
Automatic Streamization in GCC

Antoniu Pop
MINES ParisTech, Centre de Recherche en Informatique, Mathématiques et Systèmes

antoniu.pop@mines-paristech.fr

Sebastian Pop Jan Sjödin
Open Source Compiler Engineering, Advanced Micro Devices, Austin, Texas

firstname.lastname@amd.com

Abstract

Multi-cores and multi-processors became ubiquitous
during the last few years, and the trend is to increase
the number of simple, power-efficient, and slower cores
per chip. One of the results is that the performance
of single-threaded applications did not significantly im-
prove, or even declined, on new processors, which
heightened the interest in compiler automatic paral-
lelization techniques.

Our objective is to develop a framework in GCC to
transform loops into pipelines of concurrent tasks using
streams to communicate and synchronize. This trans-
formation can either rely on user hints (pragmas) or on
static analysis of control and data dependences. Our fo-
cus is to fully automate this transformation, which re-
quires an integration with the Graphite polyhedral loop
optimization framework and will lead to the develop-
ment of runtime optimizations based on this polyhedral
representation. This approach is complementary with
the existing parallelization passes. This paper presents
the steamization technique, the optimizations it enables,
the interaction with other optimizations, and the neces-
sary extensions to Graphite/PCP (polyhedral compila-
tion package) for its integration.

1 Introduction

Increasing clock speed as well as micro-architectural
and compiler advances have allowed steadily improv-
ing performance of single-threaded programs for many
years. However, this does not seem to be the case any
longer. The excessive design complexity and power
constraints of large monolithic processors made this
paradigm unsustainable and ultimately forced the indus-
try to develop chip-multiprocessor (CMP) architectures,

in which multiple processor cores are tiled on a single
chip. As the number of transistors per chip continues
to grow exponentially, the current trend is towards pro-
viding an increasing number of simpler, more power-
efficient, and slower cores per chip. The performance
of single-threaded applications is therefore expected to
stagnate or even decline with new generations of pro-
cessors. The applications need to exploit the multiple
hardware execution threads available on these architec-
tures to improve performance.

Besides the parallel applications, already covered by
GCC’s automatic parallelization pass, parallelization of-
ten requires enabling transformations such as privatiza-
tion, which allows removal of false dependences (write
after read and write after write). However, this trans-
formation often comes with a very high cost both in the
amount of memory required and in execution time. The
common privatization technique in which dynamic sin-
gle assignment properties are achieved may even be im-
possible in some cases because the hardware resources
are finite. Streamization allows reduction of the amount
of memory necessary for privatization (compression af-
ter the expansion of memory). Though this comes with
a reduction of the amount of parallelism exploitable, it
also brings some benefits to the way communication
through shared memory happens. The main objective
of streamization is to optimize privatization.

Another objective of streamization is to achieve pipeline
parallelism, which is complementary with data paral-
lelism. It consists of generating pipelines of concur-
rent tasks communicating and synchronized through
streams [12], which behave as blocking FIFO queues.
We will elaborate on the specificities of our stream im-
plementation in Section 2. One of the salient prob-
lems for parallelization on current architectures is to get
data at the right place, at the right time. This problem

1

becomes increasingly acute with each new generation
of processors as the memory wall builds up. Despite
the fact that the clock speed of new processors is no
longer increasing, more processing units become avail-
able, sharing the same limited resources. The number
of CPU cycles available on CMPs per unit of time is
increasing faster than the memory bandwidth because a
single data bus has to feed more processing units. To
fully exploit the available resources, applications need
higher arithmetic intensity. Also, cache effects (in par-
ticular in the case of multiple hardware threads sharing
cache lines) make scheduling decisions ever more com-
plicated. We will try to show that pipeline parallelism
can improve the behaviour of parallelized applications
in that regard.

The paper starts by presenting the details of the stream
communication library in Section 2. Section 3 presents
the application of streamization to pipeline parallelism
as well as experimental results of this technique on a
kernel extracted from the GNU Radio project. Section 4
shows how streamization can be used to optimize priva-
tization. In Section 5, we describe the techniques we
use to ensure that streamization does not inhibit other
important optimizations such as vectorization or auto-
matic parallelization. Section 6 presents the integration
of streamization with Graphite. Finally, in Section 7 we
evaluate the benefits of our approach with regards to pre-
vious contributions.

2 Privatization and Streams

Privatization is a technique used for eliminating false (or
storage-related) data dependences (write after read and
write after write dependences), in order to expose par-
allelism or enable program transformations. This tech-
nique consists in duplicating some memory area, with
various levels of duplication. Depending on the context,
it means making some memory area private (or local) to
a thread, or to a point in an iteration domain, or even
reaching a dynamic single assignment (DSA) property.

Let us consider the following example:
i n t a ;
f o r (i = 0 ; i < N; ++ i) {

a = . . . ;
. . . = . . . a . . . ;

}

If we wish to parallelize this loop on P threads, it is
sufficient to make a private to each thread. This means

that P copies of a are necessary and we can distribute the
iterations of the original loop among the threads. One
possible solution, with the outermost loop fully parallel,
is:

i n t A[P] ;
f o r (k = 0 ; k < P ; ++k)

f o r (i = k ; i < N; i += P) {
A[k] = . . . ;
. . . = . . . A[k] . . . ;

}

Here the resulting code still has false dependences (not
DSA), but they do not span across multiple outermost
loop’s iterations. If our objective was to distribute the
original loop, then we need to make more copies of a,
one for each point of the iteration domain:

i n t A[N] ;
f o r (i = 0 ; i < N; ++ i)

A[k] = . . . ;

f o r (i = 0 ; i < N; ++ i)
. . . = . . . A[k] . . . ;

There are no more false dependences (DSA code) and
the iterations of the resulting loops are parallel. This
type of privatization is also referred to as scalar expan-
sion (or array expansion if a was of higher dimension).

