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Abstract

Parallel tasks generated by automatic parallelizers do
not take advantage of supercomputer memory hierar-
chies. This paper presents algorithms to transform a
parallel task into an equivalent one that uses data with
fast access memory. This new task moves the used data
from shared to local memory, performs computations
with copies in local memory, and writes back modified
data.

Array elements are often used in parallel tasks. Our
goal is to generate codes automatically in order to move
array elements that are accessed in a set of loops during
an execution of the task. This set of array elements is
characterized by a set of integer points in Z? that is not
necessarily a convex polyhedron. Thus, algorithms pre-
viously known often generate codes that have complex
loop bounds and/or that may induce multiple copies of
the same element.

In the case of data transfers from global memory
to local memory, it is possible to copy a superset of ac-
cessed elements, for instance its convex hull. A trade-off
has to be made between local memory space, transfer
volume and loop bound complexity (i.e. control over-
head).

To copy data back from local memory to global
memory is more difficult because global memory con-
sistency must be preserved. Each processor should only
copy its own results, to avoid errors and, secondarily,
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to decrease global memory traffic.

The input of our main algorithm is an integer con-
vex polyhedron defining the computation space and an
affine function representing the index expressions. Iis
output is a set of nested loops containing data transfer
codes and computation codes with local array refer-
ences. Each element is copied only once. Loop bound
expressions use integer divisions to generate non-convex
sets.

For most practical programs, this algorithm pro-
vides optimal code in number of data movements and
control overhead.

Introduction

The performance of shared memory multiprocessors is
often limited by shared memory access time. Introduc-
tion of local and cache memories allows for the reduc-
tion of memory access time, but creates two problems:

e management of data transfers between memory
levels,

e maintenance of coherency in the shared memory.

Many methods [CeFe78], [BrDu83], [OwAg89], [ChVes89],

[Karl89] have been developed to resolve these difficul-
ties for cache memories, managed by the system. On
the other hand, few methods [GJGa88], [GIGa88b] have
been proposed for the management of local memories,
which must be done by programmers.

Programs produced by automatic parallelizers do
not generally take advantage of local memories. The



goal of our study is to add one phase to parallelizers
in order to transform a parallel task into an equivalent
one that uses these fast access memories. This phase
transforms one parallel task into a sub-program con-
taining: code of transfer that moves needed data from
shared memory to local memories, computation code
that will execute with data residing in local memory,
code of transfer that moves data modified during exe-
cution from local memories to shared memory.

Characterization of used and modified data raises
problems when arrays are used. Their elements are
often referenced in sets of loops contained in a parallel
task, and their transfer into local memory is important.
Thus, transfer code generation of data referenced by
array in a set of loops is the subject of this paper.

In the first section, an example introduces the type
of sub-program that we want to generate at the end
of the transformation phase. After specification of no-
tations used in this paper in the section 2, the third
section details the different steps of the transformation
phase. The different problems that we have met and
the solutions that we propose are presented. The next
section describes more precisely, with a theoretical ap-
proach, the generation phase of the transfer codes and
specifies how we propose to compute the data set that
has to be transferred. Section 5 presents why the pro-
posed algorithms could be used to improve some phases
of code generation for methods used in another context:
the tasks parallelization on distributed memory multi-
processors. Finally, a comparison of our method with
others is presented in the section 6, before the conclu-
sion.

1 Example

In the first step, the parallel task is assumed to con-
tain only assignment statements (no CALL or IO state-
ments). Loop bounds and subscript expressions are as-
sumed to be linear expressions.

The following example is designed to demonstrate
problems that may arise:

The initial task:

DO A=1,4%p
DO B=1,N
DO C=1,M
Do Dp=1,L
TA(2+B+D,C+D,A) = TB(B+D,C+D,A)
ENDDD
ENDDO
ENDDO
ENDDO

The parallel task:

DOALL IT=0,3
DO  A=1+IT#P, (IT+1)*P
DO  B=1,N
DO C=1,M
DO D=1,L
TA(2%B+D,C+D,A)=TB(B+D,C+D,A)
Ref.1 Ref.2
ENDDO
ENDDO
ENDDO
ENDDO

