yd, 3);
\]

\[
\% x_c \in \mathcal{E}_P
\]

\[
\text{end}
\]

Using limited-precision arithmetic:

1. Constant values are altered \(\Rightarrow \mathcal{E}_P \) no longer valid;
2. Rounding errors during computations.
Using limited-precision arithmetic:

1. Constant values are altered \(\Rightarrow \mathcal{E}_P \) no longer valid;

2. Rounding errors during computations.

\textbf{Adapt invariants.}
Theoretical Framework

Transpose code + invariants in two steps:

Real

\%
\ d
\ i
\ % \ d' = \theta(d, i)
Theoretical Framework

Transpose code + invariants in two steps:

\[
\begin{align*}
\text{Real} & : \% d \\
\text{ } & \% d' = \theta(d, i) \\
\text{Intermediate} & : \% \tilde{d} \\
\text{ } & \% \tilde{d}' = \theta(\tilde{d}, \tilde{i})
\end{align*}
\]

Code: constants converted into machine numbers

Invariants recomputed using the same propagation theorem \(\theta \)
Theoretical Framework

Transpose code + invariants in two steps:

<table>
<thead>
<tr>
<th>Real</th>
<th>Intermediate</th>
<th>Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>% d</td>
<td>% (\tilde{d})</td>
<td>% (\bar{d})</td>
</tr>
<tr>
<td>i</td>
<td>(\tilde{i})</td>
<td>(\bar{i})</td>
</tr>
<tr>
<td>% d' = (\theta(d, i))</td>
<td>% (\tilde{d}' = \theta(\tilde{d}, \tilde{i}))</td>
<td>% (\bar{d}' \supset \theta(\bar{d}, \bar{i}) \oplus \varepsilon)</td>
</tr>
</tbody>
</table>

Code: constants converted into machine numbers

Invariants recomputed using the same propagation theorem \(\theta\)

Code: real functions +, *... replaced by their machine counterparts

Invariants enlarged to include rounding error

Preserve invariant shape for propagation
Example System, 32-bit Floating-Point Numbers

\[
A_c = \begin{bmatrix} 0.4990 & -0.0500 \\ 0.0100 & 1.0000 \end{bmatrix}; \\
B_c = [1; 0]; \\
C_c = [564.48, 0]; \\
D_c = -1280; \\
x_c = \text{zeros}(2, 1); \\
\ldots
\]

1 Convert constants:

\[
A_{cf} = \begin{bmatrix} 0.498999999999999911821580299874766109466552734375, \\
-0.050000000000000000000000277555756156289135105907917022705078125; \\
0.01000000000000000000000020816681711721685132943093776702880859375, \\
1.00000 \end{bmatrix} \\
B_{cf} = [1; 0]; \\
C_{cf} = [564.48000000000001818989403545856475830078125, 0] \\
D_{cf} = -1280
Example System, 32-bit Floating-Point Numbers

\[
x_c = \text{zeros}(2, 1);
% \ x_c \in \mathcal{E}_P
\]
\[
\text{receive}(y, 2); \text{receive}(yd, 3);
% \ x_c \in \mathcal{E}_P
\]
while (1)
% \ x_c \in \mathcal{E}_P
\[
y_c = \max(\min(y - yd, 1), -1);
% \ x_c \in \mathcal{E}_P, \ y_c^2 \leq 1
% \ (x_c, y_c) \in \mathcal{E}_{Q_\mu}, \ Q_\mu = \begin{pmatrix} \mu P & 0 \\ 0 & 1 - \mu \end{pmatrix}
\]
\[
u = Cc \ast x_c + Dc \ast y_c;
% \ (x_c, y_c) \in \mathcal{E}_{Q_\mu}
\]
\[
x_c = Ac \ast x_c + Bc \ast y_c;
% \ x_c \in \mathcal{E}_R, \ R = [(A_c \ B_c)Q_\mu^{-1}(A_c \ B_c)^T]^{-1}
\]
send(u, 1);
% \ x_c \in \mathcal{E}_R
\]
\[
\text{receive}(y, 2); \text{receive}(yd, 3);
% \ x_c \in \mathcal{E}_R
\]
% \ x_c \in \mathcal{E}_P
end

