
Recursive Pattern Matching on Concrete Data Types

with appendix

Pierre Jouvelot
CAI, Ecole des Mines de Paris, Fontainebleau (F.)

LCS, Massachusetts Institute of Technology, Cambridge (U.S.A.)
(E-mail: jouvelot@{fremp11.bitnet,brokaw.lcs.mit.edu})

Babak Dehbonei
Corporate Research Center, BULL, Louveciennes (F.)

(E-mail: Babak.Dehbonei@crg.bull.fr)

ACM SIGPLAN Notices, Vol 24, Issue 11, Nov 1989, pp 84–91

1 Introduction

The functional programming model favors recursive definitions of functions by structural induction
over user-defined concrete data types. Most functional languages (e.g., Lisp, ML, Miranda, Haskell)
offer powerful programming constructs that ease the writing of programs based on this idea; destruc-
turing let, multiple-value-bind,...

We propose an extension to the usual notion of pattern-matching, called Recursive Pattern Match-
ing. Our motivation is based on the observation that most real-life data types are recursive, e.g.
abstract syntax trees, control graphs, ... Consequently, many functions that manipulate these data
types are recursive. The RPM technique combines pattern-based dispatching and recursive function
calls on subcomponents of complex values.

This technique has been successfully used on a large scale inside the Velour project. This vectorizing
and parallelizing compiler is 11,000 LeLisp lines long and most of its modules use recursive pattern
matching on abstract syntax trees. Compared to a first version of Velour that didn’t use recursive
pattern matching, we observed a 20 to 30 per cent decrease1 in the size of the code, without significant
performance penalty. Like any structuring concept, we also noticed that its usage entailed a substantial
reduction in the number of design and coding errors.

In the remainder of this paper, we survey the related work (section 2), define precisely the notion
of recursive pattern matching (section 3), give a set of simple examples (section 4), investigate further
improvements (section 5) and conclude (section 6). An appendix provides a complete CommonLISP
implementation of RPM.

2 Related Work

Pattern matching is an important facility provided by many modern programming languages. Basi-
cally, once a given data type (seen in this framework as a set of functions that allow the manipulation
of values of this type) has been defined, patterns (i.e., expressions that involve data type functions
and unbound variables) can appear as left hand sides of any binding construct; the net effect is to
bind the variables to the corresponding values in the right hand side. The right hand side value has
to match the corresponding pattern.

1This imprecision comes from the fact that the second version of Velour also introduced numerous enhancements that
influenced the code size.

1

The simplest way of using this technique is given in many widely used imperative languages. In
Pascal [JW85], the case command allows the programmer to execute statements according to the
value of an integer or an enumerated variable. In the C programming language [KR78], an equivalent
treatment is performed on integer expressions using the switch statement. However, these matching
possibilities are not sufficiently powerful to be applied on more abstract data.

In Lisp-like languages [St84], a flavor of abstract pattern matching is present for structured lists
or trees. This is performed on function calls or macro expansions with the dotted notation or the
CommonLISP keywords (e.g., &rest, &optional).

A more sophisticated technique is used in the ML functional language [M83]. It is performed on
expressions that have (possibly recursive) sum types over a set of available types. An example will
clarify this approach:

#rectype Num =

zero |

succ of Num ;;

The recursive Num type denotes the set of positive or null integers. We can then define a function Add

that computes the sum of two values (given in a pair argument) of type Num.

#letrec sum = fun

(zero,Y). Y |

(succ X,Y). sum (X, succ Y) ;;

The matching is performed on the two type constructors zero and succ of Num; this is usually imple-
mented by a one-way unification routine.

The mechanism of views has been proposed for matching expression that have an abstract data
type [W87]. This allows the programmer to use pattern-matching without losing the abstraction.
Changing the implementation of an abstract data type won’t require any modification of programs
that import this type (this wouldn’t be the case with the ML kind of matching which is concrete). An
external (resp. internal) description of an abstract value is given through the attribute out (resp. in)
in the data type definition. For instance, an integer can be seen as:

view int ::= Zero | Succ int

in n = Zero if n=0

= Succ(n-1) if n > 0

out Zero = 0

out (Succ n) = n+1

In this example, the abstract definition of an integer has a concrete description that is the correspond-
ing integer number. The pattern matching is performed on this concrete version of the data type via
the abstract functions.

