CENTRE DE RECHERCHE EN INFORMATIQUE

CONTROL-FLOW EFFECTS FOR ESCAPE ANALYSIS

Yan-Mei TANG

Juin 1992

Workshop on Static Analysis 92 (JPASPEFL)
Bordeaux, France, September 23-25, 1992

Document EMP-CRI A-225

Control-Flow Effects for Escape Analysis

Yan-Mei Tang
Pierre Jouvelot

CRI, Ecole des Mines de Paris, France

Abstract

We present a static system that reconstructs the types and control-
flow information of expressions in an implicitly typed functional lan-
guage with imperative operations. Just as types describe the possible
values of expressions, control-flow information describes the possible
flow of control during evaluation. In functional languages, the control-
flow information of an expression is defined as the set of all of the
functions possibly called during its evaluation.

We introduce a static semantics for inferring types and control-flow
information, and state its consistency with respect to the dynamic se-
mantics. As a direct application of this analysis, we present a static
criterion for identifying escaping functions, whose environments out-
live their lexical scope, based on the inferred type and control-flow in-
formation. Non-escaping functions can be efficiently stack-allocated,
leaving heap-allocation only to escaping functions.

1 Introduction

First-class function values are represented as closures by compilers. Closures
are composed of two parts: the function code and the free variables that form
the function environment. Finding an efficient allocation strategy for closure
environments is therefore important for optimizing compilers of functional
languages. Closures can be allocated either in the heap or in the stack.

Since functions are first-class values, they may outlive the environment
in which they are defined; these so-called escaping functions do not obey the
LIFO stack-allocation strategy and must be heap-allocated. Heap-allocation
is more general than stack-allocation in the sense that heap-allocation can
be used for all functions, while stack-allocation is only safe for non-escaping
functions. However, stack-allocation is cheaper than heap-allocation because
useless storage is simply reclaimed by updating a pointer instead of calling
the garbage collector (but see [1] for a different point of view).

A good strategy for closure allocation for functional languages is to stack-
allocate non-escaping functions while reserving the more expensive heap-
allocation to escaping ones. A key problem is thus to identify safely and as
precisely as possible escaping functions.

We present a new static analysis for identifying escaping functions in
functional languages that support imperative constructs and separate com-
pilation. This static analysis directly relies on a new effect system that infers
the type and control-flow effect of expressions. This control-flow static se-
mantics is defined within the type and effect framework [4,8 6]

Effect systems allow the compile-time determination of behavioral proper-
ties of programs such as side-effects [8,13], time complexity [3] or continuation
effects [5]. Control-flow determination is difficult in higher-order languages
since the function call graph is dynamic. By using the effect framework, we
are able to get an approximation of this graph, while allowing separately
compiled functions to be independently analyzed.

We discuss the related work (Section 2), present our language syntax and
dynamic semantics (Section 3), describe our new control-flow effect system
(Section 4), show its application to escape analysis (Section 5) and conclude
(Section 6).

2 Related Work

Escaping functions can be identified either at compile time, based on a static
analysis of programs, or at run time, using a run-time checking mechanism [2].
We only discuss compile-time approaches.

The Scheme [10] compilers Rabbit [12] and ORBIT (7] perform very sim-
ple escape analysis to optimize the closure allocation strategy. These analyses
are syntax-based, i.e., the escaping functions are identified by their syntac-
tical context through a recursive walk of expressions. In our approach, the
escape analysis is based on the type and control-flow information of expres-
sions, as computed by a type and effect inference system. Our escape analysis
is thus more precise than that of Rabbit or ORBIT, in particular when deal-
ing with higher-order functions.

In Shivers’s thesis [11], the control-flow analysis is based on a non-stan-
dard abstract interpretation. This abstract interpretation is expensive and
does not support separate compilation, which limits its application. By con-
trast, our control-flow analysis is performed by a type and effect inference
system that supports the separate compilation of modules.

Control effects, defined in [5], are somewhat related to the control-flow
information we gather here. However, these control effects are targeted to
non-functional behaviors, such as those created by branches or continuations.
Also, this analysis is targeted to an explicitly typed language, which allows

explicit polymorphism.

The type and effect reconstruction algorithm used in [13] for side-effect
analysis, together with its proof of the consistency of the analysis with respect
to the dynamic semantics, can be easily applied to our static semantics.

3 Language Definition

Our language is a simple imperative extension of the lambda-calculus. Since
operations on locations are of particular interest in identifying escaping func-
tions, they are explicitly specified here:

eu= x value identifier
(e &) application
(lambda n (x) e) abstraction
(let (x o) ¢') lezical definition

(new o) initialization
(get o) dereference
(set o ¢) assignment

Notice that all lambda expressions are explicitly given a name n (from
the domain Id of identifiers) which is used to uniquely identify them. It is
straightforward to transform a program with unnamed lambda expressions
into this language.