In the rest of the paper, we will generally refer to scalar
or array expansion as memory expansion, while priva-
tization will be used as the general notion of making at
least enough copies to enable a transformation. When
more copies than necessary have been created (e.g., by
memory expansion), reducing the number of copies will
be referred to as memory compression.

2.1 Stream Communication Library

The stream communication library provides a simple
interface for using streams, which are blocking FIFO
queues, for communicating between two threads. The
communication is unidirectional and ordered. The inter-
face provides simple access operations to the elements
in the stream, a push operation for inserting one element
at the end of the stream, and a pop operation for remov-
ing the first element in the stream. Some more complex
operations are also implemented for optimization pur-
poses.

The notion of stream is not new and often has different
accepted semantics. In some cases, streams behave as

2

bags of elements in which no order is enforced on the ac-
cess operations. This is notably the case in accelerator-
oriented streaming languages (e.g., Brook or CUDA)
because the accelerator often does not provide for syn-
chronization.

This library is not meant for programmers’ use, but as a
target for code generation, in particular in the Graphite
codegen pass1. In this case, streams are used to replace
arrays and thus compress memory (counterpart of mem-
ory expansion or privatization), replacing the strong sin-
gle assignment property by a relaxed single assignment
in which memory is reused after a synchronization point
that ensures the overwritten data is no longer useful. We
will elaborate on this use of stream communication in
Section 4.

2.2 Simplified Stream Semantic

To make the use of streams straightforward in opti-
mization frameworks such as the polyhedral compila-
tion package (PCP), we need to provide a simple ap-
proximation of the stream semantic. Though this ap-
proximation does not correspond to the underlying im-
plementation, it should be restrictive enough to ensure
the correctness of the generated code.

In most cases, streams will simply be considered as infi-
nite arrays in which elements are only written and read
once, in sequential order, like a FIFO queue.

As data is duplicated and, in this simplified semantic,
each element is assigned only once, we will consider
privatization through streams to provide DSA.

Such a semantic clearly goes against the objective of re-
ducing the memory used for privatization and is not im-
plementable with finite hardware resources. We need to
impose some restrictions on the communication patterns
to allow reusing memory.

2.3 Implementation and Interface

The implementation of streams is in the form of direc-
tional channels of communication that behave as block-
ing FIFO queues. The producer enqueues elements into
the stream and the consumer dequeues them. Streams

1For details, see the “Design of Graphite and the Polyhedral
Compilation Package” paper in the GCC Summit 2009 proceedings.

Read windowWrite window

Used space Empty space Used space

Figure 1: Sliding windows in a stream buffer.

are implemented as circular buffers to avoid excessive
memory usage, but the buffer can be dynamically re-
sized if this appears necessary. The blocking behav-
ior means that the queuing operation blocks when the
buffer is full and the dequeuing operation blocks when
it is empty.

Stream communication serves two purposes: first, it
privatizes the data, thus removing any output or anti-
dependences; second, it relaxes the flow dependences as
it decouples the producer from the consumer. Because
the stream operations have blocking semantics (i.e., the
producer waits until there is free space in the stream
and the consumer waits for elements in the stream), the
streams also provide synchronization between the pro-
ducer and consumer tasks.

The implementation of streams without ad hoc hardware
support presents two principal sources of overhead. The
first is the need to synchronize read and write opera-
tions, which can be very expensive. The second prob-
lem comes from bad cache behaviour due to false shar-
ing when the producer and consumer access elements
that are close together. Because the stream elements are
stored in a circular buffer, this happens when the buffer
is almost full or almost empty.

Both of the sources of overhead can be almost com-
pletely mitigated by adjusting the granularity of com-
munication. The synchronization overhead can be re-
duced by aggregating multiple elements in blocks and
only synchronizing the accesses to blocks of elements.
The cache degradation can be avoided by preventing the
producer and the consumer from accessing elements in
the same cache line.

To increase the granularity of the communication, we
introduce sliding windows (see Figure 1), in which the
reads and writes to the buffer occur. These sliding win-
dows are used for reducing the amount of synchroniza-
tion, which is required only when the windows are slid-
ing. The windows can also be aligned on cache bound-
aries to avoid false sharing. One or more cache lines are
reserved for writing/reading to/from the stream.

3

The interface of the streaming library provides both ba-
sic access functions, like push and pop, and more
efficiency-oriented functions that avoid unnecessary
copies and library calls. The basic interface provides
the following simple access functions:
void push (s t r eam , e l e m e n t) ;
e l e m e n t pop (s t r e a m) ;
boo l e n d _ o f _ s t r e a m (s t r e a m) ;

The push and pop functions are the usual access func-
tions to FIFOs, but it should be noted that both repre-
sent copies. The end_of_stream function checks
whether the producer has finished working and the
stream is empty. It should be called whenever it is not
possible to test for termination in other ways. This is
necessary, for example, when the producer loop is un-
der dynamic control, so that – even at runtime – it is
impossible to know the number of iterations until the
loop finishes. In most examples in this paper, the pro-
ducer and consumer iterate on the same domain, so there
is no need for this check, but examples can be found in
Sections 3.1 and 4.3.