A very similar notion to our pattern facility has been recently introduced in [J87]. This approach
is based on the attribute grammar paradigm applied to LML, a lazy version of ML. A recursive control
structure called case rec is introduced to traverse concrete data structures and compute attributes;
this construct is complex (not restricted to non-circular grammars) and was not implemented at that
time. Furthermore, it relies heavily on the laziness of LML since it doesn’t restrict the attributes
computation in the way our construct does.

Several other studies have also been made in the context of actor languages. These languages
define pattern matching operators as higher level objects. Backtracking is also allowed in this scheme
to accomodate constraints that might be defined on patterns.

3 Recursive Pattern Matching

Recursive pattern matching is a language-independant notion. It can be used in any functional lan-
guage that supports structured concrete data types.

2

3.1 Type Notation

A concrete type T can either be a basic type (like Int or Bool) or a constructed type. A constructed
type is a sum of product types (i.e., disjoint unions of structures with multiple members like t1:T1 +

t2:(T2 × T3)). We assume that each value of sum type T with tag t satisfies the run-time predicate
has tagt; this means that tags (representing types) are carried around by the underlying implemen-
tation. For every sum type T, the function untag retrieves the untagged component of the value.
For every product type T that has T1 as component, there exists a function T T1 that retrieves the
component of type T1 in an object of type T.

3.2 Definition of RPM

The core of the RPM technique is a special form, called rpm. Its BNF syntax is the following:

rpm ::= (rpm root Clause*)
root ::= Expression
Clause ::= (Pattern body)

Pattern ::= (head member*)
head ::= Identifier
member::= Identifier
body ::= Expression*

where item* represents a non-empty list of item, Identifier is a Lisp symbol and Expression any Lisp
expression.

Recursive pattern matching performs a recursive traversal of a tree-shaped concrete data type.
The fundamental characteristic of rpm is to hide the recursive invocations inside the very definition
of the patterns. Namely, whenever a member appears in a clause, then its value in the corresponding
body is the result of the recursive call on the member instead of the more usual member value.

The informal semantics of an rpm expression is the following. First, the root expression is evaluated;
its value v is a structured value of type t which has to be one of the different heads of the list of clauses.
Each clause with pattern p is successively checked to see whether t matches p, i.e. the head h of p
equals t. The first clause c that succeeds is chosen (if none, an error is reported). The result of the
evaluation of the list of expressions inside c in an augmented environment is returned. The augmented
environment is defined as follows: h is bound to (untagv) and each member m is bound to the result of
the recursive evaluation of the whole process on the value (h m (untagv)) where h m is the function
that retrieves the m component of a value of type h.

The formal semantics of rpm is given below with a denotational flavor; without loss of generality, we
used a restricted version of rpm that limits the number of clauses to two and allows only one member
in a pattern and one expression in each clause. The standard direct semantics E of any functional
language is extended with the semantics of rpm. It uses a function C that takes two continuations:
the first one is used once a pattern matches with the value and the second one allows the trial of
subsequent clauses (or failure). The semantics of the pattern matching process is the function P. We
give below the types of these functions:

E : Expression → Store → Result

C : Clause× Clause → V alue → Cont → Cont → Store → Result

P : Pattern → V alue → (Identifier× Identifier× V alue)

Cont : V alue → Store → Result

Result : (V alue+ error)

The semantic equations are the following:

E [[rpm E C1 C2]]s = C[[C1 C2]](E [[E]]s)(λvs.v)(λvs.error)s

3

C[[C1 C2]]vk1k2s = C[[C1]]v(λvs.C[[C1 C2]]vk1k2s)
(λvs.C[[C2]]v(λvs.C[[C1 C2]]vk1k2s)(λvs.error))s

C[[P E]]vk1k2s = let Id1, Id2, a = P[[P]] in
if has tagId1(v) then E [[E]][untag v/Id1][k1(a(untag v))s/Id2]s else k2vs

P[[(Id1 Id2)]] = Id1, Id2, Id1 Id2

where Id1 Id2 is the function that returns the Id2 member of a value of type Id1. Note the recursive
behavior of rpm pictured in the use of C[[C1 C2]] in its own definition.

