Toward explicit rewrite rules in the $\lambda \Pi$-calculus modulo

Ronan Saillard (Olivier Hermant)

Deducteam INRIA
MINES ParisTech
December 14th, 2013

Motivation

Problem

- Checking, in a trustful way, that something is a valid proof in a given logic.
- Encoding proofs of any logic in a single compact format.
- Making these encodings interoperate.

Solution

Using the $\lambda \Pi$-calculus modulo, a language based on dependent types and rewriting, as a universal proof language.

In this Talk

- A new presentation of $\lambda \Pi$-calculus modulo with explicit rewrite rules.
- The lastest version of Dedukti, a type-checker for the $\lambda \Pi$-calculus modulo.

Table of Contents

Introduction

The λ П-calculus modulo
Extending $\lambda \Pi$-calculus with Rewrite Rules
Typing the Rules

Dedukti
A Type-Checker for the $\lambda \Pi$-calculus modulo
Case Study: the OpenTheory Library

Future Work
Confluence and Termination

The $\lambda \Pi$-calculus modulo
Extending $\lambda \Pi$-calculus with Rewrite Rules

The $\lambda \Pi$-calculus modulo

The λ П-calculus modulo

An extension of dependent typed λ-calculus ($\lambda \Pi$-calculus aka λP-calculus aka $L F$) with user-defined rewrite rules.

Example of a Rewrite Rules
$\left[\mathrm{f}: \Pi x^{A} \cdot B\right] \operatorname{Map} \mathrm{f} \mathbf{N i l} \hookrightarrow \mathbf{N i l}$
$\left[\mathrm{f}: \Pi x^{A} . B, \mathrm{a}: \mathbf{A}, \mathrm{I}:\right.$ ListA] Map $\mathrm{f}($ Cons a I$) \hookrightarrow$ Cons $(\mathrm{fa}$) (Map f I$)$

Typing Rules for $\lambda \Pi$-calculus modulo

$$
\begin{aligned}
& \text { (Empty) } \begin{array}{l}
\emptyset \mathbf{w f} \\
\text { (Dec) } \frac{\Gamma \mathbf{w f}}{\Gamma \vdash A: s} \quad x \notin \Gamma \\
\Gamma(x: A) \mathbf{w f}
\end{array} \\
& \text { (Rewrite) } \frac{\Gamma \text { wf } \quad \text { "the rule is well-typed" }}{\Gamma([\Delta] / \hookrightarrow r) w f} \\
& \text { (Type) } \frac{\Gamma \text { wf }}{\Gamma \vdash \text { Type }: \text { Kind }} \quad(\text { Var }) \frac{\Gamma w f \quad(x: A) \in \Gamma}{\Gamma \vdash x: A}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Abs) } \frac{\Gamma \vdash A: \text { Type }}{\Gamma(x: A) \vdash t: B} \quad B \neq \text { Kind } ~\left(\sqcap x^{A} \cdot t: \Pi x^{A} \cdot B \quad\right. \\
& \text { (Prod) } \frac{\Gamma \vdash A: \text { Type } \Gamma(x: A) \vdash B: s}{\Gamma \vdash \Pi x^{A} \cdot B: s}
\end{aligned}
$$

The $\lambda \Pi$-calculus modulo
Typing the Rules

Subject Reduction

Subject Reduction

If $\Gamma \vdash t: T$ and $t \rightarrow_{\beta \Gamma} t^{\prime}$ then $\Gamma \vdash t^{\prime}: T$.
Well-typed rule (strong version)
(Rewrite) $\frac{\Gamma \mathbf{w f} \quad \Gamma \Delta \vdash I: T \quad \Gamma \Delta \vdash r: T}{\Gamma([\Delta] / \hookrightarrow r) \mathbf{w f}}$
Theorem
if $\rightarrow_{\beta \Gamma}$ is confluent and every rule is well-typed then subject reduction holds.

Problems

- well-typedness and linearity (next slide) are often in conflicting conditions.
- Subject Reduction might be preserved even with a non well-typed rule.

Linearity

Definition

A rewrite rule $[\Delta] / \hookrightarrow r$ is left-linear if the variables in Δ appear at most once in 1 .