The parallelizer detects that first loop A can be ex-
ecuted in parallel on a 4-processor. The sub-program
that we want to generate is in figure 1

TA and TB are arrays accessed in shared memory.
TLA and TLB are arrays needed to store data in local
memories. The first part of the generated code con-
tains declarations of local array dimensions. All com-
putations will be executed in local memory and will
only reference these local arrays. The second part is
the code for transferring data used by the task from
shared memory to local memories; TB array elements
are written in local array TLB. The third part is the
computation code; references to arrays TA and TB have
been transformed in local array references TLA and TLB.
The last part is the code for transferring the computed
results from local memory to shared memory. TLA array
elements are written back to shared memory in array
TA. Loop bounds contain integer divisions, introduced
by our algorithms, to translate the non-convexity of the
set of referenced elements. These elements are repre-
sented in figure 2.



TASK Paral-T(IT,P)

GLOBAL REAL TA (3:2#N+L,2:M+L,1+IT#P: (IT+1)*P)
GLOBAL REAL TB(2:N+L,2:M+L,1+IT*P:(IT+1)%*P)

LOCAL  REAL TLA (3:2#N+L,2:M+L,1+IT*P: (IT+1)%P)
LOCAL  REAL TLB(2:N+L,2:M+L,1+IT*P: (IT+1)*P)
C
C Copy from shared memory into local memory (Ref.2)
C
DO I=1+IT#P, (IT+1)*P
DO J=2,M+L
DO K=MAX (2,J-M+1) ,MIN(L+N, J-1+N)
TLB(X,J,I) «— TB(X,J,I)
ENDDO
ENDDO
ENDDO
c
C Computation Code
c
DO A=1+IT*P, (IT+1)*P
DO B=1,NW
DO C=1,M
DO D=1,L
TLA(2%B+D,C+D,4) = TLB (B+D,C+D,4)
Ref.1 Ref .2
ENDDO
ENDDO
ENDDO
ENDDO
C
C Copy from local memory back to shared memory (Ref.1)
c
DO I=1+IT*P,(IT+1)*P
DO J=1-2%N,M-2
DO K=MAX(3,1+2%((2-J)/2)) ,MIN(L+2#N,L+2%((M-J)/2))
TA(K,J+K,I) «— TLA(K,J+K,I)
ENDDO
ENDDO
ENDDO

RETURN
END

Figure 1: Example 1
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Figure 2: The set of modified data



2 Notations

Let us consider the computation code of the previous
program. It contains four loops on A,B,C and D which
define an 4-Dimension iteration space I. Each loop
body iteration can be specified by an iteration vector
7 such that 77 = (A,B,C,D). Linear bounds are as-
sumed to remain in the linear algebra framework and
the iteration set is a polyhedron defined by a matrix o
and a symbolic vector 8 whose coordinates are linear
expressions built on numerical values, symbolic con-
stants and variables constant over the loop: o7’ < S.
In this figure, the iteration set is defined

(-1 0 0 0)
1 0 0 0
1 -1 0 0
bt o 0 1 0 o
B R 0 0 -1 o0
0 0 1 0
0 0 0 —1
\ 0 0 o0 1
(-I—IT*P\
(14+IT)xP
=
and f = fl
M
i
\ L /
such that
[-1 0 0 0 ) ( —1—IT+P
1 0 0 o (1+IT)xP
1 -1 0 0 A =1
0 1 0 0 B |~
B B =1 0 cl|l=1] -1
0 0 1 0 D M
0 0 0 -1 =k
\ 0 0 o0 1) \ L

This iteration set is formally defined by a system of
linear inequalities S, also called constraints, which are
built from a row of « and a coefficient of A3.

The floor operator | S| will denote the subset of in-
teger points contained in the system of inequalities S.

3 Steps in the transformation
phase

This section describes different steps in the transforma-
tion phase. It demonstrates:

© how to compute the dimensions of local arrays,

e how to characterize the set of used and modified
data in parallel tasks,

e a solution to transfer efficiently the set of used
data from shared memory into local memories,

e a solution to copy efficiently the set of modified
data back from local memory into shared mem-
Ory.

All these phases must take into consideration the
two main objects: maintenance of memory coherency
and minimization of transfer costs.