The remaining access functions allow direct access in
the stream buffer, one window at a time. To re-
duce overhead, a task can request an empty window
from the stream and store the elements directly, us-
ing get_tail_window. Once the window has been
filled, commit_window makes it available for reading
by the consumer task. The same mechanism is available
for the consumer. An illustration of the application of
this technique can be found in Section 5.
e l e m e n t ∗ g e t _ t a i l _ w i n d o w (s t r e a m) ;
void commit_window (s t r e a m) ;

e l e m e n t ∗get_head_window (s t r e a m) ;
void pop_window (s t r e a m) ;

These operations not only reduce the runtime overhead,
they also avoid useless copies. They would also al-
low a seamless integration with software transactional
memory [9] to enable speculative execution of consumer
threads.

3 Exploiting Pipeline Parallelism with Loop
Streamization

Loop streamization is a program transformation that en-
ables pipeline parallelism in sequential programs. As
with other similar techniques that we further discuss in
Section 7, it relies on memory expansion (privatization)

and synchronization. This technique is primarily based
on loop distribution and software pipelining.

Our objective is to automatically enable and exploit
parallelism in sequential programs while avoiding non-
scalable expansion schemes. As we will see, streamiza-
tion will allow us to explore the entire space of mem-
ory expansion, ranging from the original sequential code
to the highest level of parallelism with full privatization
(which is often non-realistic). The choice of the amount
of memory duplication, and therefore of the amount of
parallelism enabled, can be both static and/or dynamic.

3.1 Streamizing while Loops

The first step in the streamization process is to parti-
tion the computation into tasks that present a producer-
consumer relationship. In the general case, tasks will
have flow dependences in between each other; other-
wise, they are only bound by control dependences. The
producer and consumer originally communicate through
a shared data structure, in which the producer writes and
the consumer reads. We replace this shared memory
communication by stream communication. The block-
ing nature of our stream implementation implicitly syn-
chronizes the execution of the producer and consumer
tasks.

The static analysis involved in partitioning a loop into
tasks is identical to that of loop distribution [11, 6]. Af-
ter building the program dependence graph [10], the
strongly connected components are coalesced. The
nodes of the resulting directed acyclic graph can be par-
titioned with, for example, an iterated minimum cut
algorithm because each cut edge will represent inter-
thread communication. Another option is to try to stati-
cally balance the load of each partition using a sparsest
cut algorithm with weighted vertices.

As an illustration of the task partitioning, consider the
following while loop:
S1 : whi le (d a t a = r e a d (i n p u t))

{
S2 : tmp = p r o c e s s (d a t a) ;
S3 : w r i t e (tmp , o u t p u t) ;

}

This type of loop actually represents a very common
case. The read operation can be thought of as read-
ing from a file in applications like video decoding or
getting the next element in a linked data structure (list,

4

S1

S2

S3

S1

S2

S3

Dependence
Graph Coalescing

After

Potential
cuts

Figure 2: Dependence graph and the DAG obtained after
coalescing strongly connected components.

tree ...). In most cases, this operation cannot be executed
concurrently because it updates the state of the input
parameter. The same remarks hold for the write oper-
ation and its output parameter.

For this code, the dependence graph is presented in Fig-
ure 2. In this simple case, the coalescing of the strongly
connected components only removes the self-cycles on
S1 and S3, exposing the potential cuts.

The parallelization of this loop can be achieved either
as a doacross schedule or by pipelining. The doacross
parallelization schedules iterations of the loop on dif-
ferent threads and introduces synchronization for each
cross-iteration dependence (we do not take into account
output and anti-dependences because they can be elimi-
nated by privatization [8]). The pipelining approach will
schedule each strongly connected component in the de-
pendence graph on a different thread and synchronize
each inter-thread flow dependence [14]. This synchro-
nization being implicit in streams, we would get the fol-
lowing streamized pipeline:

whi le (d a t a = r e a d (i n p u t)) {
push (S_data , d a t a) ;

}

whi le (! e n d _ o f _ s t r e a m (S_d a t a)) {
tmp = p r o c e s s (pop (S_d a t a)) ;
push (S_tmp , tmp) ;

}

whi le (! e n d _ o f _ s t r e a m (S_tmp)) {
w r i t e (pop (S_tmp) , o u t p u t) ;

}

To understand the reason why pipelining is more effi-
cient than other approaches, we show in Figure 3 the
doacross and pipelined schedules.

S1

S2

S3 S1

S2

S3S1

S2

S3

S1

S2

S3

S1

S1

S1

S1

S1

S2

S2

S2 S3

Thread 1 Thread 2 Thread 1 Thread 2 Thread 3

PipelineDOACROSS

Inter−core latency
+ synchronization

Figure 3: Doacross and pipeline schedules for the
while loop.

If we compare the execution traces obtained by the two
techniques, it is easy to see that pipelining will be more
efficient because it shortens the critical path. The in-
sight here is that the inter-core synchronization plus the
communication of the data will introduce a high latency.
This will be problematic if such latency is allowed on
the critical path. In the doacross schedule, the depen-
dence that is enforced across threads is a cross-iteration
dependence, which means that the underling memory
location cannot be privatized. The synchronization and
communication overhead must be paid at least once for
each iteration of the loop. However, in the pipeline
schedule, we keep such loop-carried dependences on the
same thread (this comes from the fact that each strongly
connected component of the dependence graph is sched-
uled on a single thread). The remaining dependences
will still have the same overhead, but privatization will
better tolerate (or hide) the latency.