Why should you prefer Linear rewrite rules ?

- Non-linear rules are less efficient: conversion tests needed.
- Confluence and Termination of the combination of a non-linear rewrite system with β-reduction are more difficult to prove.

Example: Well-typedness vs Left-Linearity

```
Nat: Type.
Z: Nat.
S: Nat \(\rightarrow\) Nat.
Plus: Nat \(\rightarrow\) Nat \(\rightarrow\) Nat.
[ n : Nat] Plus \(\mathbf{Z} \mathrm{n} \longrightarrow \mathrm{n}\)
[ n : Nat; \(\mathrm{m}:\) Nat] Plus \((\mathrm{S} \mathrm{n}) \mathrm{m} \longrightarrow \mathrm{S}(\) Plus \(\mathrm{n} m\) ).
```

A: Type.
Listn: Nat \rightarrow Type
Nil: Listn Z.
Cons: $A \rightarrow n:$ Nat \rightarrow Listn $n \rightarrow$ Listn (S n).
Append: $\mathrm{n}:$ Nat \rightarrow Listn $n \rightarrow m:$ Nat \rightarrow Listn $m \rightarrow$ Listn (Plus $n m$).
[m: Nat; I: Listn m] Append Z Nil m l \longrightarrow I
[$\mathrm{n}:$ Nat; 11 ; Listn $\mathrm{n} ; \mathrm{m}:$ Nat; $12: \operatorname{Listn} \mathrm{m}](*) \longrightarrow \operatorname{Cons}(\mathrm{S}(\mathrm{plus} \mathrm{n} m))$ a (Append n 11 m 12$)$.
Two choices for (*)

- Append (Sn) (Cons n a I1) m 12 (well-typed but non linear)
- Append n2 (Cons n a 11) m I2 (linear but not well-typed)

But these two rules match exactly the same typed terms !

If $\sigma\left(\right.$ Append $\mathrm{n} 2\left(\right.$ Cons n a I1) m I2) is well-typed then $\sigma n 2 \equiv_{\beta \Gamma} S \sigma n$

Past Solution: Dot Patterns

Dot Patterns
Append $\{\mathbf{S} \mathrm{n}\}$ (Cons n a I1) ml I2 $\hookrightarrow \ldots$
The term between $\}$ is used for typing only.
Problem:
Subject Reduction is not preserved anymore.
Example
T: Nat \rightarrow Type.
a: Nat.
b: T a.
F: x:Nat \rightarrow T x.
[] $F\{a\} \rightarrow b$.
Then $\mathbf{F}(\mathbf{S} a) \hookrightarrow b$ but $\mathbf{F}(\mathbf{S} a)$ has type $\mathbf{T}(\mathbf{S} a) \neq(\mathbf{T} a)$.

Weakening the well-Typedness property

Well-Typed Rule (Strong version)
(Strong Rewrite) $\frac{\Gamma \mathbf{w f} \quad \Gamma \Delta \vdash I: T \quad \Gamma \Delta \vdash r: T}{\Gamma([\Delta] / \hookrightarrow r) \mathbf{w f}}$
The following condition is sufficient (and necessary) to preserve subject reduction:

Well-TYPED RULE (WEAK VERSION)
(Weak Rewrite) $\frac{\Gamma \mathbf{w f} \quad \forall \sigma \in \mathcal{S}(\Delta),(\Gamma \vdash \sigma l: T \Rightarrow \Gamma \vdash \sigma r: T)}{\Gamma([\Delta] / \hookrightarrow r) \mathbf{w f}}$ with $\mathcal{S}(\Delta):=\{\sigma \mid \operatorname{dom}(\sigma)=\Delta\}$

This is undecidable!

Typing a Rule as A unification problem

WELL-TYPEDNESS AS A SET OF EQUATIONS
Typing a term t consists in inspecting its structure and checking that some equations modulo $\beta \Gamma$ hold.
Thus we can associate to a term t a system of equations $E(t)$ and a term $T(t)$ such that t is typable iff $E(t)$ holds and in this case $T(t)$ is its type.