3.1 Local arrays dimensions

The number of referenced array elements in a parallel
task is often less than the number of elements in the
whole array. Allocation of local array memory must
correspond to this subset. In a Fortran context, di-
mensions of local arrays must be linear expressions of
integers and constants. To generate them, lower and
upper bounds of values that are referenced by array el-
ements in the parallel task must be precisely computed.
Because symbolic constants may occur in bound ex-
pressions of the iteration space, classical algorithms of
integer programming cannot always be used. Thus, the
algorithm of parametric integer programming proposed
in [Feau88b] will be used.

3.2 Affine image

Characterization of used and modified data is problem-
atic when arrays are referenced. As a matter of fact,
it is the set of all referenced array elements in a set of
loops contained in a parallel task that must be charac-
terized. This set correspond to a set of integer points.
It is the major cause of problems.

The characterization of a set of loops [Irig88] that
cover the elements of a polyhedron is simpler than for
a set of loops that examine the elements of any set of
integer points. Thus, our goal is to try to describe the
set of referenced elements by a set of polyhedra in order
to generate transfer code easily.

However, two principal problems arise: the set of
referenced array elements is neither necessarily a convex
set nor a whole polyhedron.



3.2.1 Nomn-convex set

The set of referenced array elements is the affine image
of the iteration space by the access function 7. We also
call this set the image domain.

Example 2 shows that this set is not necessarily a
convex polyhedron. Indeed, the image of a set of integer
points (the iteration space) by an affine function do not
referenced necessarily a convex set. Sometimes, the
domain borders are non convex.

To solve this problem, section 4 describes how it is
possible to introduce integer divisions in loop bound
expressions in order to translate the non convexity of
the image domain borders into a set of loops scanning
it.

3.2.2 Hole polyhedron

The following example presents a set of referenced ar-
ray elements, represented by x on the figure, which
references an hole polyhedron.

p0oI=1,3
Do J=1,3
D0 K=1,3
T(2xI+2+«K,1+J+K)=...
ENDDO
ENDDO
ENDDO

I+J+K
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In this example, on the axis I+K, only elements that
are multiple of 2 are referenced. To minimize the num-
ber of transfers, the whole polyhedron defining these
elements must not be copied. A new basis must be
found in order to only scan the referenced elements.

2I+2K 0 :

0 T T ik ) will be
used to express the referenced array elements, thereby
reducing the new iteration space (in this new basis) to
a whole polyhedron. This new basis can be found by
computing the Hermite reduced form [NeWo88] associ-
ated with the access function 7.

Here, the new basis

3.3 Copy in

For transfers from shared memory to local memories,
it is not necessary to copy the set of exactly modified
data. We can copy a larger set because these data will
be used only by local parallel tasks. Thus, no conflicts
between different sets of local copies can arise.

If the set of used array elements is not a convex
polyhedron, a slightly larger set will be transferred: the
smallest convex polyhedron including the set of actually
used data.

3.4 Copy back

For transfers from local memory to shared memory, it is
not correct to copy back one element that has not been
modified by the local task. In fact, this data might have
been modified by another task, and the two different
values of one data cannot reside in a coherent shared
memory. Thus, copy back code of exact modified data
must be generated.

When the image domain is not a convex set, integer
divisions will be inserted in bound expressions of loops
of transfer code in order to translate the non convexity
of the affine domain borders, in all cases where it is
possible.
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In other cases, the non-convex set will be cut into a
set of convex polyhedra, and the end phase will generate
as many transfer codes as convex sets contained in the
non-convex image domain.

The following section describes more precisely how
the domain image is characterized and details the gen-
eration code phase.

4 Computation of Image poly-
hedra

The set of referenced array elements is the affine image
of the iteration set by the access function T, The first
step of image domain computation is to find one basis
t able to scan it. Hermite reduced form associated to
the access function T permits us to find one of these
bases [NeWo88].

The image polyhedron S is then computed from the
index set I by a change of basis from index basis 7 to
image basis 1. If the dimension d ! of the affine image
is less than the dimension n of the iteration space then
only d loops are necessary to scan the image polyhe-
dron. Thus, n —d variables can be eliminated from the
image polyhedron constraints defined by the system S.