3.2 Dynamic Loop Fusion

Another way to look at loop streamization is to consider
that it is like a halfway position between distributed and
fused loops. Depending on the amount of memory used
in the stream buffer for duplication, the producer and
consumer loops can be more or less coupled. Consider
the following streamized loop:
s t r e a m S ;
f o r (i = 0 ; i < N; ++ i) {

push (S , . . .) ;
}
f o r (i = 0 ; i < N; ++ i) {

. . . = . . . pop (S) . . . ;
}

5

If the stream S only allows storage of a single element at
a time, the possible execution schedule of the two loops
will be identical to that of the fused loops:
s t r e a m S ;
f o r (i = 0 ; i < N; ++ i) {

push (S , . . .) ;
. . . = . . . pop (S) . . . ;

}

Such a fusion (as well as the replacement of the stream
by a scalar) is always possible because the producer
and consumer necessarily traverse the same iteration do-
main. On the other hand, if the stream allows an infinite
number of elements to be stored at a time (or, in this
case, at least N elements), then the possible schedules
can be as decoupled as distributed loops.

3.3 Experimental Evaluation

We evaluate the potential of the streamization technique
on a kernel extracted from the GNU Radio project [5].
This kernel was originally extracted by Marco Cor-
nero, from STMicroelectronics, and further adapted for
streaming by David Rodenas-Pico, from the Barcelona
Supercomputing Center, for the needs of the ACOTES
project [1]. We also slightly modified the kernel for our
experiments, by annotating it with OpenMP task prag-
mas with firstprivate and lastprivate clauses. The main
loop of the annotated kernel is presented on Figure 4.
We will show, as a motivation for the optimizations un-
der development, what can be gained from streamizing
the code. We write the code as it would be generated by
an optimizing compiler, with no additional manual opti-
mizations. The implementation of the streaming library
takes advantage of the memory hierarchy by aggregat-
ing communication in reading/writing windows. These
windows should at least be of the size of an L1 cache
line, which reduces false sharing and improves perfor-
mance [12].

The OpenMP annotations we use constitute a minor ex-
tension to the OpenMP3.0 standard. We only intro-
duce the association of the lastprivate clause on
task constructs. The presence of this clause means that
the corresponding task produces a value that needs to
be propagated to the enclosing context, so anny subse-
quent task will see this value. In other words, variables
marked with lastprivate are produced by the task
and variables marked with firstprivate are con-
sumed. This knowledge allows to build pipelines of pro-
ducer/consumer tasks.

The evaluation of this benchmark is performed us-
ing a modified version of GCC4.4 available in the
streamOMP branch. The experimental results are pre-
sented on Figure 5.

The streamized code shows reasonably high speedups.
On average, the execution of the hand-streamized code
is more than three times faster than the sequential ver-
sion on all platforms. Such results are a strong incentive
to continue the development of the streamization frame-
work in GCC. We note that the load balance is not per-
fect yet as only two of the thirteen filters present in the
application have a high arithmetic intensity. This results
in equivalent speedups on all platforms despite the fact
that platforms 1 and 2 have 8 hardware threads whereas
platform 3 only has 4 hardware threads.

4 Optimizing Privatization with Streams

To expose parallelism in a sequential program or to en-
able loop transformations, it is often necessary to re-
move false dependences by privatizing the memory lo-
cations involved in these dependences. Though privati-
zation enables some optimizations, it can be excessively
expensive, both in terms of memory requirements and
execution time. We will first show how streamization
can improve the memory requirements of privatization
for the purpose of enabling an optimization.

4.1 Reducing the Memory Footprint

Privatization through memory duplication has the bene-
fit of exposing the maximum amount of parallelism, but
it also is the most expensive technique in terms of mem-
ory usage. To avoid an excessive increase in the memory
footprint when there are no loop-carried dependences, a
common technique consists of only making one copy
per concurrent thread. However, this is not always pos-
sible.

Consider the following example:

i n t a ;

f o r (i = 0 ; i < N; ++ i) {
a = . . . ;
f o r (j = 0 ; j < M; ++ j) {

a += B[j] [i] ;
}
. . . = . . . a . . . ;

}

6

#pragma omp p a r a l l e l
{

#pragma omp s i n g l e
{

whi le (16 == f r e a d (r e a d _ b u f f e r , s i z e o f (f l o a t) , 16 , i n p u t _ f i l e))
{

f o r (i = 0 ; i < 8 ; i ++)
{

p a i r . f i r s t = r e a d _ b u f f e r [i ∗ 2] ;
p a i r . second = r e a d _ b u f f e r [i ∗2 + 1] ;

#pragma omp t a s k f i r s t p r i v a t e (p a i r , fm_qd_conf) l a s t p r i v a t e (fm_qd_value)
fm_quad_demod (&fm_qd_conf , p a i r . f i r s t , p a i r . second , &fm_qd_value) ;

#pragma omp t a s k f i r s t p r i v a t e (fm_qd_value , l p _ 1 1 _ c o n f) l a s t p r i v a t e (band_11)
n t a p s _ f i l t e r _ f f d (& lp_11_conf , 1 , &fm_qd_value , &band_11) ;

#pragma omp t a s k f i r s t p r i v a t e (fm_qd_value , l p _ 1 2 _ c o n f) l a s t p r i v a t e (band_12)
n t a p s _ f i l t e r _ f f d (& lp_12_conf , 1 , &fm_qd_value , &band_12) ;

#pragma omp t a s k f i r s t p r i v a t e (band_11 , band_12) l a s t p r i v a t e (resume_1)
s u b c t r a c t (band_11 , band_12 , &resume_1) ;

#pragma omp t a s k f i r s t p r i v a t e (fm_qd_value , l p _ 2 1 _ c o n f) l a s t p r i v a t e (band_21)
n t a p s _ f i l t e r _ f f d (& lp_21_conf , 1 , &fm_qd_value , &band_21) ;