In the rest of the code:

- \(A_c, B_c\) replaced by \(A_c f, B_c f\);
- \(R\) depends on \(A_c, B_c\), replaced by \(S\);
- Check if \(E_s \subset \mathcal{E}_P\).
Example System, 32-bit Floating-Point Numbers

\[x_c = \text{zeros}(2, 1); \]
\[\% \ x_c \in \mathcal{E}_P \]
receive\((y, 2)\); receive\((yd, 3)\);
\[\% \ x_c \in \mathcal{E}_P \]
\textbf{while} (1)
\[\% \ x_c \in \mathcal{E}_P \]
\[y_c = \max(\min(y - yd, 1), -1); \]
\[\% \ x_c \in \mathcal{E}_P, \ y_c^2 \leq 1 \]
\[\% \ (x_c, y_c) \in \mathcal{E}_{Q_\mu}, \ Q_\mu = \begin{pmatrix} \mu & 0 \\ 0 & 1 - \mu \end{pmatrix} \]
\[u = Cc*x_c + Dc*y_c; \]
\[\% \ (x_c, y_c) \in \mathcal{E}_{Q_\mu} \]
\[x_c = Acf*x_c + Bcf*y_c; \]
\[\% \ x_c \in \mathcal{E}_R, \ R = [(A_c \ B_c)Q_\mu^{-1}(A_c \ B_c)^T]^{-1} \]
\[\text{send}(u, 1); \]
\[\% \ x_c \in \mathcal{E}_R \]
receive\((y, 2)\); receive\((yd, 3)\);
\[\% \ x_c \in \mathcal{E}_R \]
\[\% \ x_c \in \mathcal{E}_P \]
\textbf{end}

In the rest of the code:
- \(A_c, B_c \) replaced by \(A_{cf}, B_{cf} \);
Example System, 32-bit Floating-Point Numbers

\[
\begin{align*}
\mathbf{x}_c &= \text{zeros}(2, 1); \\
\% \quad \mathbf{x}_c \in \mathcal{E}_P \\
\text{receive}(\mathbf{y}, 2); \text{receive}(\mathbf{yd}, 3); \\
\% \quad \mathbf{x}_c \in \mathcal{E}_P \\
\text{while} \ (1) \\
\% \quad \mathbf{x}_c \in \mathcal{E}_P \\
\mathbf{y}_c &= \max(\min(\mathbf{y} - \mathbf{yd}, 1), -1); \\
\% \quad \mathbf{x}_c \in \mathcal{E}_P, \quad y^2_c \leq 1 \\
\% \quad (\mathbf{x}_c, \mathbf{y}_c) \in \mathcal{E}_{\mathcal{Q}_P}, \quad \mathcal{Q}_P = \begin{pmatrix} \mu & 0 \\ 0 & 1 - \mu \end{pmatrix} \\
\mathbf{u} &= \mathbf{Cc}^*\mathbf{x}_c + \mathbf{Dc}^*\mathbf{y}_c; \\
\% \quad (\mathbf{x}_c, \mathbf{y}_c) \in \mathcal{E}_{\mathcal{Q}_P} \\
\mathbf{x}_c &= \mathbf{Acf}^*\mathbf{x}_c + \mathbf{Bcf}^*\mathbf{y}_c; \\
\% \quad \mathbf{x}_c \in \mathcal{E}_S, \quad S = [(\mathbf{Acf} \quad \mathbf{Bcf})\mathcal{Q}_P^{-1}(\mathbf{Acf} \quad \mathbf{Bcf})^T]^{-1} \\
\text{send}(\mathbf{u}, 1); \\
\% \quad \mathbf{x}_c \in \mathcal{E}_S \\
\text{receive}(\mathbf{y}, 2); \text{receive}(\mathbf{yd}, 3); \\
\% \quad \mathbf{x}_c \in \mathcal{E}_S \\
\% \quad \mathbf{x}_c \in \mathcal{E}_P \\
\text{end}
\end{align*}
\]

