
Toward explicit rewrite rules in the
λΠ-calculus modulo

Ronan Saillard (Olivier Hermant)

Deducteam INRIA

MINES ParisTech

December 14th, 2013

1 / 29

Motivation

Problem

I Checking, in a trustful way, that something is a valid proof in
a given logic.

I Encoding proofs of any logic in a single compact format.

I Making these encodings interoperate.

Solution
Using the λΠ-calculus modulo, a language based on dependent
types and rewriting, as a universal proof language.

In this Talk

I A new presentation of λΠ-calculus modulo with explicit
rewrite rules.

I The lastest version of Dedukti, a type-checker for the
λΠ-calculus modulo.

2 / 29

Table of Contents

Introduction

The λΠ-calculus modulo
Extending λΠ-calculus with Rewrite Rules
Typing the Rules

Dedukti
A Type-Checker for the λΠ-calculus modulo
Case Study: the OpenTheory Library

Future Work
Confluence and Termination

3 / 29

The λΠ-calculus modulo
Extending λΠ-calculus with Rewrite Rules

4 / 29

The λΠ-calculus modulo

The λΠ-calculus modulo

An extension of dependent typed λ-calculus (λΠ-calculus aka
λP-calculus aka LF) with user-defined rewrite rules.

Example of a Rewrite Rules

[f:ΠxA.B] Map f Nil ↪→ Nil
[f:ΠxA.B, a:A, l:ListA] Map f (Cons a l) ↪→ Cons (f a) (Map f l)

5 / 29

Typing Rules for λΠ-calculus modulo

(Empty)
∅ wf

Γ wf Γ ` A : s x /∈ Γ
(Dec)

Γ(x : A) wf

Γ wf ”the rule is well-typed”
(Rewrite)

Γ([∆]l ↪→ r) wf

Γ wf
(Type)

Γ ` Type : Kind

Γ wf (x : A) ∈ Γ
(Var)

Γ ` x : A

Γ ` t : ΠxA.B Γ ` u : A
(App)

Γ ` tu : B[x/u]

Γ ` t : A Γ ` B : s A ≡βΓ B
(Conv)

Γ ` t : B

Γ ` A : Type Γ(x : A) ` t : B B 6= Kind
(Abs)

Γ ` λxA.t : ΠxA.B

Γ ` A : Type Γ(x : A) ` B : s
(Prod)

Γ ` ΠxA.B : s

6 / 29

The λΠ-calculus modulo
Typing the Rules

7 / 29

Subject Reduction

Subject Reduction
If Γ ` t : T and t →βΓ t ′ then Γ ` t ′ : T .

Well-typed rule (strong version)

Γ wf Γ∆ ` l : T Γ∆ ` r : T(Rewrite)
Γ([∆]l ↪→ r) wf

Theorem
if →βΓ is confluent and every rule is well-typed then subject
reduction holds.

Problems

I well-typedness and linearity (next slide) are often in conflicting
conditions.

I Subject Reduction might be preserved even with a non
well-typed rule.

8 / 29

Linearity

Definition
A rewrite rule [∆]l ↪→ r is left-linear if the variables in ∆ appear at
most once in l .

Why should you prefer linear rewrite rules ?

I Non-linear rules are less efficient: conversion tests needed.

I Confluence and Termination of the combination of a
non-linear rewrite system with β-reduction are more difficult
to prove.

9 / 29

Example: Well-typedness vs Left-linearity

Nat : Type .
Z : Nat .
S : Nat −> Nat .
Plus : Nat −> Nat −> Nat .
[n : Nat] Plus Z n −−> n
[n : Nat ;m: Nat] Plus (S n) m−−> S (Plus n m) .

A : Type .
L i s t n : Nat −> Type .
Ni l : L i s t n Z .
Cons : A −> n : Nat −> L i s t n n −> L i s t n (S n) .

Append : n : Nat −> L i s t n n −> m: Nat −> L i s t n m−> L i s t n (Plus n m) .
[m: Nat ; l : L i s t n m] Append Z N i l m l −−> l
[n : Nat ; l 1 ; L i s t n n ;m: Nat ; l 2 : L i s t n m] (∗) −−> Cons (S (p l u s n m)) a (Append n l 1 m l 2) .