#pragma omp t a s k f i r s t p r i v a t e (fm_qd_value , l p _ 2 2 _ c o n f) l a s t p r i v a t e (band_22)
n t a p s _ f i l t e r _ f f d (& lp_22_conf , 1 , &fm_qd_value , &band_22) ;

#pragma omp t a s k f i r s t p r i v a t e (band_21 , band_22) l a s t p r i v a t e (resume_2)
s u b c t r a c t (band_21 , band_22 , &resume_2) ;

#pragma omp t a s k f i r s t p r i v a t e (resume_1 , resume_2) l a s t p r i v a t e (f f d _ v a l u e)
m u l t i p l y _ s q u a r e (resume_1 , resume_2 , &f f d _ v a l u e) ;

f m _ q d _ b u f f e r [i] = fm_qd_value ;
f f d _ b u f f e r [i] = f f d _ v a l u e ;

}

#pragma omp t a s k f i r s t p r i v a t e (fm_qd_buf fe r , l p _ 2 _ c o n f) l a s t p r i v a t e (band_2)
n t a p s _ f i l t e r _ f f d (& lp_2_conf , 8 , fm_qd_buf fe r , &band_2) ;

#pragma omp t a s k f i r s t p r i v a t e (f f d _ b u f f e r , l p _ 3 _ c o n f) l a s t p r i v a t e (band_3)
n t a p s _ f i l t e r _ f f d (& lp_3_conf , 8 , f f d _ b u f f e r , &band_3) ;

#pragma omp t a s k f i r s t p r i v a t e (band_2 , band_3) l a s t p r i v a t e (o u t p u t 1 , o u t p u t 2)
s t e r e o _ s u m (band_2 , band_3 , &o u t p u t 1 , &o u t p u t 2) ;

#pragma omp t a s k f i r s t p r i v a t e (o u t p u t 1 , o u t p u t 2 , o u t p u t _ f i l e , t e x t _ f i l e)
{

o u t p u t _ s h o r t [0] = d a c _ c a s t _ t r u n c _ a n d _ n o r m a l i z e _ t o _ s h o r t (o u t p u t 1) ;
o u t p u t _ s h o r t [1] = d a c _ c a s t _ t r u n c _ a n d _ n o r m a l i z e _ t o _ s h o r t (o u t p u t 2) ;
f w r i t e (o u t p u t _ s h o r t , s i z e o f (s h o r t) , 2 , o u t p u t _ f i l e) ;
f p r i n t f (t e x t _ f i l e , " %−10.5 f %−10.5 f \ n " , o u t p u t 1 , o u t p u t 2) ;

}
}

}
}

Figure 4: Kernel extracted and adapted from the GNU Radio project [5] with OpenMP annotations. The lastprivate
clauses on tasks enable streamization.

In this case, the loops are sequential and the array B
is not traversed in the right order. Loop interchange is
necessary to improve performance, but it is not possible
in this imperfect loop nest. The first step is to expand

the scalar a and distribute the outermost loop, then we
can interchange the loops to get the following code:
i n t A[N] ;

f o r (i = 0 ; i < N; ++ i)

7

Platform 1: Dual AMD OpteronTM Barcelona B3 CPU 8354 with 4
cores at 2.2GHz, running under Linux kernel 2.6.18, and the following
characteristics of the memory hierarchy:

• L1 cache line size: 64 B

• 64 KB per core L1 cache

• 512 KB per core L2 cache

• 2 MB per chip shared L3 cache

• 16 GB RAM

Platform 2: IBM JS22 Power6 with 4 cores, each two-way SMT, at
4GHz, running under Linux kernel 2.6.16. Memory characteristics:

• L1 cache line size: 128 B

• 64 KB L1 cache

• 2 MB per core L2 cache

• 8 GB RAM

Platform 3: Intel R© CoreTM2 Quad CPU Q9550 with 4 cores at
2.83GHz, running under Linux kernel 2.6.27, and the following char-
acteristics of the memory hierarchy:

• L1 cache line size: 64 B

• 32 KB per core L1 cache

• 2 independent 6 MB shared L2 caches

• 4 GB RAM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Platform
 1

Platform
 2

Platform
 3

S
pe

ed
up

Sequential
Streamized

Figure 5: Speedups to sequential execution obtained on the GNU Radio kernel presented on Figure 4.

A[i] = . . . ;

f o r (j = 0 ; j < M; ++ j)
f o r (i = 0 ; i < N; ++ i)

A[i] += B[j] [i] ;

f o r (i = 0 ; i < N; ++ i)
. . . = . . . A[i] . . . ;

Now the array traversal is correct and the innermost loop
is parallel. If we want to parallelize the outermost loop,
we cannot interchange (or we would just go back to an
inefficient traversal of B), so we need to further priva-
tize the array A. However, the expansion of array A does
not parallelize the outermost loop (see below), and loop
skewing will not allow for a higher granularity of paral-
lelism than the innermost loop parallelization.
i n t A[M] [N] ;

f o r (i = 0 ; i < N; ++ i)
A[0] [i] = . . . ;

f o r (j = 0 ; j < M; ++ j)
f o r (i = 0 ; i < N; ++ i)

A[j + 1] [i] = A[j] [i] + B[j] [i] ;

f o r (i = 0 ; i < N; ++ i)
. . . = . . . A[M] [i] . . . ;

If, instead of a scalar expansion followed by an array
expansion, we use stream privatization, we can both re-
duce the amount of memory used and relax the synchro-
nization. We obtain the following code:

s t r e a m S [M] ;

f o r (i = 0 ; i < N; ++ i)
push (S [0] , . . .) ;

f o r (j = 0 ; j < M; ++ j)
f o r (i = 0 ; i < N; ++ i) {

tmp = pop (S [j]) + B[j] [i] ;
push (S [j + 1] , tmp) ;

}

f o r (i = 0 ; i < N; ++ i)
. . . = . . . pop (S [M]) . . . ;

One interesting thing to note is that, while skew-
ing allows to parallelize along Lamport hyperplans,
streamization allows a much more relaxed wavefront
parallelization schedule, as shown on Figure 6.