In the rest of the code:

- \(A_c, B_c \) replaced by \(A_{cf}, B_{cf} \);
- \(R \) depends on \(A_c, B_c \), replaced by \(S \);
Example System, 32-bit Floating-Point Numbers

\[\text{xc} = \text{zeros}(2, 1); \]
% \(\text{xc} \in \mathcal{E}_P \)
receive(y, 2); receive(yd, 3);
% \(\text{xc} \in \mathcal{E}_P \)
while (1)
% \(\text{xc} \in \mathcal{E}_P \)
yc = max(min(y - yd, 1), -1);
% \(\text{xc} \in \mathcal{E}_P \), \(y_c^2 \leq 1 \)
% \((\text{xc} \ y_c) \in \mathcal{E}_{Q_{\mu}} \), \(Q_{\mu} = \begin{pmatrix} \mu^P & 0 \\ 0 & 1-\mu \end{pmatrix} \)
u = Cc*xc + Dc*yc;
% \((\text{xc} \ y_c) \in \mathcal{E}_{Q_{\mu}} \)
xc = Acf*xc + Bcf*yc;
% \(\text{xc} \in \mathcal{E}_S \), \(S = [(A_{cf} \ B_{cf})Q_{\mu}^{-1}(A_{cf} \ B_{cf})^T]^{-1} \)
send(u, 1);
% \(\text{xc} \in \mathcal{E}_S \)
receive(y, 2); receive(yd, 3);
% \(\text{xc} \in \mathcal{E}_S \)
% \(\text{xc} \in \mathcal{E}_P \)
end

In the rest of the code:

- \(A_c, B_c \) replaced by \(A_{cf}, B_{cf} \);
- \(R \) depends on \(A_c, B_c \), replaced by \(S \);
- Check if \(\mathcal{E}_S \subset \mathcal{E}_P \).
Example System, 32-bit Floating-Point Numbers

2 Replace functions:

\[
\begin{array}{l}
\% (x_c, y_c) \in \mathcal{E}_{Q_\mu} \\
x_c = A_c f x_c + B_c f y_c; \\
% x_c \in \mathcal{E}_S, \quad S = [(A_{cf} \ B_{cf}) Q_\mu^{-1} (A_{cf} \ B_{cf})^T]^{-1}
\end{array}
\]

\[
\ldots
\]

- Replace $+$ and \times by their FP counterparts;
- Increase \mathcal{E}_S to include arithmetic error.
Example System, 32-bit Floating-Point Numbers

\(e_1, e_2 \) is the arithmetic error on \(x_{c_1}, x_{c_2} \).

\(\mathcal{E}_T \supset \mathcal{E}_S \) is an ellipse s.t.:

\[
\forall x_c \in \mathcal{E}_S, \forall x_c' \in \mathbb{R}^2, \quad |x'_c - x_{c_1}| \leq e_1 \land |x'_c - x_{c_2}| \leq e_2 \implies x'_c \in \mathcal{E}_T
\] (*)

\(\mathcal{E}_T \) can be the smallest magnification of \(\mathcal{E}_S \) s.t. (*) holds.
Example System, 32-bit Floating-Point Numbers

\((x_c, y_c) \in \mathcal{E}_{Q_\mu} \)

\(x_c = A_{cf}x_c + B_{cf}y_c; \)

\(x_c \in \mathcal{E}_S, \quad S = [(A_{cf} B_{cf})Q_\mu^{-1}(A_{cf} B_{cf})^T]^{-1} \)

send(u, 1);

\(x_c \in \mathcal{E}_S \)

receive(y, 2); receive(yd, 3);

\(x_c \in \mathcal{E}_S \)