The dynamic semantics is specified by a set of transition rules [9]. In
addition to defining the usual evaluation process, this semantics also keeps
track, in éraces, of the functions called during the evaluation of expressions.
Given a store s mapping locations to values and an environment E mapping
variables to values, the dynamic semantics associates an expression e with
the value v it computes, the trace f of the function names called during
evaluation and the possibly updated store s'. We note:

s,EFe—uv,f,s

4 Type and Control-Flow Semantics

We specify a static semantics that approximates the control-flow behavior of
expressions. It is presented as a set of inference rules that, for each expression,
specify its type and the trace of the functions which may be called during
evaluation.

A control c abstracts a trace f in the dynamic semantics and thus records
all of the functions that can possibly be called during the evaluation of an
expression. It can either be the constant) which means that the expression
is a basic block, a singleton {n} in which n is a function name, a control

variable cv or a set of function names, indicated by the infix union operator
u.

A type ¢ can either be the basic type unit, a type variable tv, a reference
type ref(t) which represents updatable locations containing values of type ¢
(the reference type makes locations identifiable at compile-time), a function
type ¢t = t’' where c is the latent control-flow information (a latent control-
flow is the set of functions possibly called when a function of this type is
called). A type environment T is a finite map from identifiers to types.

c€ Control =0 |{n}|cv|cUc Control
te Type =unit | tv | ref(t) |t S ¢ Type
T e Tenv = Id — Type Type environment

Given a type environment T, the inference rules of the static semantics
associate the expression e with its type and control-flow information:

TrFe:t,c

The crucial rules are the (abs) and (app) rules for lambda abstraction
and application. In the abstraction case, the current function name is added
to the functions called by the lambda body; the resulting set is the latent
control-flow effect of the lambda expression. When such a function is applied,
in the (app) rule, this latent control-flow information is used to determine
the functions possibly called while evaluating the function body.

Types and control-flow effects of variables bound to side-effect free ex-
pressions in let forms can be polymorphic. A simple policy, based on the
expansiveness of expressions [14], is chosen to detect if expressions have side-
effects or not. A non-ezpansive expression is syntactically guaranteed not
to allocate references. Variables and lambda-abstractions are non-expansive
expressions. By extension, a let expression is non-expansive if and only if
both of its binding expression and its body expression are non-expansive.

Non-expansive let expressions, which can be generalized over, are han-
dled by syntactic substitution of the binding for the variable in the body.
This avoids the complication of introducing sophisticated type schemes in-
side the static semantics. This simple technique provides an equivalent way
of expressing the polymorphic types of non-expansive expressions bound in
let bindings. We write e'[e/x] for the textual substitution of e for x in €.

Subeffecting is introduced by the (does) rule which can be used when-
ever a type or effect mismatch occurs in the application rule (app) and the
assignment rule (set). This allows control-flow information to be augmented
when needed.

x € Dom(T)
Tkx:T(x),0

(var) :

Tx{x—t'}Fe:t,c
Tt (lambda n (z) o): ¢ °¢0

(abs) :

Tl—e:t’f»t,c
(app): TthHe':¢,¢
Tk(e &):t,cucduc"

—ezpansive[e]

T'Feile

Tt e'le/x]:¢,¢
TH(let (x o) &):t,c

(let) :

ezpansive[e]

Tre:t,c
TxU{x—1t}Fe:¥¢
TFH(let (x e) &'):t,cUc

(ilet) :

TFe:t,c
Tre:t,eUd

(does) :

Tlre:tc

{(som): T - (new o) : ref(t),c

T'Fie: vefli),e

(get) : Tt (get e):t,c

TFoe:ref(t),c
(set): ThHe':t,d
Tt (set e €'): unit,cU¢

The consistency of the dynamic and static semantics states that, if a
function name n occurs in the control-flow effect of an expression, then the

function n may be called while evaluating the expression. The proof is similar
to [13].

5 Escape Analysis

The compile-time knowledge of possible control-flow behaviors permits es-
cape analysis to be performed, even in the presence of imperative constructs
and higher-order functions.

5.1 Identifying Escaping Functions

A function escapes if its value is accessible outside the lexical scope of any of
its free variables. We use the control-flow information inferred by our static
semantics to determine an approximation of this property. More precisely,
we identify all escaping functions and their escape-level and escape-set. The
escape-level of an escaping function is the smallest lexical level at which the
function escapes (or infinity if the function does not escape) while its escape-
set is the set of the free variables of the function body that outlive their
scope.

To compute this information, we use two environments, LE and EE. The
lezical environment LE maps identifiers to the integer lexical levels at which
they are bound. The escape-environment EE maps a lexical level lev defining
a lambda expression to the function type t L ; this type records, via the
latent control-flow effects possibly present in ¢ or #', the names of all of the
functions that may escape at the level lev. A function n, defined at level lev’,
escapes at level lev by being either part of the value returned at level lev (its
name is free in ¢') or stored in a location bound at lexical level lev (its name
is free in t); the function n is then said to escape from lev’ to lev.