8

1

1

0

0 2
i

j

3 4

2

3

Executed iteration

Scheduled iterations

Non scheduled

Unsatisfied dependence

Satisfied dependence

1

1

0

0 2
i

j

3 4

2

3

Hyperplan schedule Relaxed wavefront schedule

Figure 6: Lamport hyperplan schedule of the loop nest and relaxed scheduled of the streamized loop nest.

The amount of memory used to privatize the scalar a
is also reduced by streamization. As we noted in Sec-
tion 2.3, a stream can be made to use as little as a single
copy of the privatized memory area (the scalar a here)
or any arbitrary integer σ (the size of the stream) multi-
ple of this amount. In the original code, a occupies O(1)
memory space. After the scalar expansion, the array A
used for privatization uses O(N) and then O(M ∗N) af-
ter array expansion. The streamized version of the code
uses O(σ ∗M) space, which can be significantly lower
than its non-streamized counterpart.

4.2 Memory Duplication vs. Parallelism

A further optimization is possible on the previous exam-
ple if we only make one stream copy per thread. Con-
sider that the outermost loop will be executed in parallel
over P threads. Then it is not necessary to use mem-
ory expansion to privatize the streams used to commu-
nicate between the different iterations of the outermost
loop. The following code would result from this mem-
ory compression:
s t r e a m S [P] ;

f o r (i = 0 ; i < N; ++ i)
push (S [0] , . . .) ;

f o r (k = 0 ; k < P ; ++k)
f o r (j = k ; j < M; j += P)

f o r (i = 0 ; i < N; ++ i) {
tmp = pop (S [k]) + B[j] [i] ;
push (S [(k+1)%P] , tmp) ;

}

f o r (i = 0 ; i < N; ++ i)
. . . = . . . pop (S [0]) . . . ;

In this final form, the privatization of a only requires
O(σ ∗P) copies. This is especially interesting because
we can control the amount of parallelism available by
increasing the amount of memory duplication at the
finest granularity. If we increase the size of the ster-
ams σ , we can reduce the coupling between the con-
current threads, while P directly controls the amount
of parallelism available. This allows exploration of the
full space of memory expansion, from scalar to multi-
dimensional array expansion (if we make streams of size
N and P = M).

One interesting benefit of our approach is to allow us to
very precisely choose the tradeoff between the amount
of parallelism made available and the amount of mem-
ory used in the privatization process.

4.3 Postamble to Privatization

In most privatization techniques, there is a preamble
(duplicating the memory) and a postamble (storing in
the original memory the values that would have been
generated in the sequential computation). This postam-
ble is necessary if the memory is read afterwards or if
it is not possible to determine whether it is still needed.
This last step can be fairly expensive and complicated
in some cases. However, the use of streamization based
privatization makes this trivial. As streamization re-
quires the sequentialization of the computation in the

9

pipeline, the last computed value for each memory lo-
cation corresponds to the last value stored in the stream
used for privatizing that location. It is therefore enough
just to store back to the original memory location the
last value of the stream, which is an O(1) operation.

For example, memory expansion in the following code
requires the last computed value of a to be kept for the
use statement after the loop:

i n t a ;
f o r (i = 0 ; i < N; ++ i) {

i f (c o n d i t i o n (i))
{

a = . . . ;
. . . = . . . a . . . ;

}
}
use (a) ;

If we privatize, we get the following:

i n t A[N] ;
i n t a ;
f o r (i = 0 ; i < N; ++ i) {

i f (c o n d i t i o n (i))
{

A[i] = . . . ;
. . . = . . . A[i] . . . ;

}
}
a = p o s t a m b l e (A) ;
use (a) ;
}

where postamble returns the element in array A that
was last assigned. If the loop was executed in parallel,
then it is necessary to keep track of all stores to the array
and find the maximum on the indices in the array where
a store occured. Though this operation is parallelizable,
the operation requires O(N) steps.

If the loop was streamized instead, it is sufficient to store
in a the last element in the stream:

i n t a ;
s t r e a m S ;
f o r (i = 0 ; i < N; ++ i) {

i f (c o n d i t i o n (i))
{

push (S , . . .) ;
}

}
whi le (! e n d _ o f _ s t r e a m (S)) {

. . . = . . . pop (S) . . . ;
}
a = l a s t _ e l e m e n t (S) ;
use (a) ;
}

5 Interaction with GCCOptimization Passes

It is important to ensure that the streamization pass does
not inhibit, or hinder the applicability of, other optimiza-
tion passes in GCC.

Our objective is to ensure that if, for example, a loop is
vectorizable prior to streamization, then the streamized
loop also benefits from vectorization.

To achieve this, we introduced the window operations
described in Section 2.3. Using these operations, we
achieve some form of loop blocking in which the inner
loop will present the same structure as the original loop,
and which is therefore equally vectorizable.

Without entering into the implementation details, the
stream implementation relies heavily on aggregation of
multiple elements in windows (see [12] for details).
This has multiple advantages, in particular for cache be-
havior and synchronization overhead reduction. In the
following code, the streamization process does not ac-
cess the stream element-wise, as we used in the other
examples, but by blocks of window_size elements at
a time. This allows the innermost loop, which iterates
over each one of these blocks, to have a regular behav-
ior conducive to vectorization.