3.3 RPM Computes Primitive Recursive Functions

The purpose of this section is to prove that the RPM technique has the expressive power of primitive
recursion.

Definition [C87]. A function f of arity n is defined by primitive recursion over the functions g
and h if and only if:

• f(x1, ..., xn) = g(x1, ..., xn) if xn = 0,

• h(x1, ..., xn, f(x1, ..., xn − 1) otherwise

Theorem Any primitive recursive function f can be encoded with rpm without recursion.

Proof. Let Num be the recursive concrete type Zero + Succ:Num. Let f ′ be the curried function
such that f ′(xn)(x1, .., xn−1) = f(x1, ..., xn).

By definition, if xn is Zero we have:

f ′(xn) = λx1, .., xn−1.g(x1, .., xn)

and if xn is the successor of y (i.e., y = Num-Succ xn):

f ′(xn) = λx1, .., xn−1.h(x1, ..., xn, f
′(y)(x1, ..., xn−1))

Thus, by definition of rpm:

f ′(xn) = rpm xn
((Zero) λx1, .., xn−1.g(x1, .., xn))
((Succ Num) λx1, .., xn−1.h(x1, ..., Succ, Num(x1, ..., xn−1)))

Inside the body of the second clause, Succ is bound to the current value of xn and Num denotes the
result of the recursive invocation of f ′ on y if y = Num-Succ xn. We can define f in the following way:

f(x1, ..., xn) = (rpm xn
((Zero) λx1, .., xn−1.g(x1, .., xn))
((Succ Num) λx1, .., xn−1.h(x1, ..., Succ, Num(x1, ..., xn−1)))
x1...xn−1)

The formal proof of equivalence between these two forms is straightforward and left to the reader. □
Note that we supposed that concrete types were not circular. If we relax this restriction (i.e.,

we quit the pure functional paradigm) or allow abstract types instead of concrete types, then partial
recursion can be encoded with rpm. The idea is to use the potentially infinite traversal on a circular
value to implement the minimization operator of partial recursion. Recall that any recursive function
(i.e., partial recursive) can be coded with composition of functions, projections, primitive recursion
and minimization. Thus, rpm codes for any recursive function.

4

3.4 RPM with CPS

RPM allows the recursive definition of expressions where more than one argument is needed. The
trick to adapt rpm to this requirement is to use higher-order functions in a way reminiscent of the
Continuation Passing Style [St77]. Basically, each clause returns a function that is abstracted over
these arguments and it is up to the caller (i.e., the previous clause in the dynamic call sequence) to
provide the appropriate parameter values. This can also be used each time a clause treatment requires
some inherited values from its caller.

The very definition of rpm is bottom-up and using this “CPS”-like programming paradigm is a
way to simulate a top-down behavior. We found this twist very successful in our practical experiments
and easy to use (once assimilated by programmers !).

4 Examples

In the sequel, we will use the CommonLISP notation; product types are coded by defstruct, sum
types by a corresponding deftype with an or constructor and basic types by the underlying imple-
mentation. We present three simple examples that use the rpm package provided in the Appendix:
a factorial function, the computation of the free variables of a λ-expression and a Lambda-Calculus
evaluator.

4.1 Factorial

The computation of the factorial of an integer number is an elementary example where the power of
our rpm function is shown. Let us first define the type of integer numbers and some functions on them:

(defsum num zero succ)

(defproduct zero)

(defproduct succ

(of :type num))

(defconstant num-1 (make-succ :of (make-zero)))

(declare (function num-product (num num) num))

where num is either a zero or a succ with a unique member of which is a num. For convenience, we
defined num-1 and declared the product function on nums (the code of which is left as an exercise to
the reader).

The rpm version of factorial on values of type num is the following:

(defun factorial (num)

(rpm num

((zero) num-1)

((succ of) (num-product succ of))))

which can be used in the following way :

-> (fact (make-succ :of (make-succ :of (make-zero))))

#(succ #(succ #(zero)))

Note that unlike other programming techniques, there is no explicit recursive call to factorial; it is
embedded inside the rpm macro.