Given a lexical environment LE and an escape-environment EE, the algo-
rithm 7 updates, for an expression e at level lev, the identification function 3.
This identification function maps a function name to the pair of its escape-
level and escape-set. Otherwise, a function can escape to multiple lexical
levels; conservatively, the escape-level is the minimum of them. The escape-
set collects all of the free variables of a function bound at a lexical level
larger than the escape-level. These two escape attributes are conservative
approximations of their dynamic counterparts.

We assume in 7 that the expression is completely typed, the type and
control-flow information having been previously inferred by the control-flow
effect system, and that expansive lets are desugared into lambda applica-
tions while non-expansive ones are explicitly substituted.

I(e) LE EFE lev : =
case e in
=13
(e ') = I(e) LE EFE lev (I(e') LE EE lev 1)
(lambda n (x:t) e':t') =

let i' = I(e') (LE{x—lev}) (EE{lev—t5t'}) (lev+1) i
let el = Min{lev | n € fn(EE(lev))}

let es = {yc fo(e) | LE(y) > el }

i'{n—>(el, es)}

where fo computes the set of free variables of expressions and environments,
while fn restricts this set to function names. By convention, Min{} is defined
to be infinity. The identification function of a whole program expression p
is given by calling T on p with empty environments, lexical level 0 and a
bottom identification function.

5.2 Allocation Strategy

The previously computed escape attributes, escape-level and escape-set, can
be used to efficiently allocate closure environments. First, the environment
of a non-escaping function can be stack-allocated. Second, for an escaping
function, only the bindings of the variables that appear in its escape-set need
to be heap-allocated in the closure environment; the others can, as before, be
stack-allocated. These two code and space optimizations can be extremely
worthwhile, especially in large programs that need separate compilation.

6 Conclusion

We introduced a new static system that reconstructs the types and control-
flow information of expressions in an implicitly typed functional language
with imperative operations. Using the type and effect framework, this analy-
sis can be performed in the presence of separate compilation and higher-order
functions, where other methods fail. We showed how generic polymorphism
in let bindings can be introduced when computing control-flow information.
Although not presented here, recursive functions can be dealt with easily.
As an application, we described how closure environments can be efficiently
stack-allocated using control-flow information.

We are currently implementing this algorithm in a full-fledged compiler,
and working to extend our method to deal with control-flow polymorphism
for lambda-bound functions,

Acknowledgments

We thank Jean-Pierre Talpin for his advice and Vincent Dornic, Susan Flynn-
Hummel, Mark A. Sheldon and Jim O’Toole for their remarks on drafts of
this paper.

References

[1] Appel, A. W. Compiling with Continuations. Princeton University, 1992.

[2] Baker, H.G. “CONS Should not CONS its Arguments, or, a Lazy Alloc
is Smart Alloc”. In ACM SIGPLAN Notices, Volume 27, No.3 ,March,
1992

[3] Dornic, V., and Jouvelot, P. “Polymorphic Time Systems for Estimating
Program Complexity”. In JTASPEFL’91, Bordeauz, France, October
1991.

[4] Gifford, D. K., Jouvelot, P., Lucassen, J. M., and Sheldon, M. A. “FX-87
Reference Manual”. In MIT/LCS/TR-407, MIT Laboratory for Com-
puter Science, September 1987.

[5] Jouvelot, P., and Gifford, D. K. “Reasoning about Continuations with
Control Effects”. In Proceedings of the 1989 ACM SIGPLAN Int. Conf.
on Prog. Lang. Desi. and Impl.. ACM, New-York, 1989.

[6] Jouvelot, P., and Gifford, D. K. “Algebraic reconstruction of types and
effects”. In Proceedings of the 1991 ACM Conference on Principles of
Programming Languages. ACM, New-York, 1991.

(7] Kranz, A. D. ORBIT: An Optimizing Compiler for Scheme. PhD thesis,
Yale University. February 1988.

(8] Lucassen, J. M., and Gifford, D. K. “Polymorphic Effect Systems”. In
Proceedings of the 1988 ACM Conference on Principles of Programming
Languages. ACM, New-York, 1988.

[9] Plotkin, G. “A structural approach to operational semantics”. In Tech-
nical report DAIMI-FN-19. Aarhus University, 1981.

[10] Rees, J., and Clinger W., Editors. Fourth Report on the Algorithmic
Language Scheme. September 1988.

[11] Shivers, O. Control-Flow Analysis of Higher-Order Languages. PhD the-
sis, University of Yale. May 1991.

[12] Steele, G. “Rabbit: A Compiler for Scheme”. In MIT-AI Technical Re-
port No. 474. MIT Laboratory for Computer Science, May 1978.

[13] Talpin, J. P., and Jouvelot, P. “Polymorphic Type, Region and Effect
Inference”. To appear in the Journal of Functional Programming, Cam-
bridge University Press, 1992. Also in Technical Report EMP-CRI-E150,
Ecole Nationale Supérieure des Mines de Paris, February 1991 (revised
December 1991).

[14] Tofte, M. Operational semantics and polymorphic type inference. PhD
Thesis, University of Edinburgh, 1987.