We used this example in previous sections:
i n t a ;
f o r (i = 0 ; i < N; ++ i) {

a = . . . ;
. . . = . . . a . . . ;

}

instead of the following streamized loop in which no fur-
ther optimization is possible due to the access function
calls:
s t r e a m S ;
f o r (i = 0 ; i < N; ++ i) {

push (S , . . .) ;
}
f o r (i = 0 ; i < N; ++ i) {

. . . = . . . pop (S) . . . ;
}

We will have:
s t r e a m S ;
i n t ∗w1 , ∗w2 ;

f o r (i = 0 ; i < N; i += window_size) {
w1 = g e t _ t a i l _ w i n d o w (S) ;
f o r (j = 0 ; j < window_size ; ++ j) {

w1 [j] = . . . ;
}

10

commit_window (S) ;
}
f o r (i = 0 ; i < N; i += window_size) {

w2 = get_head_window (S) ;
f o r (j = 0 ; j < window_size ; ++ j) {

. . . = . . . w2 [j] . . . ;
}
pop_window (S) ;

}

The outer loop handles synchronization and communi-
cation, while the nested loop is very similar to what we
could have obtained by expanding the scalar a and dis-
tributing the loop, as we did in Section 2. The important
parameter will be the window size, which will determine
profitability: a small sliding window would create too
much synchronization, while a too-large window would
make the processed data not fit in the caches.

In the fully dynamic case, the runtime may determine
the size of windows, but at the expense of having to
make the vectorization decisions at runtime and using
a vector and scalar version of the computation task.

In the static transform case, a part of the synchroniza-
tion is transformed into static control using loop block-
ing: this enables vectorization at compile time and elim-
inates some runtime checks. The window size chosen at
compile time may not be the best because the memory
communication and synchronization costs are less pre-
cise at compile time.

The stream runtime dynamically performs loop fusion
and loop blocking, operations that may be performed at
a lesser cost at static time by the Graphite framework,
but with greater uncertainty on the dynamic costs.

6 Integration with Graphite/PCP

The data flow analysis of memory accesses is available
in the polyhedral representation GPOLY of the PCP in-
frastructure. Some of the transformations performed by
GPOLY involve data privatization that can be optimized
using streams. GPOLY tags some of the arrays that have
been used for privatization as streams when the data
flows through the array as through a FIFO. PCP then
annotates the dimensions of the arrays that can be com-
pressed into streams, and the code generation produces
the streamized code without further analyses.

6.1 Data Flow Analysis for Streamization

A stream can be used when the memory communication
between a consumer and a producer has the following
properties:

• Source and target iteration domains are equal: the
number of points and the iteration order over these
points are identical; and,

• Data dependences between producer and consumer
are regular: the consumer must read the data in the
same order it was produced.

Under these conditions the dimensions that can be con-
tracted into a stream are marked with an annotation by
PCP.

6.2 A Stream Extension to PCP

In PCP, the streams are represented as arrays with one
of their dimensions annotated with the stream flag:

streamType <- array(10, 100 | stream(1))

This example defines the type of an array of 10 by
100 elements, in which the second dimension contain-
ing 100 elements could be compressed using a stream:
the stream annotation can be ignored, in which case a
full size array has to be generated.

6.3 Stream code generation from PCP

Streams are created in the Graphite code generation.
The stream annotation allows the code generation to
transform an array into a stream without further data
flow analysis. There is no need to communicate the
end of generated data between the producer and the con-
sumer because the iteration domains in which they occur
are identical. This, and the fact that a stream array is de-
fined and used only once, allows the code generator to
always insert the initialization and the finalization of the
streams before the loop nest of the producer and after
the loop nest of the consumer.

11

7 Related Work

Stream programming has recently attracted a lot of at-
tention as an alternative to other forms of parallel pro-
gramming that offers improved programmability and
may, to a certain extent, reduce the severity of the mem-
ory wall. Many languages and libraries are available for
programming stream applications. Some are general-
purpose programming languages that hide the under-
lying architecture’s specificities, while others are pri-
marily graphics processing languages, or shading lan-
guages. Some hardware vendors also propose low-level
interfaces for their GPUs.

The StreamIt language [2] is an explicitly parallel pro-
gramming language that implements the Synchronous
Data Flow (SDF) programming model. It contains syn-
tactic constructs for defining programs structured as task
graphs. Tasks contain Java-like code that is executed
in a sequential mode. StreamIt provides three intercon-
nection modes: the Pipeline allows the connection of
several tasks in a straight line; the SplitJoin allows for
nesting data parallelism by dividing the output of a task
in multiple streams, then merging the results in a single
output stream; and, the FeedbackLoop allows the cre-
ation of streams from consumers back to producers. The
channels connecting tasks are implemented either as cir-
cular buffers, or as message passing for small amounts
of control information.

The Brook language [3] provides language extensions
to C with single-program multiple-data (SPMD) op-
erations that work on streams (i.e., control flow is
synchronized at communication/synchronization oper-
ations). Streams are defined as collections of data
that can be processed in parallel. For example:
“float s<100>;” is a stream of 100 independent
floats. User-defined functions that operate on streams
are called kernels and use the “kernel” keyword in the
function definition. The user defines input and output
streams for the kernels that can execute in parallel by
reading and writing to separate locations in the stream.
Brook kernels are blocking: the execution of a kernel
must complete before the next kernel can execute. This
is the same execution model that is available on graph-
ics processing units (GPUs): a task queue contains the
sequence of shader programs to be applied on the tex-
ture buffers. The CUDA infrastructure from NVIDIA
[4] is similar to Brook, but also invites the program-
mer to manage local scratchpad memory explicitly: in

CUDA, a block of threads, assigned to run in parallel
on the same core, share access to a common scratch-
pad memory. CUDA is lower level than Brook from a
memory control point of view. The key difference is that
CUDA has explicit management of the per-core shared
memory. Brook was designed for shaders: it produces
one output element per thread, any element grouping is
done using input blocks reading from main memory re-
peatedly.