One method of eliminating the n — d useless vari-
ables (i.e. to compute the projection of the image poly-
hedron on the first d basis vectors; also called basis vari-
ables) follows. The key is to eliminate non array basis
variables from the constraints without introducing new
array elements.

4.1 Exact integer projection
4.1.1 Legal Integer Pairwise Elimination

Great care must be taken not to modify the set of affine
image integer points when one non basis variable from

lequals to the rank of the Hermite form associated to the
access function T

the image polyhedra is eliminated. To preserve these
image points, integer divisions must be introduced.

k3
Let E; = o; + Z a1
1=1,1k

be an integer linear expression, R a set of constraints,
a;; and «; integers, ap and ag positives integers and
i a variable.

Theorem 1

By + aix < 0 (C1)

Let: 8 = Eq — ag i < 0 (02)
R

and Sy, =

Gk Cpk

{ E¢+¢¢J‘—1<—E, (012)

& |

where Sy, is derived from S using integer divisions? to
eliminate iy. Then:

proj([S], i) = proj(|Ss],ix)

This system S; does not necessarily define a poly-
hedron since integer divisions may introduce holes in a
convex polyhedron. Therefore, this elimination opera-
tion is not an internal operation. We present some con-
ditions that allow variable elimination by simple pair-
wise elimination [Four24] without modifying the projec-
tion. They will be used to eliminate as many variables
as possible while preserving the projection and the sys-
tem linearity. These conditions follow:

Theorem 2
E, + appip <0
Let S = E, —agix <0
R
i e L {a?qu < —ag B
= R

where S’ is obtained from S using the pair-wise elim.-
ination method and R is any system.

pr =1Vag =1=—

proj(|S],ia) = [proj(S, ix)] = proj(LS'], i)

?Different definitions exist for non-positive integers. Here the
remainder is always assumed to be positive.




4.2 Computation of Image Polyhedra
Constraints

The image polyhedron S is computed from the index
set I by a change of basis from index basis i to image
basis £. If the dimension d * of the affine image is
less than the dimension n of the iteration space then
only d variables (called basis variables) are necessary to
express the constraints defining the image polyhedron.
Thus, n — d variables (called non-basis variables) can
be eliminated from the image polyhedron constraints
defined by the system S.

The first step of the algorithm consists in projecting
as many useless variables (non-basis variables) as pos-
sible using the pair-wise elimination method for con-
straints satisfying the conditions of theorem 2 and 3.

The second step is to eliminate redundant constraints.

All redundant constraints on useless variables can be
eliminated if the variable does not appear in a con-
straint of superior level. Two constraints on useful vari-
ables must be conserved.

Finally, integer divisions are introduced in constraint
expressions. All remaining useless variables are elimi-
nated from S by combination of constraints pairs and
introduction of integer divisions, if the variable does
not appear in a constraint of superior level.

The system obtained may still contain useless vari-
ables. In this case, constraints on these useless vari-
ables also appear in the set of loops scanning the im-
age polyhedra. As with integer divisions, occurrence of
these variables in constraints express the non convexity
of the affine image.

This algorithm is described in figure 3.

4.3  Generation of the loops scanning
the image domain

Let SI be the set of constraints computed by the previ-
ous algorithm for the image polyhedra. Let SI; be the
subset of SI made of the inequalities with no integer
divisions, and SI; its complement wrt. SI.

The method proposed in [Irig88] is used to generate
automatically the set of d ® loops scanning the elements
of the polyhedron S;. The d different steps follow:

e the bounds of the most internal loop in the final
generated code are computed. The whole system
S1 gives these bounds in function of other loop
variables.

Yequals to the rank of the Hermite form associated to the
access function T
Sthe dimension of the affine image

—t1+t; < -1
th—1; < 10

=iy X =l

t, < 10

bounds of loop variable ¢; are linear
function of other variables:

=4 & =1=%
1 < 10412,

For example :

¢ the bounds of the (d — 1) — th loop are computed
next. The system S; is projected onto variables
3,13, ...,14 and i, is expressed in function of the
d — 2 first loop variables,

e afterwards, the bounds of the (d — i) — th loop
(2 <i<d-2) are computed. The system S; is
projected on variables #;11,%42,...,t4 and #;4, is
expressed in function of the d — i — 1 first loop
variables,

e finally, the successive projections of the first d—1
loop variables allow the computation of the nu-
merical loop bounds of the most external loop.