Well-typed Rule (EQuivalent definition)
「 wf $\quad S(\Delta, E(I)) \subset S\left(\Delta, E(r) \cup\left\{T(I) \equiv_{\beta \Gamma} T(r)\right\}\right)$

$$
\Gamma([\Delta] / \hookrightarrow r) \mathbf{w f}
$$

where $S(X, E)$ is the set of solutions of the (higher order) unification problem E with variables in X.

Example

Example
$\mathrm{E}\left(\right.$ Append $\mathrm{n} 2($ Cons n a I1) ml I $)=\left\{\mathrm{n} 2 \equiv_{\beta \Gamma} S n\right\}$
$\mathrm{E}($ Cons $(\mathbf{S} \mathrm{n})$ a (Append $\mathrm{n} 11 \mathrm{~m} / 2))=\{ \}$

- let us write @ for Append, C for Cons, \mathbb{N} for Nat, \mathcal{L} for Listn and + (infix) for Plus
- and let the local context Δ be:

$\mathrm{n} 2: \mathbb{N}$	$\mathrm{n}: \mathbb{N}$	$\mathrm{I} 1: \mathcal{L} \mathrm{n}$
$\mathrm{m}: \mathbb{N}$	$12: \mathcal{L} \mathrm{m}$	

Keeping contexts implicit, we have the following typing tree:

$$
\vdash \text { @ n2 (C n a I1) m I2: } \mathcal{L}(\mathrm{n} 2+\mathrm{m})
$$

Implemented solution

A SIMPLE IMPLEMENTATION

1. Find an approximation σ of a most general unifier for $E(I)$. (ie σ must be a prefix of any solution of $E(I)$).
2. Check that σ is a solution of $E(r) \cup\left\{T(I) \equiv_{\beta \Gamma} T(r)\right\}$.

This solution has been able to deal with every previous use of dot patterns.

Dedukti
 A Type-Checker for the $\lambda \Pi$-calculus modulo

Dedukti

DEDukti Is

- a type-checker for the $\lambda \Pi$-calculus modulo.
- a proof-checker for your logic (ie a logical framework).
- comparable with the kernel of an ITP.

Dedukti does not

- check that your rewrite rules are true/admissible (think of them as axioms).
- check that your rewrite rules are terminating and confluent.

Remark: Dedukti has been completely re-implemented in OCaml (about 1000 lines of code). (No more Lua...)

Dedukti and Friends

Dedukti is used as a back-end by these tools:

- Coqine (Assaf, Burel): an encoding of the Coq's language (the Calculus of Inductive Constructions) into $\lambda \Pi$-calculus modulo.
- Focalide (Cauderlier): an extension of Focalize to generate proofs in $\lambda \Pi$-calculus modulo.
- Holide (Assaf, Burel): an encoding of HOL into $\lambda \Pi$-calculus modulo.
- iProver to Dedukti (Burel): an extension of iProver to generate proofs in $\lambda \Pi$-calculus modulo.
- Zenonide (Gilbert): an extension of Zenon to generate proofs in $\lambda \Pi$-calculus modulo.

Dedukti
 Case Study: the OpenTheory Library

Holide

OpenTheory (Hurd)
OpenTheory is a proof format designed to share theorems between proof checker of the HOL family. It comes with a standard theory library.

Holide (Assaf, Burel)
Holide is a tool that can encode the OpenTheory's format into the $\lambda \Pi$-calculus or the $\lambda \Pi$-calculus modulo.

Derivation rules of HOL

$$
\overline{\vdash t=t} \operatorname{Refl} t
$$

$$
\frac{\Gamma \vdash f=g \quad \Gamma \vdash t=u}{\Gamma \cup \Delta \vdash f t=g u} \text { AppThm }
$$

$$
\overline{\{\phi\} \vdash \phi} \text { Assume }
$$

$$
\frac{\Gamma \vdash \phi \quad \Delta \vdash \psi}{(\Gamma-\{\psi\}) \cup(\Delta-\{\phi\}) \vdash \phi=\psi} \text { DeductAntiSym }
$$

$$
\begin{gathered}
\frac{\Gamma \vdash t=u}{\Gamma \vdash \lambda x^{A} \cdot t=\lambda x^{A} \cdot u} \text { AbsThm } x \\
\frac{\Gamma \vdash\left(\lambda x^{A} \cdot t\right) x=t}{} \text { Beta } x t \\
\frac{\Gamma \vdash \phi=\psi \quad \Delta \vdash \phi}{\Gamma \cup \Delta \vdash \psi} \text { EqMp } \\
\frac{\Gamma \vdash \phi}{[\sigma] \Gamma \vdash[\sigma] \phi} \text { Subst } \sigma
\end{gathered}
$$