5

4.2 Free Variables of Lambda Expressions

The Lambda-Calculus manipulates λ-expressions. Its syntax is :

(defsum lambda-expression variable application abstraction)

(defproduct variable

(name :type string))

(defproduct application

(operator :type lambda-expression)

(operand :type lambda-expression))

(defproduct abstraction

(variable :type variable)

(body :type lambda-expression))

(declare (function variable= (variable variable) t))

A λ-expression is either a variable, an application of two λ-expressions or an anonymous function
with a bound variable as formal argument and a λ-expression as body (abstraction). We introduce
the notion of a free variable in a λ-expression by structural induction on the domain of λ-expressions:

Definition [S77] A variable x occurs free in a λ-expression E if and only if:

• E is x,

• E is (E1 E2) and x occurs free in E1 or E2

• E is (lambda V E), x and V are different and x occurs free in E

We define the function that computes the set of all free variables present in a λ-expression:

(defun free-variables (expression)

(rpm expression

((variable) ‘(,variable))

((application operand operator)

‘(,@operand ,@operator))

((abstraction body)

(remove (abstraction-variable abstraction) body

:test #’variable=))))

Each clause returns a list of variables after applying the appropriate treatment (e.g., removing the
bound variable from the list of free variables of the body of an abstraction).

4.3 A Lambda-Calculus Evaluator

We will use the previous data type and associated functions to write a simple evaluator of λ-expressions.
This will be the occasion of using higher order functions as a means to deal with arguments; the
evaluate function takes, beside the expression, a store that maps variables to num values (for in-
stance).

We used the [macro character to wrap the special form funcall around the arguments (see
Appendix). They wouldn’t be required if we used a one-namespace language like Scheme.

(defun update-store (value variable store)

#’(lambda (v)

(if (variable= v variable)

value

[store v])))

6

(defun evaluate (expression store)

[(rpm expression

((variable)

#’(lambda (store) [store variable]))

((application operand operator)

#’(lambda (store)

[[operator store] [operand store]]))

((abstraction body)

#’(lambda (store)

#’(lambda (value)

[body (update-store value

(abstraction-variable abstraction)

store)]))))

store])

The function update-store updates the store (which is a function) to bind the value to the variable.
The constant init-store denotes an empty store. The core function evaluate evaluates an expression
in a given store. The key idea is that each clause in the rpm macro returns a function that maps stores
to values. We give below a simple example that evaluates ((lambda (x) x) 1) in an empty initial
store:

-> (let* ((x (make-variable :name "x"))

(y (make-variable :name "y"))

(f (make-abstraction :variable x :body x)))

(evaluate (make-application :operator f :operand y)

(update-store num-1 y #’(lambda (variable) :unbound))))

#(succ #(zero))

5 Future Work

There are many improvements that can be added to this current definition of the rpm special form:

• multiple values could be returned by rpm. Actually the extended version of rpm used in the
Velour project allows such an extension.

• more general patterns that are not limited to direct subcomponents could be introduced. For
instance, one might want to perform the recursive calls on specific deeper subtrees instead
of being limited to just a one-level recursion. The implementation provided in the Appendix
includes a limited version of this idea; if a subcomponent on which a recursive call has to be
performed happens to be a list, the recursive process is mapped on each element of the list and
a list of results is returned. This could also be applied to vectors.

• a default pattern could be introduced (a la of ML) to trap the values that didn’t match any
of the clauses.

6 Conclusion

Recursive Pattern Matching is a programming technique that combines the advantages of simple
pattern matching on structured values and recursive function definition. It has been widely used in
the development of a vectorizing compiler prototype and proved quite powerful and useful.

A portable CommonLISP implementation of rpm is provided.

7

Acknowledgements

We would like to thank Vincent Dornic for pointing out the quite relevant paper [J87].

References

[C87] Cohen, D.E Computability and Logic. Ellis Horwood, Halstead Press, J.Wiley and Sons, New
York 1987

[JW85] Jensen, K., and Wirth, N. The Pascal User Manual and Report. Third Edition, Springer-
Verlag, New York 1985

[J87] Johnsson, T. Attribute Grammars as a Functional Programming Paradigm. In the Proceedings
of the 1987 Int. Conf. on Func. Prog. Lang. and Comp. Arch., Portland, 1987

[M83] Milner, R. A Proposal for Standard ML. Polymorphism Letters I, Bell Labs, 1983.