At each step of the algorithm, redundant con-
straints are eliminated using specific rules.

To generate the nested loops set defining the im-
age polyhedra, the previously described algorithm is
applied to SI;. Inequalities of SI; are added as loops
bounds or used in a guard if a variable of higher level
in the inequality appears on two sides of the inequality.

5 Code Generation for Distributed

Memory Multiprocessors

Management of distributed memories is more com-
plex than that of shared memory multiprocessors be-
cause data partitioning in local memories must be taken
into account. A lot of methods [CaKe88], [GIGa88],
[RoPi89], [Tsen89], [APTh90], [Gern90], [KoMe90] as-
sume that this data partitioning is given by the pro-
grammer and is “simple”. It must be easily exploited
by methods that generate data transfers and assign ex-
ecution of a set of instructions to a processor. Thus,
data partitioning often results in a set of polyhedra.

When data partitioning is done, the set of instruc-
tions to be executed on each processor must be eval-
uated. Many methods [CaKe88], [RoPi89], [APTh90],
[Gern90] have chosen to execute on & processor the set
of instructions that correspond to a write operation of a



EXACT-PROJECTION:

1. For each non basis variable iy (d+1<k< n) of § do:

® Divide S in two sets: set S;, of inequalities containing i,
and set R of other inequalities,

e Let S be R,

® Let POS be the set of inequalities {Ep + apriz < 0} of Si, where g,z is a positive integer and NEG
the set of inequalities {Eg — aguix < 0} where it is negative.

For each pair of inequalities (pos € POS, neg € NEG) do:

— for each pair of inequalities such that @pk =1 or ag =1 do:

Si=25n U{kaEq < —axEp}

— for each pair of inequalities such that ( ap E,-’r-ap;,a,;.—a,;, < —ag Ep is redundant in R), do
nothing

— for each pair of inequalities such that ok > 1 and age > 1
and ( a,;E,+a,,ha,;. —@pr < —ag, By is not redundant) do:

Spx=Sp| HarnBy < 2By} [J {pos,neq}
o Let § = Sy
2. Associate with each constraint C; the rank Rj = maz{ i | a;; #0}
3. Eliminate redundant inequalities of S using the following rules:

¢ First, eliminate redundant inequalities associated with the largest rank R;.

¢ keep at least two constraints associated with a basis variable i7(1 < 1 < d): one constraint
where the # coefficient is positive, and one other where it is negative,

¢ Eliminate all redundant comstraints C, associated with a rank R, if (VC,€ 8,R,> R, then a,, = 0)
4. Eliminate non basis variables i; (cf+l <k <n) of constraints by introducing integer divisions:
¢ for each pair of inequalities (E, +apiix <0 ,E, —agii < 0) | (YC.€ 5,R, >k then a,, =0) do:
— Eliminate # by introducing integer divisions
— associate with the new constraint C,:

* the rank R =maz{i | ay # 0} if i, appears only on one side of the inequality,
* no number otherwise

Figure 3: Algorithm to compute the exact image polyhedra
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The data transfer codes generated by our algorithms
are practically always optimal, i.e. each data that must
be transferred is copied only once. More precisely the
number of transfers is minimal when the data set that
must be transferred is a convex set or the union of data
sets referenced by functions with uniform dependences.

The use of polyhedra to characterize all domains
(iteration and image) that we need to manipulate per-
mits us to decrease some initial application hypotheses
(linear test statements can be translated in the form
of linear constraints) and to extend simply our first re-
sults, described in this paper, to the case where there
are several references to the same array.

Parallelization methods of tasks for distributed mem-
ory multiprocessors also need to compute data sets: the
set of used data and the set of iterations that must be
executed on one processor. When data partitioning in
local memories is a union of polyhedra, our algorithms
can be used to evaluate them. In many cases, the gen-
erated codes allow for the scanning of data sets with-
out guards or masks (integer divisions are sufficient).
Thereby they decrease the control overhead at task ex-
ecution time, especially for non-convex data sets.
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