Encoding HOL in the $\lambda \Pi$-calculus

```
#NAME hol_lp
(; HOL Types ;)
type : Type.
bool : type.
ind : type.
arr : type -> type -> type.
(; HOL Terms ;)
term : type -> Type.
lam : a : type -> b : type -> (term a -> term b) -> term (arr a b).
app: a : type -> b : type >> term (arr a b) -> term a -> term b.
eq : a : type -> term (arr a (arr a bool)).
select : a : type -> term (arr (arr a bool) a).
EQ : a : type -> term a -> term a -> term bool :=
    a : type => x: term a => y : term a => app a bool (app a (arr a bool) (eq a) x) y.
[...]
(; HOL Proofs ;)
proof : term bool -> Type.
REFL : a : type -> t : term a ->
    proof (EQ a t t).
ABS_THM : a : type -> b: type -> f : (term a -> term b) -> g : (term a -> term b) ->
    (\overline{x}: term a -> proof (EQ b (f x) (g x))) ->
    proof (EQ (arr a b) (lam a b f) (lam a b g)).
[...]
```


Encoding HOL in the $\lambda \Pi$-calculus modulo

```
#NAME hol_lpm
(; HOL Types ;)
type : Type.
bool : type.
ind : type.
arr : type -> type -> type.
(; HOL Terms ;)
term : type -> Type.
[a : type, b : type] term (arr a b) --> term a -> term b.
eq : a : type -> term (arr a (arr a bool)).
select : a : type >> term (arr (arr a bool) a).
[...]
(; HOL Proofs ;)
proof : term bool -> Type.
REFL : a : type -> t : term a ->
    proof (eq a t t).
ABS_THM : a : type -> b: type -> f : (term a -> term b) -> g : (term a -> term b) ->
    (\overline{x}}:\frac{term a -> proof (eq b (f x) (g x))) ->}{
    proof (eq (arr a b) f g).
[...]
```


Results

Proportion of trivial conversion tests

Number of conversion tests (in millions)

Checking time (in seconds)

Benchmarks obtained on the core package of the OpenTheory library (88 files, 1.4G).
The tests were run on a Linux laptop with a processor Intel Core i7-3520M CPU @ $2.90 \mathrm{GHz} \times 4$ and 16 GB of Ram.

Future Work

Confluence and Termination

Confluence and Termination (1)

Dedukti's TYpe checking algorithm assumes:

- The Confluence of $\rightarrow_{\beta \Gamma}$.
- The Strong Normalization of $\rightarrow_{\beta \Gamma}$.

Can Dedukti help checking these properties?

Confluence

Criteria for the confluence of \rightarrow_{β} r

- \rightarrow_{Γ} is weakly orthogonal.
- \rightarrow_{Γ} is weakly confluent and $\rightarrow_{\beta \Gamma}$ is terminating.

Future Work
(Weak) orthogonality/confluence detection, critical pair detection, export functionality to (higher-order?) confluence prover.

Termination

TERMINATION OF $\rightarrow_{\beta \Gamma}$

- for Object Level/Type Level Rewriting System?
- for First Order/Higher Order Rewriting System?

Criteria

- Modular properties of algebraic pure type systems (Barthe and Geuvers, 1996).
- Definition by rewriting in the Calculus of Constructions (Blanqui, 2005).

Future Work (Termination)
Partial implementation of these criteria.

Toward explicit rewrite rules in the $\lambda \Pi$-calculus modulo

Ronan Saillard (Olivier Hermant)

Deducteam INRIA
MINES ParisTech
December 14th, 2013

