TOWARD EXPLICIT REWRITE RULES IN THE
M1-CALCULUS MODULO

Ronan Saillard ~ (Olivier Hermant)

Deducteam INRIA

MINES ParisTech

December 14th, 2013

1/29

MOTIVATION

PROBLEM
» Checking, in a trustful way, that something is a valid proof in
a given logic.
» Encoding proofs of any logic in a single compact format.
> Making these encodings interoperate.

SOLUTION
Using the All-calculus modulo, a language based on dependent
types and rewriting, as a universal proof language.

IN THIS TALK
> A new presentation of All-calculus modulo with explicit
rewrite rules.

» The lastest version of Dedukti, a type-checker for the
AlM-calculus modulo.

TABLE OF CONTENTS

INTRODUCTION

THE AlN-CALCULUS MODULO
Extending All-calculus with Rewrite Rules
Typing the Rules

DEDUKTI
A Type-Checker for the Al-calculus modulo
Case Study: the OpenTheory Library

FUuTuRE WORK
Confluence and Termination

3/29

The All-calculus modulo
Extending All-calculus with Rewrite Rules

THE MI-CALCULUS MODULO

THE A1-CALCULUS MODULO

An extension of dependent typed A-calculus (Al-calculus aka
AP-calculus aka LF) with user-defined rewrite rules.

EXAMPLE OF A REWRITE RULES

[f:MxA.B] Map f Nil — Nil
[f:NxA.B, a:A, I:ListA] Map f (Cons a |) — Cons (f a) (Map f)

TYPING RULES FOR All-CALCULUS MODULO

(Empty) (Dec) I wf r-A:s x¢r
0 wf F(x: A) wf
i I wf "the rule is well-typed”
(Rewrite)
F([A]l < r) wf
I wf r wf (x:A)er
(Type) ——————— (Var)
I = Type : Kind NrEx: A
ree:Nx*.B rFu:A FEt:A Fr-B:s A=prB
(App) - = (Conv)
I+ tu: Blx/u] r-t:B
I A: Type Mx:A)Ft:B B # Kind
(Abs) Y| (x: A)
M axAt:NxA.B8
= A: Type MNx:A)FB:s
(Prod) Y ()
FENxAB:s

The Ml-calculus modulo
Typing the Rules

SUBJECT REDUCTION

SUBJECT REDUCTION
fr=t:Tandt—grt' thenlT ¢t :T.

WELL-TYPED RULE (STRONG VERSION)

I wf FTAET:T TAFr: T
(Al < r) wf

(Rewrite)

THEOREM
if —gr is confluent and every rule is well-typed then subject
reduction holds.

PROBLEMS

» well-typedness and linearity (next slide) are often in conflicting
conditions.

» Subject Reduction might be preserved even with a non
well-typed rule.

8/29

LINEARITY

DEFINITION
A rewrite rule [A]/ < r is left-linear if the variables in A appear at

most once in /.
WHY SHOULD YOU PREFER LINEAR REWRITE RULES 7

» Non-linear rules are less efficient: conversion tests needed.

» Confluence and Termination of the combination of a
non-linear rewrite system with S-reduction are more difficult
to prove.

9/29

EXAMPLE: WELL-TYPEDNESS VS LEFT-LINEARITY

Nat: Type.

Z: Nat.

S: Nat —> Nat.

Plus: Nat —> Nat —> Nat.

[n:Nat] Plus Z n —> n

[n:Nat;m:Nat] Plus (S n) m—> S (Plus n m).
A: Type.

Listn: Nat —> Type.

Nil: Listn Z.

Cons: A —> n:Nat —> Listn n —> Listn (S n).
Append: n:Nat —> Listn n —> m:Nat —> Listn m —> Listn (Plus n m).

[m:Nat;|:Listn m] Append Z Nil m | —> |
[n:Nat;I11;Listn n;m:Nat;|2:Listn m] (*) —> Cons (S (plus nm)) a (Append n I1 m 12).

TWO CHOICES FOR (*)

> Append (S n) (Cons n a I1) m 12 (well-typed but non linear)
> Append n2 (Cons n a 1) m |2 (linear but not well-typed)

But these two rules match exactly the same typed terms !

If o(Append n2 (Cons n a I1) m 12) is well-typed then on2 =gr S on

PAST SOLUTION: DOT PATTERNS

DoT PATTERNS
Append {Sn} (Consnall) mI2 — ..