The ACOTES project [1] proposes extensions to the
OpenMP3.0 standard that can be used for manually
defining complete task graphs, including asynchronous
communication channels: it adds new constructs and
clauses such as a new task pragma with clauses for
defining inputs and outputs [7]. The implementation
of the ACOTES extensions to OpenMP3.0 includes two
parts: the compiler part translates the pragma clauses
to calls to a runtime library extending the OpenMP li-
brary. The ACOTES extensions are an attempt to make
communication between tasks explicit. Channels can be
implemented on top of shared memory as well as on top
of message passing. ACOTES extensions can be classi-
fied MIMD because several tasks can execute in parallel
on different data streams. This aims to shift the memory
model of OpenMP from shared memory to distributed
memory for the task pragmas.

The resulting ACOTES programming model can be
compared to the Brook language: these languages both
provide the notion of streams of data flowing through
processing tasks that can potentially contain control
flow operations. The main difference between these two
programming languages is in their semantics. In the
execution model of a Brook task, the task is supposed
to process all the data contained in the stream before
executing another task. The tasks in the ACOTES se-
mantics are non-blocking: the execution of a task can
proceed as soon as some data is available in its input
streams. The main limitation of the Brook language
is the intentionally blocking semantics that follows the
constraints of the target hardware (i.e., GPUs, where the
executing tasks have to be loaded on the GPU, an oper-
ation that has a non-negligible cost). The design of the
Brook language and of CUDA follow these constraints,
restricting the expressiveness of the language, intention-
ally. The ACOTES programming model does not con-
tain these limitations and the runtime library support of
the ACOTES streams can dynamically select the block-
ing semantics of streams to fit the cost constraints of the

12

target hardware.

Another interesting approach to generate the data trans-
mission towards the accelerator boards is that of the
CAPS enterprise: codelets are functions [13] whose pa-
rameters can be marked with input, output, or inout. The
codelets are intended to be executed remotely after the
input data has been transmitted.

The technique that is closest to our approach is the de-
coupled software pipelining (DSWP) [14] proposed by
Rangan et al. The authors extract parallelism by build-
ing the program dependence graph, then isolating in
separate threads the strongly connected components of
the graph. They rely on hardware support in the form of
synchronization arrays and evaluate their code on a sim-
ulator. They recognize that, without hardware support,
their technique only results in slowdowns. The static
analysis used in this framework is unable to handle cases
other than loop distribution.

8 Conclusion

We presented some motivating factors for the exten-
sion of the Graphite and PCP optimization infrastruc-
tures with streamization. Streamization allows exploit-
ing pipeline parallelism in otherwise sequential loops
and we have showed that its application to a GNU Ra-
dio kernel results in interesting speedups. This tech-
nique also allows reducing the amount of memory used
for privatization and to finely explore the tradeoff be-
tween parallelism and memory expansion.

The paper details the interactions of streamization with
other GCC optimizations and suggests an extension to
PCP for integration with Graphite.

References

[1] ACOTES: Advanced Compiler Technolo-
gies for Embedded Streaming. http:
//www.hitech-projects.com/
euprojects/ACOTES/.

[2] The StreamIt language. http://www.cag.
lcs.mit.edu/streamit/.

[3] The Brook Language. http://graphics.
stanford.edu/projects/brookgpu/
lang.html.

[4] The CUDA Language. http://www.nvidia.
com/object/cuda_home.html.

[5] The GNU Radio project. http://www.gnu.
org/software/gnuradio/.

[6] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2006.

[7] P. Carpenter, D. Ródenas, X. Martorell,
A. Ramírez, and E. Ayguadé. A streaming
machine description and programming model. In
S. Vassiliadis, M. Berekovic, and T. D. Hämäläi-
nen, editors, SAMOS, volume 4599 of Lecture
Notes in Computer Science, pages 107–116.
Springer, 2007.

[8] R. G. Cytron. Compile-time scheduling and opti-
mization for asynchronous machines. PhD thesis,
Champaign, IL, USA, 1984.

[9] U. Drepper. Parallel programming with transac-
tional memory. Queue, 6(5):38–45, 2008.

[10] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimiza-
tion. ACM Trans. Program. Lang. Syst., 9(3):319–
349, 1987.

[11] K. Kennedy and K. S. McKinley. Loop distribu-
tion with arbitrary control flow. In Supercomputing
’90: Proceedings of the 1990 conference on Su-
percomputing, pages 407–416, Los Alamitos, CA,
USA, 1990. IEEE Computer Society Press.

[12] A. Pop, S. Pop, H. Jagasia, J. Sjödin, and P. H. J.
Kelly. Improving GNU compiler collection in-
frastructure for streamization. In Proceedings of
the 2008 GCC Developers’ Summit, pages 77–86,
2008.

[13] S. B. R. Dolbeau and F. Bodin. Hmpp: A
hybrid multi-core parallel programming environ-
ment. In Workshop on General Purpose Process-
ing on Graphics Processing Units (GPGPU 2007),
2007.

[14] R. Rangan, N. Vachharajani, M. Vachharajani, and
D. August. Decoupled software pipelining with
the synchronization array. In 13th International
Conference on Parallel Architecture and Compila-
tion Techniques (PACT), Sept. 2004.

13