\(x_c \in \mathcal{E}_P \)

end

In the rest of the code:
Example System, 32-bit Floating-Point Numbers

\[
\begin{aligned}
\% \quad (x_c, y_c) &\in \mathcal{E}_{Q_{\mu}} \\
x_c &= Acf*x_c + Bcf*y_c; \\
\% \quad x_c &\in \mathcal{E}_T \\
send(u, 1); \\
\% \quad x_c &\in \mathcal{E}_T \\
receive(y, 2); \ \text{receive}(yd, 3); \\
\% \quad x_c &\in \mathcal{E}_T \\
\% \quad x_c &\in \mathcal{E}_P \\
\text{end}
\end{aligned}
\]

In the rest of the code:

- Replace \mathcal{E}_S by \mathcal{E}_T;
Example System, 32-bit Floating-Point Numbers

\[\{ x_c \} \in \mathcal{E}_{Q_{\mu}} \]
\[x_c = A_c x_c + B_c y_c; \]
\[\% x_c \in \mathcal{E}_T \]
\[\text{send}(u, 1); \]
\[\% x_c \in \mathcal{E}_T \]
\[\text{receive}(y, 2); \text{receive}(yd, 3); \]
\[\% x_c \in \mathcal{E}_T \]
\[\% x_c \in \mathcal{E}_P \]
end

In the rest of the code:

- Replace \(\mathcal{E}_S \) by \(\mathcal{E}_T \);
- Check if \(\mathcal{E}_T \subset \mathcal{E}_P \).

It works! \(\Rightarrow \) Stable in 32 bits. If not, can’t conclude.
Automation: The LyaFloat Tool

In Python, using SymPy.

```python
from lyafloat import *
setfloatify(constants=True, operators=True, precision=53)

P = Rational("1e-3") * Matrix(rationals(
    ["0.6742 0.0428", "0.0428 2.4651"]))
EP = Ellipsoid(P)
...
xc1, xc2, yc = symbols("xc1 xc2 yc")
Ac = Matrix(constants(["0.4990 -0.0500", "0.0100 1.0000"]))
...
ES = Ellipsoid(R)
print("ES included in EP :", ES <= EP)

i = Instruction({xc: Ac * xc + Bc * yc},
    pre=[zc in EQmu], post=[xc in ES])
ET = i.post()[xc]
print("ET =", ET)
print("ET included in EP :", ET <= EP)
```
Closed Loop

Closed-loop system:

- Pseudocode for controller and for environment;
- send & receive;
- Only controller code is changed.

Does not work with 32 bits.
OK with 128 bits.
Suitable method if bounded error.

1. **Arithmetic paradigms:**
 - OK with floating point: rounding error is bounded for +, −, * if far enough from extremal values;
 - Same for fixed point;
 - Not sure what happens with two integers;
Extensions of LyaFloat

Suitable method if bounded error.

1. **Arithmetic paradigms:**
 - OK with floating point: rounding error is bounded for +, −, * if far enough from extremal values;
 - Same for fixed point;
 - Not sure what happens with two integers;

2. **Other functions** (non-linear systems):
 - Differentiable, periodic functions (cos) (can be computed with an abacus/polynomial interpolation);
 - Differentiable functions restricted to a finite range (assuming values in the range).
Related Work

Compute bounds from source code:
- Astrée;
- PhD P. Roux.

From pseudocode to C:
- Feron ICSM’10.

Floating-point arithmetic:
- PhD P. Roux.

Proof translation, code-level invariants.
Closed loop.
Conclusion

Theoretical framework to translate proof invariants on code with real arithmetic, while preserving the overall proof structure.

LyaFloat: implementation for Lyapunov-theoretic proofs on floating-point arithmetic.

Future work:

- Support for other arithmetic paradigms, more functions, more invariant propagators;
- Coq rather than Python \(\implies\) formalization (or proof?) of propagators;
- ...or generate Coq scripts?
Translation of Lyapunov Stability Proofs to Machine Arithmetic

Vivien Maisonneuve

Eighth meeting of the French community of compilation

Nice, July 2014