[KR78] Kernighan, B., and Ritchie, D. The C Programming Language. Prentice-Hall, 1978.

[S77] Stoy, J. E. Denotational Semantics: the Scott-Strachey Approach to Programming Language
Theory. MIT Press, 1977.

[St84] Steele, G. L., Jr. CommonLISP: The Language. Digital Press, 1984.

[St77] Steele, G.L., Jr. Rabbit. MS Thesis, MIT AI Lab, 1977

[W87] Wadler, P. Views: A way for pattern matching to cohabit with data abstraction. In Proceedings
of the Conference on Principles Of Programming Languages. ACM, Munich, 1987.

8

Appendix: A CommonLISP Implementation of rpm

;; The "rpm" (Recursive Pattern Matching) macro package.

;;

;; IMPORTANT NOTE: The rpm macro can only be used on CommonLISP structures

;; that are implemented as named vectors. Use the following declaration

;; for that purpose: (defstruct (foo (:type vector) :named) ...). Without

;; this definition, the rpm package may (or may not) work depending on

;; a particular implementation of structures. We provide DEFSUM and

;; DEFPRODUCT macros that introduce these particular declarations.

;;

;; This software is provided without any guarantee. Any trouble can be

;; reported to jouvelot@brokaw.lcs.mit.edu or Babak.Dehbonei@crg.bull.fr.

;;

;; Copyright (C) 1989 - Pierre Jouvelot & Babak Dehbonei.

(provide :rpm)

(in-package :rpm)

(export ’(rpm defsum defproduct))

(deftype base-type ()

"The type of values that are self evaluating."

’(or symbol integer float character string))

(defmacro defproduct (type &rest domains)

"TYPE is the product domain of DOMAINS"

‘(defstruct (,type (:type vector) :named) ,@domains))

(defmacro defsum (type &rest domains)

"TYPE is the sum domain of DOMAINS"

‘(deftype ,type ’(or ,@domains)))

;; [...] are used to hide funcalls.

;;

(set-macro-character

#\[

#’(lambda (stream char)

‘(funcall ,@(read-delimited-list #\] stream t))))

(set-macro-character #\] (get-macro-character #\) nil))

(defmacro rpm (object &rest clauses)

"To recurse on the value OBJECT with the recursive pattern matching

CLAUSES, use the following syntax:

(rpm <exp> ((<type> <member1> ... <membern>) <body>) ...)

Inside <body>, <type> is bound to the current value and <memberi> to

to i-th recursive call result of rpm on <type>-<memberi> on the current

Newgen object. If the member is a list, then a list of results is

returned."

(let ((loop (gensym))

(obj (gensym)))

‘(labels ((,loop (,obj)

(etypecase

,obj

(base-type ,obj)

(cons (mapcar #’,loop ,obj))

(vector

9

(cond ,@(rpm-clauses obj clauses loop))))))

(,loop ,object))))

(defun rpm-clauses (obj clauses loop)

"Tests all the CLAUSES to find the first one that matches the type of

the value OBJ. The recursive function to use for members is LOOP."

‘(,@(mapcar

#’(lambda (clause)

(let* ((pattern (car clause))

(head (car pattern)))

‘((,(intern

(concatenate ’string (symbol-name (intern head)) "-P"))

,obj)

(let ((,head ,obj)

,@(recurse-members head obj (cdr pattern) loop))

,@(or (cdr clause)

‘((declare (ignore ,@pattern))))))))

clauses)

(t (error "rpm: unknown value ~D" ,obj))))

(defun rpm-members (head obj members loop)

"Creates the bindings of each element of MEMBERS to the return of

the recursive call of LOOP on the MEMBER of OBJ (which is of type HEAD)."

(mapcar #’(lambda (member)

‘(,member

(,loop (,(intern

(concatenate ’string

(symbol-name (intern head))

"-"

(symbol-name (intern member))))

,obj))))

members))

10