The term between { } is used for typing only.

PROBLEM:
Subject Reduction is not preserved anymore.

EXAMPLE

T: Nat — Type.
a: Nat.
b: T a.
F: x:Nat —> T x.
[] F {a} —> b.

Then F (S a) — b but F (S a) has type T (S a) # (T a).

11/29

WEAKENING THE WELL-TYPEDNESS PROPERTY

WELL-TYPED RULE (STRONG VERSION)

I wf TAFI:T TAFr:T
r([A]l < r) wf

The following condition is sufficient (and necessary) to preserve

subject reduction:

(Strong Rewrite)

WELL-TYPED RULE (WEAK VERSION)

I wf VoeS(A),(T+ol: T=Tkor:T)

(Weak Rewrite) F([A] = r) wf

with S(A) := {o|dom(c) = A}

This is undecidable !

12 /29

TYPING A RULE AS A UNIFICATION PROBLEM

WELL-TYPEDNESS AS A SET OF EQUATIONS

Typing a term t consists in inspecting its structure and checking
that some equations modulo Sl hold.

Thus we can associate to a term t a system of equations E(t) and
a term T(t) such that t is typable iff E(t) holds and in this case
T(t) is its type.

WELL-TYPED RULE (EQUIVALENT DEFINITION)
I wf S(AE() Cc S(AE(r)U{T(I)=sr T(r)})
F([A]l < r) wf

where S(X, E) is the set of solutions of the (higher order)
unification problem E with variables in X.

3/29

EXAMPLE

EXAMPLE
E(Append n2 (Consnall)mlI2)={n2=3rSn}
E(Cons (Sn) a (Append nll m12)) = {}

> let us write @ for Append, C for Cons, N for Nat, £ for
Listn and + (infix) for Plus

» and let the local context A be:
n2 : N n:N 1:Ln
m: N 2: Lm

Keeping contexts implicit, we have the following typing tree:

FCnall:L(Sn) n2 =5r Sn

F @ n2: L£(n2) —>(mN) —L(m) =L(n24m) FCnall: L(n2)
F@n2(Cnall): (mN)—=L(m) =L(n24+m)

F@n2(Cnall)mlI2: L(n24m)

IMPLEMENTED SOLUTION

A SIMPLE IMPLEMENTATION

1. Find an approximation ¢ of a most general unifier for E(/).
(ie o must be a prefix of any solution of E(/)).

2. Check that o is a solution of E(r) U{T(/) =ar T(r)}.

This solution has been able to deal with every previous use of dot
patterns.

5/29

Dedukti

A Type-Checker for the All-calculus modulo

DEDUKTI

DEDUKTI 18

> a type-checker for the All-calculus modulo.
» a proof-checker for your logic (ie a logical framework).

» comparable with the kernel of an ITP.

DEDUKTI DOES NOT

» check that your rewrite rules are true/admissible (think of
them as axioms).

» check that your rewrite rules are terminating and confluent.

Remark: Dedukti has been completely re-implemented in OCaml
(about 1000 lines of code). (No more Lua...)

7/29

DEDUKTI AND FRIENDS

DEDUKTI IS USED AS A BACK-END BY THESE TOOLS:

» Cogqine (Assaf, Burel): an encoding of the Coq's language
(the Calculus of Inductive Constructions) into All-calculus
modulo.

» Focalide (Cauderlier): an extension of Focalize to generate
proofs in All-calculus modulo.

» Holide (Assaf, Burel): an encoding of HOL into All-calculus
modulo.

» iProver to Dedukti (Burel): an extension of iProver to
generate proofs in All-calculus modulo.

» Zenonide (Gilbert): an extension of Zenon to generate proofs
in All-calculus modulo.

18 /29

Dedukti

Case Study: the OpenTheory Library

HoLIDE

OPENTHEORY (HURD)

OpenTheory is a proof format designed to share theorems between
proof checker of the HOL family. It comes with a standard theory
library.

HOLIDE (ASSAF, BUREL)

Holide is a tool that can encode the OpenTheory’s format into the
Al-calculus or the AlM-calculus modulo.