Two choices for (*)

I Append (S n) (Cons n a l1) m l2 (well-typed but non linear)

I Append n2 (Cons n a l1) m l2 (linear but not well-typed)

But these two rules match exactly the same typed terms !

If σ(Append n2 (Cons n a l1) m l2) is well-typed then σn2 ≡βΓ S σn

10 / 29

Past Solution: Dot Patterns

Dot Patterns
Append {S n} (Cons n a l1) m l2 ↪→ ...

The term between { } is used for typing only.

Problem:
Subject Reduction is not preserved anymore.

Example

T : Nat −> Type .
a : Nat .
b : T a .
F : x :Nat −> T x .
[] F {a} −−> b .

Then F (S a) ↪→ b but F (S a) has type T (S a) 6= (T a).

11 / 29

Weakening the well-typedness property

Well-typed rule (strong version)

Γ wf Γ∆ ` l : T Γ∆ ` r : T(Strong Rewrite)
Γ([∆]l ↪→ r) wf

The following condition is sufficient (and necessary) to preserve
subject reduction:

Well-typed rule (weak version)

Γ wf ∀σ ∈ S(∆), (Γ ` σl : T ⇒ Γ ` σr : T)
(Weak Rewrite)

Γ([∆]l ↪→ r) wf
with S(∆) := {σ|dom(σ) = ∆}

This is undecidable !

12 / 29

Typing a rule as a unification problem

well-typedness as a set of equations

Typing a term t consists in inspecting its structure and checking
that some equations modulo βΓ hold.
Thus we can associate to a term t a system of equations E (t) and
a term T (t) such that t is typable iff E (t) holds and in this case
T (t) is its type.

Well-typed rule (equivalent definition)

Γ wf S(∆,E (l)) ⊂ S(∆,E (r) ∪ {T (l) ≡βΓ T (r)})
Γ([∆]l ↪→ r) wf

where S(X ,E) is the set of solutions of the (higher order)
unification problem E with variables in X .

13 / 29

Example

Example
E(Append n2 (Cons n a l1) m l2) = { n2 ≡βΓ S n }
E(Cons (S n) a (Append n l1 m l2)) = {}

I let us write @ for Append, C for Cons, N for Nat, L for
Listn and + (infix) for Plus

I and let the local context ∆ be:
n2 : N n : N l1 : L n
m : N l2 : Lm

Keeping contexts implicit, we have the following typing tree:

...

` @ n2 : L(n2) →(m:N) →L(m) →L(n2+m)

...

` C n a l1 : L(S n) n2 ≡βΓ S n

` C n a l1 : L(n2)

` @ n2 (C n a l1) : (m:N) →L(m) →L(n2+m)

...

` @ n2 (C n a l1) m l2 : L(n2+m)

14 / 29

Implemented solution

A simple implementation

1. Find an approximation σ of a most general unifier for E (l).
(ie σ must be a prefix of any solution of E (l)).

2. Check that σ is a solution of E (r) ∪ {T (l) ≡βΓ T (r)}.

This solution has been able to deal with every previous use of dot
patterns.

15 / 29

Dedukti
A Type-Checker for the λΠ-calculus modulo

16 / 29

Dedukti

Dedukti is

I a type-checker for the λΠ-calculus modulo.

I a proof-checker for your logic (ie a logical framework).

I comparable with the kernel of an ITP.

Dedukti does not

I check that your rewrite rules are true/admissible (think of
them as axioms).

I check that your rewrite rules are terminating and confluent.

Remark: Dedukti has been completely re-implemented in OCaml
(about 1000 lines of code). (No more Lua...)

17 / 29

Dedukti and Friends

Dedukti is used as a back-end by these tools:

I Coqine (Assaf, Burel): an encoding of the Coq’s language
(the Calculus of Inductive Constructions) into λΠ-calculus
modulo.

I Focalide (Cauderlier): an extension of Focalize to generate
proofs in λΠ-calculus modulo.

I Holide (Assaf, Burel): an encoding of HOL into λΠ-calculus
modulo.

I iProver to Dedukti (Burel): an extension of iProver to
generate proofs in λΠ-calculus modulo.

I Zenonide (Gilbert): an extension of Zenon to generate proofs
in λΠ-calculus modulo.

18 / 29

Dedukti
Case Study: the OpenTheory Library

19 / 29

Holide

OpenTheory (Hurd)

OpenTheory is a proof format designed to share theorems between
proof checker of the HOL family. It comes with a standard theory
library.