20/29

DERIVATION RULES OF HOL

T— Refl ¢

r-f=g FrFt=u
FTUAFft=gu

AppThm

Assume

{6} ¢

Mo Ay
(MT={Hu(A—{eh)Fo=19

DeductAntiSym

FFt=u

AbsThm x
MEXxAt=MxAu

———————— Betax t
FOxAt) x=t

r¢=1v¢ Ao

TUAF ¢ EqaMp
M=o
WSubsta

21/29

EncopinGg HOL IN THE M-CALCULUS

#NAME hol_lp

(; HOL Types

type : Type.

bool : type.

ind : type.

arr : type -> type -> type.
; HOL Terms ;)

term : type -> Type.

lam : a : type -> b : type -> (term a -> term b) -> term (arr a b).
app : a : type -> b : type -> term (arr a b) -> term a -> term b.
eq : a type -> term (arr a (arr a bool)).

select : a : type -> term (arr (arr a bool) a).

EQ : a : type -> term a -> term a -> term bool :=
a : type => xX: term a =>y : term a => app a bool (app a (arr a bool) (eq a) x) y.

[...]

(; HOL Proofs ;)

proof : term bool -> Type.

REFL : a : type -> t : term a ->
proof (EQ a t t).

ABS THM : a : type -> b: type -> f : (term a -> term b) -> g : (term a -> term b) ->
(x : term a -> proof (EQ b (f x) (g x))) —>
proof (EQ (arr a b) (lam a b f) (lam a b g)).

[-..1

22/29

EncopING HOL IN THE M-CALCULUS MODULO

#NAME hol_lpm

(; HOL Types ;)

type : Type.

bool : type.

ind : type.

arr : type -> type -> type.
; HOL Terms ;)

term : type -> Type.
[a : type, b : type] term (arr a b) --> term a -> term b.

eq : a : type —-> term (arr a (arr a bool)).
select : a : type -> term (arr (arr a bool) a).

[...]

; HOL Proofs ;)
proof : term bool -> Type.
REFL : a : type -> t : term a ->

proof (eq a t t).
ABS THM : a : type -> b: type -> f : (term a -> term b) -> g : (term a -> term b) ->

(x : term a -> proof (eq b (f x) (g x))) —>
proof (eq (arr a b) f g).

[-..1

23/29

RESULTS

Proportion of trivial conversion tests Number of conversion tests (in millions)

100% 250
90%

80% 200
70%

60% = Not Trivial 150
50% = Trivial

0% 100
30%

20% 50
10%

0% 0 —

wiith rewriting without rewriting with rewriting without rewriting

Checking time (in seconds)

600
500
400
300
200
100

0

Dedukti (without rewriting) Twelf Dedukti (wnh rewriting)

Benchmarks obtained on the core package of the OpenTheory library (88 files, 1.4G).

The tests were run on a Linux laptop with a processor Intel Core i7-3520M CPU @ 2.90GHz x 4 and 16GB of Ram.

24

Future Work

Confluence and Termination

CONFLUENCE AND TERMINATION (1)

DEDUKTI’S TYPE CHECKING ALGORITHM ASSUMES:

» The Confluence of —gr.
» The Strong Normalization of — gr.

Can Dedukti help checking these properties?

26/29

CONFLUENCE

CRITERIA FOR THE CONFLUENCE OF —Ar

» —r is weakly orthogonal.
» —r is weakly confluent and —gr is terminating.

FUTURE WORK
(Weak) orthogonality/confluence detection, critical pair detection,
export functionality to (higher-order?) confluence prover.

TERMINATION

TERMINATION OF —gr

» for Object Level/Type Level Rewriting System?
» for First Order/Higher Order Rewriting System?

CRITERIA

» Modular properties of algebraic pure type systems (Barthe and
Geuvers, 1996).

» Definition by rewriting in the Calculus of Constructions
(Blanqui, 2005).

FUTURE WORK (TERMINATION)
Partial implementation of these criteria.

28 /29

TOWARD EXPLICIT REWRITE RULES IN THE
M1-CALCULUS MODULO

Ronan Saillard ~ (Olivier Hermant)

Deducteam INRIA

MINES ParisTech

December 14th, 2013

29/29

	Introduction
	The -calculus modulo
	Extending -calculus with Rewrite Rules
	Typing the Rules

	Dedukti
	A Type-Checker for the -calculus modulo
	Case Study: the OpenTheory Library

	Future Work
	Confluence and Termination