Holide (Assaf, Burel)

Holide is a tool that can encode the OpenTheory’s format into the
λΠ-calculus or the λΠ-calculus modulo.

20 / 29

Derivation rules of HOL

Refl t` t = t
Γ ` t = u

AbsThm x
Γ ` λxA.t = λxA.u

Γ ` f = g Γ ` t = u
AppThm

Γ ∪∆ ` f t = g u
Beta x t

` (λxA.t) x = t

Assume{φ} ` φ
Γ ` φ = ψ ∆ ` φ

EqMp
Γ ∪∆ ` ψ

Γ ` φ ∆ ` ψ
DeductAntiSym

(Γ− {ψ}) ∪ (∆− {φ}) ` φ = ψ

Γ ` φ
Subst σ

[σ]Γ ` [σ]φ

21 / 29

Encoding HOL in the λΠ-calculus
#NAME hol_lp

(; HOL Types ;)

type : Type.

bool : type.
ind : type.
arr : type −> type −> type.

(; HOL Terms ;)

term : type −> Type.

lam : a : type −> b : type −> (term a −> term b) −> term (arr a b).
app : a : type −> b : type −> term (arr a b) −> term a −> term b.
eq : a : type −> term (arr a (arr a bool)).
select : a : type −> term (arr (arr a bool) a).

EQ : a : type −> term a −> term a −> term bool :=
a : type => x: term a => y : term a => app a bool (app a (arr a bool) (eq a) x) y.

[...]

(; HOL Proofs ;)

proof : term bool −> Type.

REFL : a : type −> t : term a −>
proof (EQ a t t).

ABS_THM : a : type −> b: type −> f : (term a −> term b) −> g : (term a −> term b) −>
(x : term a −> proof (EQ b (f x) (g x))) −>
proof (EQ (arr a b) (lam a b f) (lam a b g)).

[...]

22 / 29

Encoding HOL in the λΠ-calculus modulo
#NAME hol_lpm

(; HOL Types ;)

type : Type.

bool : type.
ind : type.
arr : type −> type −> type.

(; HOL Terms ;)

term : type −> Type.
[a : type, b : type] term (arr a b) −−> term a −> term b.

eq : a : type −> term (arr a (arr a bool)).
select : a : type −> term (arr (arr a bool) a).

[...]

(; HOL Proofs ;)

proof : term bool −> Type.

REFL : a : type −> t : term a −>
proof (eq a t t).

ABS_THM : a : type −> b: type −> f : (term a −> term b) −> g : (term a −> term b) −>
(x : term a −> proof (eq b (f x) (g x))) −>
proof (eq (arr a b) f g).

[...]

23 / 29

Results

Benchmarks obtained on the core package of the OpenTheory library (88 files, 1.4G).

The tests were run on a Linux laptop with a processor Intel Core i7-3520M CPU @ 2.90GHz x 4 and 16GB of Ram.
24 / 29

Future Work
Confluence and Termination

25 / 29

Confluence and Termination (1)

Dedukti’s type checking algorithm assumes:

I The Confluence of →βΓ.

I The Strong Normalization of →βΓ.

Can Dedukti help checking these properties?

26 / 29

Confluence

Criteria for the confluence of →βΓ

I →Γ is weakly orthogonal.

I →Γ is weakly confluent and →βΓ is terminating.

Future Work
(Weak) orthogonality/confluence detection, critical pair detection,
export functionality to (higher-order?) confluence prover.

27 / 29

Termination

Termination of →βΓ

I for Object Level/Type Level Rewriting System?

I for First Order/Higher Order Rewriting System?

Criteria

I Modular properties of algebraic pure type systems (Barthe and
Geuvers, 1996).

I Definition by rewriting in the Calculus of Constructions
(Blanqui, 2005).

Future Work (Termination)

Partial implementation of these criteria.

28 / 29

Toward explicit rewrite rules in the
λΠ-calculus modulo

Ronan Saillard (Olivier Hermant)

Deducteam INRIA

MINES ParisTech

December 14th, 2013

29 / 29

	Introduction
	The -calculus modulo
	Extending -calculus with Rewrite Rules
	Typing the Rules

	Dedukti
	A Type-Checker for the -calculus modulo
	Case Study: the OpenTheory Library

	Future Work
	Confluence and Termination

